Structure-property insights from fragment-based analysis of interfacial charge-transfer excitons

Márcio T. do N. Varella

Institute of Physics, University of São Paulo

ICR, Aix-Marseille Université
April 14 ${ }^{\text {th }} 2021$

Molecular Physics
electrons positrons photons

http://fig.if.usp.br/~mvarella/

Global Energy Consumption

$$
\begin{aligned}
& 1 \text { toe (tonne oil equivalent) }=42 \mathrm{GJ} \\
& 1.0 \times 10^{7} \text { toe }=4.2 \times 10^{17} \mathrm{~J}=1.8=116 \mathrm{TW}-\mathrm{h}
\end{aligned}
$$

Wind \& Solar: ~0.5\% (2018)

World Energy Outlook 2020 https://www.iea.org/reports/world-energy-outlook-2020

Best Research-Cell Efficiencies

ZNREL

National Renewable Energy Laboratory (NREL) - USA https://www.nrel.gov

Charge separation in OSCs

(-)
Polymer

PCBM

Exciton

Clarke \& Durrant, Chem. Rev. 110, 6736 (2010)

Interface Models

Acceptor: fullerene
PCBM = phenyl-C61-butyric acid methyl esther

Donor: dual-band polymer PTBTBTz / PT3BTBTz
$\mathrm{T}=$ thiophene
BT = benzothiadiazole
BTz = benzotriazole

Varella et al., J. Phys. Chem. C 125, 5448 (2021)

Methods

- Excitation spectra obtained with the LC-TD-DFTB method [1] implemented in the DFTB+ package [2].
- Newly optimized OB2 Slater-Koster parameters for H, C, N, O, S
- Partial tuning of the range-separation parameter
- Exciton analysis with the fragment-based one-electron transition density matrix method implemented in the TheoDORE package [3].
[1]. Kranz et al., JCTC 13, 1737 (2017)
[2]. https://dftbplus.org/
[3]. Plasser, JCP 152084108 (2020)
- 1-TDM analysis $\quad \Omega_{A B}=\int_{A} \mathrm{~d} \mathbf{r}_{\mathrm{h}} \int_{B} \mathrm{~d} \mathbf{r}_{\mathrm{e}} \gamma_{0 I}^{2}\left(\mathbf{r}_{\mathrm{e}}, \mathbf{r}_{\mathrm{h}}\right)$
- Charge-transfer number $\quad \mathrm{CT}=\frac{1}{\Omega} \sum_{A} \sum_{B \neq A} \Omega_{A B}$
- Exciton position

$$
\operatorname{POS}_{\mathrm{h}}=\Omega^{-1} \sum_{A} A\left(\sum_{B} \Omega_{A B}\right)
$$

$$
\operatorname{POS}=\frac{1}{2}\left(\operatorname{POS}_{\mathrm{h}}+\operatorname{POS}_{\mathrm{e}}\right)
$$

- Exciton size

$$
d_{\mathrm{exc}} \approx \sqrt{\frac{1}{\Omega} \sum_{M, N} \Omega_{M N} d_{M N}^{2}}
$$

$$
\Omega_{A B}=\int_{A} \mathrm{~d} \mathbf{r}_{\mathrm{h}} \int_{B} \mathrm{~d} \mathbf{r}_{\mathrm{e}} \gamma_{0 \mathrm{I}}^{2}\left(\mathbf{r}_{\mathrm{e}}, \mathbf{r}_{\mathrm{h}}\right)
$$

Conclusions in line with TDDFT studies:

Chen et al., Adv. Energy Mater. 6, 1601325 (2016)

Ran et al., Nat. Commun., 8, 79 (2017)

Fazzi et al., J. Phys. Chem. Lett. 8, 4727 (2017)

Hole delocalization

Electron delocalization

Electron delocalization

Insights Into Exciton Sizes

- Face-on models: exciton size increases as the hole lies farthest from the electron
- Edge-on models: exciton size increases as the hole delocalizes over the stacked donor chains.
- Electron delocatization perpendicularly to the interface produces larger excitons.

Ongoing : FSSH dynamics

Many thanks to

Support

ICR people, especially Mario Barbatti

Ljiljana Stojanović
Van Quan Vuong
Ljiljana Stojanović
Van Quan Vuong
Stepahn Irle
Thomas Niehaus

Thanks for your attention!

University of São Paulo Campus
Physics Institute

Benchmark

Benchmark

PT3BTBTz models

(c)

PTBTBTz tetramers

(c)

(d)

$(\text { tet-PT })_{2}(\text { PCBM } @ b t z)_{1}: f$
(e)

$(\text { tet-PT })_{2}(\mathrm{PCBM} @ \mathrm{t})_{1}: f$

DFTB

$$
\rho(\mathbf{r})=\rho_{0}(\mathbf{r})+\Delta \rho(\mathbf{r})
$$

- Second-order expansion of the energy leads to
- Generalized eigenvalue problem:

$$
\sum_{\nu}\left[H_{\mu \nu}^{0}+\frac{1}{2} S_{\mu \nu}+\sum_{\sigma}^{\text {atoms }}\left(\gamma_{\alpha \sigma}+\gamma_{\beta \sigma}\right) \Delta q_{\sigma}\right] c_{\nu i}=\epsilon_{i} \sum_{\nu} S_{\mu \nu} c_{\nu i}
$$

- Compressed STOs, Slater-Koster files

Phys. Rev. B 58, 7260 (1998); JPCA 11, 5614 (2007)

TD-DFTB

- Linear response formalism:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{B}^{*} & \mathbf{A}^{*}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y}
\end{array}\right]=\Omega\left[\begin{array}{ll}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & -\mathbf{1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X} \\
\mathbf{Y}
\end{array}\right]} \\
& A_{i a \sigma, j b \sigma^{\prime}}=\delta_{i j} \delta_{a b} \delta_{\sigma \sigma^{\prime}}\left(\varepsilon_{a \sigma}-\varepsilon_{i \sigma}\right)+\left(i a \sigma \| j b \sigma^{\prime}\right) \\
& B_{i a \sigma, j b \sigma^{\prime}}=\left(i a \sigma \| b j \sigma^{\prime}\right)
\end{aligned}
$$

- Generalized 2-electron integrals in terms of transition Mullken charges:

$$
\begin{gathered}
\iint^{\prime} \psi_{i}(\mathbf{r}) \psi_{a}(\mathbf{r})\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}+f_{x c}[\rho]\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right) \psi_{j}\left(\mathbf{r}^{\prime}\right) \psi_{b}\left(\mathbf{r}^{\prime}\right)=\sum_{\mu v} q_{\mu}^{i a} \tilde{\gamma}_{\mu v} q_{v}^{j b} \\
q_{\mu}^{i a}=\frac{1}{2} \sum_{v}\left(c_{\mu i} c_{v a} S_{\mu v}+c_{v i} c_{\mu a} S_{v \mu}\right)
\end{gathered}
$$

J. Mol. Struct. THEOCHEM 914, 38 (2009); JCTC 13, 1737 (2017)

LC-TD-DFTB

- Yukawa ansatz with Bauer-Neuhauser-Livshits (BNL) XC potential:

$$
v_{C}=v_{C}^{\mathrm{sr}}+v_{C}^{\mathrm{lr}}=\frac{\exp \left(-\omega r_{12}\right)}{r_{12}}+\frac{1-\exp \left(-\omega r_{12}\right)}{r_{12}}
$$

- Modified γ integrals

1-TDM-Analysis

$$
\begin{aligned}
& \Omega_{A B}=\int_{A} \mathrm{~d} \mathbf{r}_{\mathrm{h}} \int_{B} \mathrm{~d} \mathbf{r}_{\mathrm{e}} \gamma_{\mathrm{OI}}^{2}\left(\mathbf{r}_{\mathrm{e}}, \mathbf{r}_{\mathrm{h}}\right) \\
& \Omega_{\mathrm{AB}}^{\alpha}=\frac{1}{2} \sum_{\substack{\mathrm{a} \in \mathrm{~A} \\
\mathrm{~b} \in \mathrm{~B}}}\left(\mathbf{D}^{0 \alpha,[\mathrm{AO}]} \mathbf{S}^{[\mathrm{AO}]}\right)_{\mathrm{ab}}\left(\mathbf{S}^{[\mathrm{AO}]} \mathbf{D}^{0 \alpha,[\mathrm{AO}]}\right)_{\mathrm{ab}}
\end{aligned}
$$

JCTC 8 2777, (2012) ; JCP 152, 084108 (2020)

