Structure-property insights from fragment-based analysis of interfacial charge-transfer excitons

Márcio T. do N. Varella

Institute of Physics, University of São Paulo

ICR, Aix-Marseille Université April 14th 2021

> Molecular Physics electrons positrons photons

> > http://fig.if.usp.br/~mvarella/

Global Energy Consumption

World Energy Outlook 2020 https://www.iea.org/reports/world-energy-outlook-2020

Best Research-Cell Efficiencies

National Renewable Energy Laboratory (NREL) – USA https://www.nrel.gov

Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core Yuan *et al.*, Joule 3, 1140 (2019)

Organic and solution-processed tandem solar cells with 17.3% efficiency

Meng et al., Science 3, 1094 (2018)

Charge separation in OSCs

Clarke & Durrant, Chem. Rev. 110, 6736 (2010)

Free Energy

Interface Models

Acceptor: fullerene

PCBM = phenyl-C61-butyric acid methyl esther

Donor: dual-band polymer PTBTBTz / PT3BTBTz

T = thiophene BT = benzothiadiazole BTz = benzotriazole

Varella et al., J. Phys. Chem. C 125, 5448 (2021)

17 + 8 models127 structures252 to 412 atoms

Methods

- Excitation spectra obtained with the LC-TD-DFTB method [1] implemented in the DFTB+ package [2].

- Newly optimized OB2 Slater-Koster parameters for H, C, N, O, S
- Partial tuning of the range-separation parameter

- Exciton analysis with the fragment-based one-electron transition density matrix method implemented in the TheoDORE package [3].

- [1]. Kranz *et al.*, JCTC **13**, 1737 (2017)
- [2]. https://dftbplus.org/
- [3]. Plasser, JCP 152 084108 (2020)

- 1-TDM analysis
$$\Omega_{AB} = \int_A d\mathbf{r}_h \int_B d\mathbf{r}_e \gamma_{0I}^2(\mathbf{r}_e, \mathbf{r}_h)$$

- Charge-transfer number

$$CT = \frac{1}{\Omega} \sum_{A} \sum_{B \neq A} \Omega_{AB}$$

- Exciton position

$$POS_{h} = \Omega^{-1} \sum_{A} A\left(\sum_{B} \Omega_{AB}\right)$$

$$POS_{e} = \Omega^{-1} \sum_{B} B\left(\sum_{A} \Omega_{AB}\right)$$

$$POS = \frac{1}{2}(POS_{h} + POS_{e})$$

- Exciton size
$$d_{\rm exc} \approx \sqrt{\frac{1}{\Omega} \sum_{M,N} \Omega_{MN} d_{MN}^2}$$

$$\Omega_{AB} = \int_{A} \mathrm{d}\mathbf{r}_{\mathrm{h}} \int_{B} \mathrm{d}\mathbf{r}_{\mathrm{e}} \gamma_{\mathrm{0I}}^{2}(\mathbf{r}_{\mathrm{e}}, \mathbf{r}_{\mathrm{h}})$$

СТ

$$\langle n_{\rm CT}^{\rm low} \rangle = (8.0 \pm 2.2)$$
$$\langle n_{\rm CT}^{\rm cold} \rangle = (2.6 \pm 1.3)$$
$$\langle {\rm CT}_{\rm cold} \rangle = (0.995 \pm 0.009)$$

$$\langle n_{\rm CT}^{\rm low} \rangle = (1.9 \pm 1.1)$$

 $\langle n_{\rm CT}^{\rm cold} \rangle = (1.3 \pm 0.5)$
 ${\rm CT}_{\rm cold} \rangle = (0.89 \pm 0.05)$

Conclusions in line with TD-DFT studies:

Chen *et al.*, Adv. Energy Mater. 6, 1601325 (2016)

Ran *et al.*, Nat. Commun., **8**, 79 (2017)

Fazzi *et al.*, J. Phys. Chem. Lett. **8**, 4727 (2017)

Hole delocalization

Electron delocalization

Electron delocalization

Insights Into Exciton Sizes

- Face-on models: exciton size increases as the hole lies farthest from the electron

- Edge-on models: exciton size increases as the hole delocalizes over the stacked donor chains.

- Electron delocatization perpendicularly to the interface produces larger excitons.

Many thanks to

ICR people, especially Mario Barbatti

Ljiljana Stojanović Van Quan Vuong Stepahn Irle Thomas Niehaus Support

Thanks for your attention!

Molecular Physics electrons positrons photons

http://fig.if.usp.br/~mvarella/

University of São Paulo Campus

Physics Institute

Benchmark

Benchmark

PT3BTBTz models

PTBTBTz tetramers

(tet-PT)2(PCBM@bt)1:f

(tet-PT)2(PCBM@btz)1:f

(tet-PT)2(PCBM@t)1:f

DFTB

$$\rho(\mathbf{r}) = \rho_0(\mathbf{r}) + \Delta \rho(\mathbf{r})$$

- Second-order expansion of the energy leads to

- Generalized eigenvalue problem:

$$\sum_{\nu} \left[H^0_{\mu\nu} + \frac{1}{2} S_{\mu\nu} + \sum_{\sigma}^{\text{atoms}} (\gamma_{\alpha\sigma} + \gamma_{\beta\sigma}) \Delta q_{\sigma} \right] c_{\nu i} = \epsilon_i \sum_{\nu} S_{\mu\nu} c_{\nu i}$$

- Compressed STOs, Slater-Koster files

Phys. Rev. B 58, 7260 (1998); JPCA 11, 5614 (2007)

TD-DFTB

- Linear response formalism:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{A}^* \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = \Omega \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}$$
$$A_{ia\sigma,jb\sigma'} = \delta_{ij}\delta_{ab}\delta_{\sigma\sigma'}(\varepsilon_{a\sigma} - \varepsilon_{i\sigma}) + (ia\sigma \parallel jb\sigma')$$
$$B_{ia\sigma,jb\sigma'} = (ia\sigma \parallel bj\sigma')$$

– Generalized 2-electron integrals in terms of transition Mullken charges:

$$\int \int \psi_i(\mathbf{r})\psi_a(\mathbf{r}) \left(\frac{1}{|\mathbf{r}-\mathbf{r}'|} + f_{xc}[\rho](\mathbf{r},\mathbf{r}')\right)\psi_j(\mathbf{r}')\psi_b(\mathbf{r}') = \sum_{\mu\nu} q_{\mu}^{ia}\tilde{\gamma}_{\mu\nu}q_{\nu}^{jb}$$
$$q_{\mu}^{ia} = \frac{1}{2}\sum_{\nu} \left(c_{\mu i}c_{\nu a}S_{\mu\nu} + c_{\nu i}c_{\mu a}S_{\nu\mu}\right)$$

J. Mol. Struct. THEOCHEM 914, 38 (2009); JCTC 13, 1737 (2017)

LC-TD-DFTB

- Yukawa ansatz with Bauer-Neuhauser-Livshits (BNL) XC potential:

$$v_{\rm C} = v_{\rm C}^{\rm sr} + v_{\rm C}^{\rm lr} = \frac{\exp(-\omega r_{12})}{r_{12}} + \frac{1 - \exp(-\omega r_{12})}{r_{12}}$$

- Modified γ integrals

JCP 143 184107, (2015) ; JCTC 13, 1737 (2017)

1-TDM-Analysis

$$\Omega_{AB} = \int_{A} \mathrm{d}\mathbf{r}_{\mathrm{h}} \int_{B} \mathrm{d}\mathbf{r}_{\mathrm{e}} \gamma_{0\mathrm{I}}^{2}(\mathbf{r}_{\mathrm{e}}, \mathbf{r}_{\mathrm{h}})$$

$$\Omega^{\alpha}_{AB} = \frac{1}{2} \sum_{a \in A} \left(\mathbf{D}^{0\alpha, [AO]} \mathbf{S}^{[AO]} \right)_{ab} \left(\mathbf{S}^{[AO]} \mathbf{D}^{0\alpha, [AO]} \right)_{ab}$$

JCTC 8 2777, (2012) ; JCP 152, 084108 (2020)