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Abstract

The phase diagram of an asymmetric N=3 Ashkin-Teller model is
obtained by a numerical analysis which combines Monte Carlo renor-
malization group and reweighting techniques. Present results reveal
several differences with those obtained by mean-field calculations and
a Hamiltonian approach. In particular, we found Ising critical ex-
ponents along a line where Goldschmidt has located the Kosterlitz-
Thouless multicritical point. On the other hand, we did find nonuni-
versal exponents along another transition line. Symmetry breaking
in this case is very similar to the N = 2 case, since the symmetries
associated to only two of the Ising variables are broken. However, for
large values of the coupling constant ratio XW =W/K, when the only
broken symmetry is of a hidden variable, we detected first-order phase
transitions giving evidence supporting the existence of a multicritical
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point, as suggested by Goldschmidt, but in a different region of the
phase diagram.

1 Introduction

A great deal of information about theN-color Ashkin-Teller model [1] (ATM)
has been obtained in the past few years [2],[3], [4]. Several techniques, first
applied to the particular case N = 2 (equivalent to a staggered eight vertex
model) have been extended to the general case. One of them was the mapping
of the statistical model onto a field theoretical one. After taking the time-
continuous and scaling limits, Shankar [5] showed that the field theoretical
counterpart of the isotropicN-color ATM is the Gross-Neveu model [6] (GN),
extending in this way the mapping of the simple case (N = 2) to a Thirring
model [7],[8] which in turn is equivalent to the quantum sine-Gordon equation
[9]. Based on that equivalence he was able to prove that the ATMundergoes a
first-order phase transition , wheneverN ≥ 3, similar to a result first obtained
by Fradkin [10] in the limit N → ∞. Mean-field calculations, Monte Carlo
simulations [11] and 1/N expansions were also used to investigate the model.
In particular we draw attention to [12], where Goldschmidt studied a modified
version of the N = 3 ATM whose counterpart is an anisotropic Gross-Neveu
model. Following Witten [13], he found the correspondence between his
GN model and a supersymmetric sine-Gordon theory. The renormalization
group flow equations were then used to argue in favor of the existence of a
Kosterlitz-Thouless multicritical point [14] separating the first and second
order transition lines. To compare his predictions with the expected phase
diagram of the ATM he carried out a mean-field calculation similar to the
one performed by Grest and Widom [11] to study the isotropic case.
The purpose of this paper is to investigate the anisotropic model studied

by Goldschmidt by means of numerical simulations. The main conclusion of
this paper is that our results rule out the existence of a multicritical point
in the line where it was expected. Nevertheless, existence of a multicritical
point cannot be ruled out at another line. These results have been obtained
by employing a Monte Carlo renormalization group (MCRG) approach [15]
improved by reweighting techniques [16],[17]. In the following section we
describe the model as well as the results obtained by Goldschmidt. In section
3 we obtain the phase diagram and section 4 is devoted to the calculation of
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the critical exponents via MCRG. Finally in section 5 we discuss the results
and comment implications and future work.

2 The model

The two-dimensional anisotropic N = 3 ATM considered by Goldschmidt
consists of three Ising spin systems (Sα(−→r ), α = 1, 2, 3) coupled pairwise by
four spin interactions of different strength. More precisely, he studied the
Hamiltonian

−βH =
X
<�r,�r0>

3X
α=1

KSα(�r)Sα(�r0) +
X
<�r,�r0>

3X
α6=β

UαβS
α(�r)Sβ(�r)Sα(�r0)Sβ(�r0) (1)

where

Uαβ =

 0 w u
w 0 u
u u 0

 (2)

and the sum on < �r,�r0 > runs only over nearest neighbors. When u = w we
recover the symmetric N=3 ATM. In this case the model is equivalent [5] to
the N = 3 Gross-Neveu model described by the Lagrangean

L = (1/2)
3X

i=1

Ψ̄ii∂Ψi + g(
3X

i=1

Ψ̄iΨi)2 (3)

where ψ is a Majorana spinor, related to the spin operators ( σαi ) associated
to the classical variables (Sα ) by the equations

p
(2)ψα

1 (n) =
nY
−∞

σα1 (m)σ
α
3 (n+ 1), (4)

and p
(2)ψα

2 (n) =
n−1Y
−∞

σα1 (m)σ
α
2 (n). (5)

In the more general case (u 6= w) , the model can also be expressed in a
field theoretical language but the O(3) symmetry is explicitly broken. The
equivalent Lagrangean now, is given by
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L = (1/2)
3X

i=1

ψ̄
i
i∂ψi + g(

3X
i=1

ψ̄
i
ψi)2 + (λ− g)(ψ̄

1
ψ1 + ψ̄

2
ψ2)2 (6)

where the parameters g and λ are functions of the four spin couplings u and
w. In both cases the model can be mapped onto a supersymmetric (SUSY)
sine-Gordon model, whose Lagrangean is

L = (i/4)DΦDΦ− (µ/aβ2) cos(βΦ) (7)

where Φ is the superfield and µ and β are functions of g and λ. Based
on the renormalization group flow equations for the coupling constants µ
and δ = (β2/4π) − 1, which are characteristic of a Kosterlitz-Thouless [14]
transition, Goldschmidt has advanced the existence of a KT point separating
the continuous from the first-order transition line. To locate it he used a
mean-field approach [11] previously used in the symmetric case.
The phase diagram obtained [12] in the subspace u = 0.056 is shown in

Fig. 1. The relevant features of that diagram are: 1) the presence of first
and second-order phase transitions separating the Baxter phase (I) and the
paramagnetic (V) one; 2) first-order transition lines separating phase II from
phases I and III; 3) symmetry breaking of two of three kind of spins in phase
II and 4) the existence of a Kosterlitz-Thouless multicritical point at the end
of the second-order transition line which separates phases I and V.

3 Phase Diagram

To investigate the consequences of O(3) explicit symmetry breaking of the
N = 3 ATM we have performed Monte Carlo simulations combined with
renormalization group and histogram techniques [18]. The phase diagram
thus obtained is shown in Fig. 2. It summarizes the central results of this
paper. Unlike that shown in Fig. 1 there is no first-order transition line sepa-
rating phases I and V. In addition, in phase II, only the special family of spins
( S3 ) exhibits spontaneous symmetry breaking. The entire transition line
ABCD, as well as the HBI one, belongs to the Ising-like universality class.
The only nonuniversal transition line is the GCJ one. It separates phases
I and II, where Goldschmidt found a first-order transition line, and phases
V (paramagnetic) and VI (partially broken symmetry). While crossing from
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V to VI, two classes of spins, S1 and S2, exhibit spontaneous symmetry
breaking simultaneously. We now give the technical details of how the phase
diagram was obtained.
We first located the transition lines using specific heat calculations (see

Fig. 3). Data from the last temperature was taken into account to speed up
thermalization. Histogram techniques were used to extend the results of a
simulation around the neighborhood of the critical point, as well as to con-
firm, by the cumulant method [20], the existence, location and the order of
the phase transition. This method, which in essence, uses the kurtosis of the
energy probability distribution to distinguish between one and two-peaked
distributions, and is very useful in determining the order of the transition, is
discussed bellow. Figure 4 shows plots of the magnetization that were useful
in determining whether a transition is ferromagnetic or antiferromagnetic.
It can be seen that the first peak of Fig. 3 is associated with an antiferro-
magnetic transition, represented by open circles in Fig. 4. This transition
corresponds to line HBI of the phase diagram in Fig. 2. The second peak is
associated with a ferromagnetic transition (full squares in Fig. 4) and refer
to line GCJ of the phase diagram. By this procedure the other lines of the
diagram were constructed .
At this point, a discussion regarding the errors is opportune. There are

two sources of errors: one of them has statistical nature. To calculate them is
enough to perform a coarse grained calculation in which a long simulation is
divided in, say 10 parts and the partial results are used for error estimation.
For a lattice of linear dimension L = 30, the fourth order cumulant, described
below, has errors of the order of 10−5 for N = 107 Monte Carlo steps (MCS)
divided in 10 shorter simulations of 106 MCS each. Those errors decrease as
N−1

2 for a fixed value of L and as L increases, N should increase as L2 in
order to maintain the magnitude of the errors. The second source of errors is
inherent to the histogram method. To minimize them it is a must to perform
the simulations in the scaling region as suggested by the following arguments
[19]. Let T be the simulated temperature where the energies E are stored in
a histogram whose width is δE and C(T ) is the specific heat. Then

δE ∝ [C(T )Ld]
1
2 , (8)

where Ld is the volume of the system. When the temperature is changed to
T +∆T the peak position of the histogram shifts by an amount proportional
to [C(T )Ld]∆T . For reliable extrapolations the maximum value for ∆Tmax

occurs when the shift is equal to the width, i.e.,
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∆Tmax ∝ [C(T )Ld]−
1
2 ∝ L−yt, (9)

where yt is the thermal critical exponent and C(T ) scales as Lα∗yt with α =
2−d/yt. This would mean that calculations are less reliable as L increases and
the extrapolation L→∞ would not be possible. On the other hand the shift
between the real critical temperature and finite critical temperature estimates
also decreases as L−yT and this result makes possible the extrapolations to
higher values of L as long as the simulations are performed in the scaling
region in order to keep valid the expressions above.
In what follows we discuss how to determine the order of the phase transi-

tions. We use the peaks of the specific heat to locate the temperatures which
will be used in the histogram techniques simulations. Consider the function
VL [20] obtained from the fourth cumulant of the probability distribution
function of the energy E and given by

VL = 1− < E4 >

3 < E2 >2
. (10)

The minimum value of VL is a relevant quantity, since in the thermodynamic
limit, for systems undergoing second order transitions, it is 2/3, whereas
a non trivial value (6= 2/3) is the signature of a first order transition [20,
21]. The minima of VL were estimated for several lattice dimensions L. An
extrapolation, to simulate the thermodynamic limit L → ∞ was made to
obtain the order of the transition.
An example of the type of results obtained from these calculations is

shown in Fig. 5, for a first order transition at Xw = W/K = 2.0. The
extrapolated value for the cumulant gives 0.6626 and is very near 2/3. The
difference, however is significant as the errors are of order 10−4 and do not
affect significantly the third decimal place in the extrapolated value. That
value (e.g. third decimal place 2 6= 6) indicates a first order transition with
very small latent heat. In order to obtain more evidence of the order of
transitions, we analyzed the histograms PL(E) of the energy which should
show two peaks. The distance between the peaks is the latent heat. As
this value is rather small, the histograms exhibits a plateau , significantly
different of the histograms associated with second order transitions, which
clearly resemble a Gaussian form. Fig. 6 shows one histogram from a first
order transition. We fitted the histogram with a symmetric mixture of two
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Gaussians, centered respectively at E1 and E2, and used equation [22, 23]

V (L)min =
2

3
− 1

12

µ
E1
E2
− E2

E1

¶2
+AL−d (11)

where A is a correction coefficient. For d = 2 and A = −14.13, obtained
from the linear fit exhibited in Fig. 5, the equation above reproduces the
four values of V (L)min from that figure within an error less than 10−4 (same
order as the statistical errors). We conclude that we can use Eq. 11 for
the minima of the cumulants and that the value 0.6626, the extrapolated
value to infinite lattice size, indicates a first order transition. To confirm
the existence of first-order transitions across line GF we used three different
approaches to analyze the critical behavior along the line XW = 4, where
the first order character of the transition is more easyly detected. First, the
two-point nearest neighbor correlation functions of a system of lattice size
L = 8 and of another of size L/2 = 4 (see next section for renormalization
details) were compared in Fig. 7 for different values of K. We observe that
this behavior is completely different from that shown in Fig. 8, for the value
XW = 0.8, where the transition is clearly a second order one. In the Monte
Carlo Renormalization Group (MCRG) approach the existence of a crossing
or fixed point at the phase bounday indicates a second order transition,
whereas its absence makes the case for a first order transition.
Next, we take the finite critical coupling estimates for several lattices,

obtained when the magnetization is .5, to build Fig. 9 where we plot Kc(L)
against L−2. A linear fit of those estimates confirms (R=0.9993) the validity
of the relation

Kc(L) = Kc(1− aL−2)

leading to the extrapolated value Kc = 0.10632(3) for the critical coupling
when L→∞. The exponent 2 which governs the approach of the estimates
Kc(L) to the actual value Kc indicates a first-order phase transition since
the shift between the real critical temperature (inverse of coupling constant)
and finite critical temperature estimates (see Eq. (9)) is known to decrease
as L−yT (L−d) in a second (first)-order transition [26]. Finally, we plotted
the magnetization M (at the extrapolated Kc) against L, as shown in Fig.
10. The line presented in the log-log plot obeys the relation M ∝ Lywith
y = 1.95±0.05, suggesting again that we are dealing with a first-order phase
transition [27].
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We also made a comparison with the N = 3 isotropic AT model studied
by Grest and Widom [11]. They performed Monte Carlo simulations to de-
termine the phase diagram. One of the effects of the breaking the symmetry
between variables (S1, S2) and (S3) is the appearance of the Ising-like line
ABCD associated with the symmetry breaking of (S3). Only phase I (a
Baxter phase) has the same parameters ordered in both cases. In our dia-
gram all the other phases have order parameters associated with variables
(S1, S2) very different from that associated with (S3) which does not happen
in the isotropic case.

4 MCRG calculations

Finally, to calculate the associated critical exponents, we write the Hamilto-
nian at the nth stage of renormalization as a linear combination of products
of either spins of the same family or combinations of the three kinds (see
Table 1).

We call the attention of the reader for the new meaning of S, now repre-

senting combinations of the classical spins Sα, which are explained in Table

1. As usual, we calculate the matrix Tαβ, associated to the linearized RG

transformations, from the generalized specific heats

D
(n)
αβ =< S(n)α S

(n)
β > − < S(n)α >< S

(n)
β > (12)

eD(n+1)
αβ =< S(n+1)α S

(n)
β > − < S(n+1)α >< S

(n)
β > (13)

and

T
(n+1,n)
αβ =

∂K
(n+1)
α

∂K
(n)
β

=
h
D(n+1)

i−1
αγ

eD(n+1)
γβ . (14)

For a blocking transformation with size b, this matrix has eigenvalues of the
form byi , yh (resp. yt) being the dominant eigenvalue of the odd (resp. even)
sector. Table 2 shows the main eigenvalues at several critical points of the
phase diagram. As we can see the values for the critical eigenvalues yh and yt,
along the line ABCD, are very close to the Ising values 1.875 and 1.0. They
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do not depend on the value of the critical couplings (K,Xw = W/K). The
same occurs for linesHBI andGE. In this sense, the possibility of obtaining
a Kosterlitz-Thouless multicritical point along the ABCD line is ruled out.
The same is not true for the GCJ line. Critical exponents at that line show
strong dependence on the coupling constants. In addition, we detected at
that line the presence of a marginal operator in the renormalized Hamilto-
nian. This kind of operator, characterized by an eigenvalue equal to zero
[24] (see last column of Table II - line GCJ), is able to change continuously
the critical exponents [25]. Thus, we conclude that the transition along that
line is nonuniversal. By taking into account the existence of first-order phase
transitions, along line FG, for XW > 1, necessary conditions for obtaining
the multicritical point proposed by Goldschmidt could be fulfilled. However,
note that the nature of the symmetries breakings associated to this transition
is completely different from those described in [12].

5 Conclusions

We have used a combination of MCRG and reweighting techniques, as well
as fourth order cumulant analysis to obtain the phase diagram and critical
exponents for the two-dimensional anisotropic N = 3 Ashkin-Teller model.
That model was proposed by Goldschmidt who succeeded in mapping it
to a supersymmetric sine-Gordon (SUSY) theory. The phase diagram, as
obtained within the mean-field approximation, exhibits second and first-order
transition lines separating the Baxter and paramagnetic phases. At this line,
the author has found a multicritical point of Kosterlitz-Thouless kind. Our
MCRG calculations have indicated that there is no first-order transition line
between the Baxter and paramagnetic phases. Thus, the possibility of finding
a multicritical point along the line ABCD is ruled out. In addition, we
obtained a symmetry breaking in the phase II which is completely different
from that found by Goldschmidt. We also calculated the critical exponents
along the continuous transition lines and observed that only the GCJ line is
nonuniversal. As we showed that this line also presents first-order transitions,
for values of XW greater than 1, we conclude that the multicritical point, if
it exists at all, should lie on the FGCJ line. However, the symmetries of the
phases VI and VII are only partially broken. Thus, we have no evidence of
the existence of a Kosterlitz-Thouless-like multicritical point along this line.
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Table Captions

Table 1. Notation for the operators used in the MCRG analysis. We use
(σ, µ, τ) to represent the spin variables (S1, S2, S3).

Table 2. Estimates for odd (even) yh(yt) eigenvalues associated with the
transition lines. The values were obtained after the 2nd step of the renormal-
ization process for lattice 32x32 including all odd (even) operators. Numbers
between parenthesis mean the values of the statistical errors, calculated from
group of ten partial runs of 105Monte Carlo steps.
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Table 1

Even sector
S2 =

P
nn(σiσj + µiµj + τ iτ j) S8 =

P
nnn(σiσj + µiµj + τ iτ j)

S4 =
P

nn(σiσjµiµj) S10 =
P

nnn(σiσjµiµj)
S6 =

P
nn(σiσjτ iτ j + µiµjτ iτ j) S12 =

P
nnn(σiσjτ iτ j + µiµjτ iτ j)

Odd sector
S1 =

P
i(σi + µi + τ j)

S3 =
P

nn(σiµj)

Table 2

.
Line ABCD

K Xw yt yh
0.40 -1.0 0.97(2) 1.869(7)
0.34 0.60 0.98(3) 1.876(6)

Line HBI
K Xw yt yh
0.33 -1.7 0.92(5) 1.852(8)
0.51 -1.38 0.93(4) 1.862(9)

Line GE
K Xw yt yh
0.22 2.0 0.93(7) 1.848(9)
0.20 4.0 0.96(3) 1.876(6)

Line GCJ
K Xw yt yh ym
0.50 -0.29 0.83(5) 1.875(7) 0.08(2)
0.40 -0.02 1.12(6) 1.866(6) -0.07(2)
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Figure Captions

• Fig. 1. Phase diagram of the N=3 Ashkin-Teller model ob-
tained within the mean-field approximation. The coupling
u was fixed at the value 0.056. In the Baxter phase (I) all
Sα and their products SαSβ order. In phase II, only S1, S2
(or

S2 and S3) and their product order. Phase V is the param-
agnetic one. In phase IV only (S1S2) order antiferromagnet-
ically whereas in phase III S3 (ferro) and the product S1S2
(antiferro) are ordered. The Kosterlitz-Thouless multicrit-
ical point (MCP), located at the point XW =−0.2, K=0.25,
is also shown.

• Fig. 2. Phase diagram of the N = 3 Ashkin-Teller model
obtained fromMonte Carlo simulations. In phase I, all hSαi
and

­
SαSβ

®
order. Phase II exhibits only ordering of the

special class of spins S3. Phase V is the paramagnetic one
whereas phase IV presents antiferromagnetic order of the
variable (S1S2). The phase transition along the entire line
ABCD is continuous as well as the transition line which
separates phases I and II. In phase VI, S1and S2 order but
in phase VII only the product (S1S2) is ordered.

• Fig. 3. Plot of the specific heat as a function of XW for
K =0.5 (Same range as in Fig. 4).

• Fig. 4. Plots of magnetization for the spin variable (S1S2).
Open circles represent the sum of (S1S2) for alternate sites
whereas full squares contains the sum of (S1S2) for all sites.

• Fig. 5. Finite size scaling of the cumulant: linear fit of the
minima of the
fourth-order energy Binder´s cumulant versus L−2. Error
bars are of the size of the symbols.

• Fig. 6. Mixture of Gaussians fitting of the histogram for the
energy E calculated with the variable (S1S2) . Simulations
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were done at the point XW =2.0 and Kc =0.185 for a lattice
size L =80.

• Fig. 7. Two-point correlation function of the product S1S2
for lattices of size L = 8 and 4 and XW = 4.0

• Fig. 8 Two-point correlation function of the product S1S2

for lattices of size L = 16 and 4 and XW = 0.8

• Fig. 9. Critical coupling estimates plotted against the in-
verse of the squared lattice size (L−2). Error bars are of
the size of the symbols. The linear fit Kc(L) = Kc(1 − aL−2)
confirms the order of the phase transition (first) and leads
to the value 0.10632(3) for the critical coupling Kc, when
XW = 4.0.

• Fig. 10. Magnetization at the true critical coupling Kc =
0.1063 against the lattice size L in a log-log plot. The angu-
lar coefficient results 1.95±0.05 corroborating the first-order
character of the phase transition when XW = 4.0.
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