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1
Introduction to Statistical Physics

1- Obtain the probability of adding up six points if we toss three
distinct dice.

*** Let’s consider an easier problem, two dice, for exam-
ple. In this (simpler) case, there are 6 x 6 = 36 configurations
(events), but only 5 of them correspond to 6 points. Since all of
the configurations are equally probable, we have P (6) = 5/36.

2- Consider a binomial distribution for a one-dimensional ran-
dom walk, with N =6,p=2/3,and ¢g=1—p=1/3.

(a) Draw a graph of Py(N;) versus N;/N.

(b) Use the values of (N;) and {N?) to obtain the correspond-
ing Gaussian distribution, pg(N7). Draw a graph of pg(N;) ver-
sus N;/N to compare with the previous result.

(c) Repeat items (a) and (b) for N = 12 and N = 36. Are the
new answers too different?

*** The "equivalent Gaussian" distribution has the same first
and second moments as the binomial distribution,

(N1 — (N1))°
2 ((Ny — (N1))?)

pe (V1) = Cexp = Cexp

2Npq
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2 1. Introduction to Statistical Physics

where the "normalization factor" C comes from

—pN) _ _ —1/2
/Cexp[ 2Npq ]dN1—1:>C'—(27TNpq) .

It is instructive to draw graphs of pg (IN7) versus N; for some
values of N.
In the figure, we show some graphs of Py(N;) versus N;/N.
3- Obtain an expression for the third moment of a binomial
distribution. What is the behavior of this moment for large N7

*#x Using the tricks introduced in the text, it is easy to see
that

((Ny = (N1))*) = Npg (g —p).
Note that <(AN1)3> = 0 for p = ¢ (same probabilities). Also,
note the dependence of <(AN1)3> on N, so that

(@A)
(A A

for large N.

4- Consider an event of probability p. The probability of n
occurrences of this event out of N trials is given by the binomial
distribution,

WN (n) =

N! .

n!(N —n
If p is small (p << 1), Wx(n) is very small, except for n << N.
In this limit, show that we obtain the Poisson distribution,

Win) = P (n) = “rexp (~).
where A\ = np is the mean number of events. Check that P (n)
is normalized. Calculate (n) and <(An)2> for this Poisson dis-
tribution. Formulate a statistical problem to be solved in terms
of this distribution.
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4 1. Introduction to Statistical Physics

K Tt is easy to see that

S P =en(-NY =1,

n=0

(n) = ZnP(n) :exp(—)\)zn)‘_n _

n=0

0\ o= \"
= exp (=) (Aa—/\) > =X

n=0
and

((An)2) = ((n — (n))*) = A,

5- Consider an experiment with N equally likely outcomes,
involving two events A and B. Let N; be the number of events
in which A occurs, but not B; Ny be the number of events in
which B occurs, but not A; N3 be the number of events in which
both A and B occur; and Ny be the number of events in which
neither A nor B occur.

(1) Check that N1 + N2 + Ng + N4 = N.

(ii) Check that

N1+ N Ny + Nj
= ==
where P (A) and P (B) are the probabilities of occurrence of A
and B, respectively.

(iii) Calculate the probability P (A + B) of occurrence of ei-
ther A or B.

(iv) Calculate the probability P (AB) of occurrence of both
A and B.

(v) Calculate the conditional probability P (A | B) that A
occurs given that B occurs.

(vi) Calculate the conditional probability P (B | A) that B
occurs given that A occurs.

(vii) Show that

P(A) and P (B)

P(A+B)=P(A)+P(B)— P(AB)
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and
P(AB)=P(B)P(A|B)=P(A)P(B|A).
(viii) Considering a third event C', show that

P(B|A) _P(B)P(A|B)

P(C[4A) PC)PA|C)
which is an expression of Bayes’ theorem.

6- A random variable z is associated with the probability

density
p(x) = exp (=),

for 0 < x < o0.

(a) Find the mean value (z).

(b) Two values x; and xy are chosen independently. Find
(x1 4 z2) and (x1x9).

(c) What is the probability distribution of the random vari-
able y = x1 + 227

*** Note that
(x) =1, (r1 + m9) = 2, (T119) = 1,

and that
ply) = / / dydieyp () p () 6 (y — 21 — ).

Using an integral representations of the delta-function (see the
Appendix), it is easy to see that

p(y) =yexp(—y).

7- Consider a random walk in one dimension. After N steps
from the origin, the position is given by

N
xr = E Sj,
=1
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where {s;} is a set of independent, identical, and identically dis-
tributed random variables, given by the probability distribution

w(s) = (27r<72)_1/2 exp [— (s = l>2] :

202

where o and [ are positive constants. After N steps, what is
the average displacement from the origin? What is the standard
deviation of the random variable x? In the large N limit, what
is the form of the Gaussian distribution associated with this
problem?

K Tt is easy to see that

and
((z = (x))*) = N{(s = (s))*) = No?,

from which we write the Gaussian form

e (x) = (2#02)_1/2 exp [—%] :

¥ Try to solve a similar problem with

0, s < —1/2,
w(s) =< 1, —1/2<s<+1/2,
0, s> +1/2.

Calculate (), (x?), and the limiting Gaussian distribution pg ()
(for large N). Note that

+o0

/ w(s)ds =1, (x) = N (s) =0, {(Ar)*) =

8- Consider again problem 7, with a distribution w (s) of the

Lorentzian form .
a

T2+ a?’

w(s) =
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with a > 0. Obtain an expression for the probability distribution
associated with the random variable x. Is it possible to write a
Gaussian approximation for large N7 Why?

% You should be careful. It is immediate to see that (s) = 0,
but (s?) is associated with a diverging integral! The Lorentzian
form does not obey the conditions for the validity of the central
limit theorem.

Additional exercises

9- The Ehrenfest “urn model” provides an excellent illustra-
tion of statistical fluctuations, the role of large numbers, and
the direction of the “time arrow”. Take a look at Section 1 of
Chapter 15. The “stochastic equation” associated with the sim-
ple urn model is linear (and exactly soluble). There are many
works on the urn model. See, for example, the relatively recent
work by C. Godreche and J. M. Luck, J. Phys.: Condens. Mat-
ter 14, 1601-1615 (2002), which contains a number of historical
references.

In the simple urn model, we consider two boxes, N numbered
balls, and a generator of N random numbers. Initially, there are
Nj balls in urn 1, and Ny = N — Nj balls in urn 2. Each time
unit, we draw a random number, between 1 and N, and change
the position (urn location) of the corresponding ball.

Choose a reasonable generator of random numbers, and per-
form time simulations for this simple urn model. Draw graphs of
N; (number of balls in urn 1) as a function of time ¢ (in uniform
discrete steps At), from an initial situation in which Ny = N
(all the balls are in urn 1), using two values of the total number
of balls: (a) N =10, and (b) N = 100. What can you say about
the fluctuations of the value of N;?7 What happens at long times,
t — o0?

It is reasonable to assume the “stochastic equation”

P(Ny,t+ At) =P (N, — 1,t) Wy + P (N7 + 1,t) Wh,
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where P (Ny,t) is the probability of finding N; balls in urn 1
at time ¢, At is the discrete time interval between draws, and
Wi and Wy are “probabilities of transition”. Show that it is
reasonable to assume that

N —(N;—1) Ny +1

N and W2 = N .

Wi =

What are the assumptions involved in this choice? Check that
the binomial distribution is a an “equilibrium solution” of this
equation (in other words, a solution for ¢t — o).

Use this equation to obtain the time evolution (NNy), of the av-
erage value of N;. Compare this analytical form with the results
of your simulations.

*** Note that

(N1),=> NP (Ny,t).

Using the stochastic equation, it is easy to see that

(N1)ipae = <1 - %) (N1), + 1,

which leads to the solution

2\" N
<N1>t_C(1—N) +?,

where the prefactor C' comes from the initial condition.
In figure 1 we show a simulation of N; versus discrete time .
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Figura 1: Simulation for the Ehrenfest urn model. Graph of N; versus the discrete time
t, for N=100 and the initial condition N1p=N. The solid line represents the theoretical
result for the time evolution of the average value of Nj.
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2

Statistical Description of a Physical
System

1. Neglect the complexities of classical phase space, and con-
sider a system of N distinguishable and noninteracting parti-
cles, which may be found in two states of energy, with ¢ = 0
and € > 0, respectively. Given the total energy U of this system,
obtain an expression for the associated number of microscopic
states.

*** Suppose that there are Ny particles in the ground state
and N, particles in the excited state. The number of accessible
microscopic states of this system is given by

N!
NN

where No+ N, = N and U = eN,.

Q (U, N)

2. Calculate the number of accessible microscopic states of
a system of two localized and independent quantum oscillators,
with fundamental frequencies w, and 3w,, respectively, and total
energy E = 10hw,.

*** There are three microscopic states:
(n1 = 2;ny = 2), (ng = 5;ny = 1), and (n; = 8;ny = 0).
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3. Consider a classical one-dimensional system of two non-
interacting particles of the same mass m. The motion of the
particles is restricted to a region of the z axis between x = 0
and x = L > 0. Let z; and x5 be the position coordinates of the
particles, and p; and py be the canonically conjugated momenta.
The total energy of the system is between E and F + §E. Draw
the projection of phase space in a plane defined by position co-
ordinates. Indicate the region of this plane that is accessible to
the system. Draw similar graphs in the plane defined by the
momentum coordinates.

4. The position of a one-dimensional harmonic oscillator is
given by
x = Acos (wt+ ),

where A, w, and ¢ are positive constants. Obtain p (z) dx, that
is, the probability of finding the oscillator with position between
x and x 4 dzx. Note that it is enough to calculate dT'/T', where T’
is a period of oscillation, and d7T' is an interval of time, within a
period, in which the amplitude remains between x and = + dz.
Draw a graph of p(z) versus .

kTt is easy to show that

Now consider the classical phase space of an ensemble of iden-
tical one-dimensional oscillators with energy between E and
E + 0F. Given the energy E, we have an ellipse in phase space.
So, the accessible region in phase space is a thin elliptical shell
bounded by the ellipses associated with energies £ and E+ 0 F,
respectively. Obtain an expression for the small area A of this
elliptical shell between x and x + dx. Show that the probability
p(z)dxr may also be given by §A/A, where A is the total area of
the elliptical shell. This is one of the few examples where we can
check the validity of the ergodic hypothesis and the postulate
of equal a priori probabilities.
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5. Consider a classical system of N localized and weakly inter-
acting one-dimensional harmonic oscillators, whose Hamiltonian

1s written as
N o/ 1
_ L9 Ly 9
H = ; (Qmpj + Qk;xj> :

where m is the mass and k is an elastic constant. Obtain the
accessible volume of phase space for £ < 'H < E + §F, with
0F << E. This classical model for the elastic vibrations of a
solid leads to a constant specific heat with temperature (law of
Dulong and Petit). The solid of Einstein is a quantum version of
this model. The specific heat of Einstein’s model decreases with
temperature, in qualitative agreement with experimental data.

*** The volume in classical phase space is given by

A\ N2
Q= // dxy...dzydpy...dpy = (T) OVisph,

E<H<E+SE

where §V,;, is the volume of a 2N-dimensional hyperspherical
shell (see Appendix) of radius E'/? and thickness proportional
to 0 F. For large N, it is easy to write the asymptotic dependence
of 2 on the energy F,

§Vipn ~ EN.

The dependence on N is more delicate (it requires the calcula-
tion of the volume of the hypersphere).

6. The spin Hamiltonian of a system of N localized magnetic

ions is given by
N
H=D> 5
j=1

where D > 0 and the spin variable S; may assume the values £1
or 0, for all j = 1,2,3.... This spin Hamiltonian describes the
effects of the electrostatic environment on spin-1 ions. An ion
in states £1 has energy D > 0, and an ion in state 0 has zero
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energy. Show that the number of accessible microscopic states
of this system with total energy U can be written as

N! 1
NS 2 T

for N_ ranging from 0 to N, with N > U/D and N_ < U/D.
Thus, we have

Q(U,N) = N12U/P KN — %)! (%) !} _1.

Using Stirling’s asymptotic series, show that

1 U U U U U

for N,U — oo, with U/N = u fixed. This last expression is the
entropy per particle in units of Boltzmann’s constant, kp.

*** Let “s write the number of microscopic configurations with
Ny ions with spin S = 0, NV, ions with spin +1, and N_ ions
with spin —1,

NI

Q(N07N+7N—) = N,'N()'NJF‘

It is easy to see that the number of microscopic configurations,
with energy U and total number of ions /V, is given by the sum

N
V=QUN = >

No,N4,N_
with the restrictions
No+ N, +N_=N

and
D(N,+N_)="U.
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We then use these restrictions to eliminate two variables, and
write

N!
PN G MW
L w
T D &, NI

Now it is easy to calculate the (binomial) sum and obtain the
(exact) answer.

% We usually look for results in the thermodynamic limit
only. It is then acceptable to replace the sum by its maximum
term. In fact, we can write

N! N!
Q(U,N) = ~ =
UN) = D N N NN

N07N+7N—

which is the asymptotic result in the limit N,U — oo, with
U/N = u fixed. In order to find the “occupation numbers” N_,
NO, and N+, we use the technique of Lagrange multipliers. Let
us define the function

NI

f(N—,No, Ny, A1, Az) = In m+

A (No+ Ny 4+ N_ = N)+ Xy (DN, + DN_ —U).

Using Stirling s expansion, we take derivatives with respect to
all of the arguments. It is easy to eliminate the Lagrange mul-
tipliers. The maximum is given by

-~ U -~ U
N—:N-i-:ﬁ? N():N—E,

from which we have the same asymptotic expression

1 U U U (TR )
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in agreement with the limiting result from the previously ob-
tained exact expression for €. In slightly more complicated prob-
lems, without an exact solution, we will be forced to resort to
similar maximization techniques.

7. In a simplified model of a gas of particles, the system is
divided into V cells of unit volume. Find the number of ways to
distribute NV distinguishable particles (with 0 < N < V') within
V' cells, such that each cell may be either empty or filled up
by only one particle. How would your answer be modified for
indistinguishable particles?

¥ If we consider distinguishable particles, we have

V!
0= —"
T (V=N

This result, however, does not make sense in the thermodynamic
limit (see that In,;/N does not exist in the limit V, N — oo,
with v = V/N fixed).
If the particles are indistinguishable, we have
|
GV

(V — N)IN!
so that 1

Nlnﬂi ~vlnv—(v—1)In(v—1),

in the thermodynamic limit (note that v = V/N > 1). This is
a simplified, and fully respectable, model of a non-interacting
lattice gas. The entropy per particle is given by

s=s(v) = kg [olnv— (v —1)In (v - 1)],

from which we obtain the pressure,

It is more instructive to write the pressure in terms of the par-
ticle density, p = 1/v,
p

1
Tz—ksln(l—p)zk‘s {p+§p2+...].
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This is a virial expansion. The low-density limit gives the well-
known expression for the ideal gas.

8. The atoms of a crystalline solid may occupy either a po-
sition of equilibrium, with zero energy, or a displaced position,
with energy ¢ > 0. To each equilibrium position, there corre-
sponds a unique displaced position. Given the number N of
atoms, and the total energy U, calculate the number of accessi-
ble microscopic states of this system.

K It easy to see that

Q(U,N) =

Additional exercises

9. Obtain an expression for the volume of a hypersphere of ra-
dius R in d dimensions. Use this expression for obtaining t,—;he
volume € (E,V, N;0FE) in phase space associated with a gas of
N non-interacting classical monatomic particles, inside a box of
volume V', with energy between E and F+0FE (with 0E << E).
What is the entropy S = S (E,V, N) of this system? Is there
any trouble in the thermodynamic limit?: How to correct this
trouble? What is the “Gibbs paradox”?

*** The volume of the hypersphere is calculated in Appendix
A4. We then present an alternative calculation. The element of
volume of a d-dimensional hypersphere can be written as

+o0 +o0
AdR = /dxl.../dxd(S(R—xf—xg—...xfl) d(R?),

where we have used a Dirac delta-function (see the Appendix
A3). Note that it is easy to check this result for 2 or 3 dimen-
sions. We now insert an extra term in this integral,

d T

N N
AdR = H/da:l exp (—aZx?) (5<R—Z$?> d(Rz)’
i-1 7/ i=1 i=1
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and make oo = 0 at the end of the calculations. Using an integral
representation of the delta-function (see the Appendix), we have

4 T N
A=2R H / dz; | exp (—aZx?) X
i=1 i=1

—0o0

17 o
X oo / dk exp [—ikz (R—;ﬁ)] =

+o0o
R . T d/2
= / dk exp (—szZ) {d— zk] .

Changing variables, kR?> = z, and resorting to the method of
residues in the complex plane, we have

. -
A= —R" (im)"* / )
™ [z +iaR2]"Y

Closing the contour around a pole of order d/2, we obtain the

final result ;
R

(5—1)!

Now it is easy to write the volume () in phase space, and
to see that we have to divide this volume by the Boltzmann
counting factor N! in order to obtain an extensive entropy in
the thermodynamic limit.

10. Stirling 's asymptotic expansion, given by
InN!'=NInN—-N+O(nN),

which works very well for large N (N — o0), is a most useful
trick in statistical mechanics, in connection with the thermody-

namic limit.
(i) Show that
/ z"e *dr = n!
0
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forn =0,1,2,... (and assuming an analytic continuation related
to the Gamma function).
(ii) Using this integral and the Laplace method of asymptotic
integration, derive the first two terms of Stirling s expansion.
(ii) Prove that

im 2 { [ ewins e} = 1),

where ¢ is the maximum of a continuous function f (z) in the
interval between a and b > a. This results gives a good degree
of confidence in the usual replacements of certain sums by their
maximum term!

% For integer n, we can used the induction method to prove

the that
o0
/ z"e *dxr = n!
0

It is simple to check that it works for n = 1 (and n = 0, with
0! = 1). Supposing that if holds for n— 1, it is easy to show that
it holds for n as well.

*** The use of Laplace “s method to find the first few terms in
the asymptotic expansion of Inn! is fully described in Appendix
Al.

*** The mathematical proof that has been asked is based on a
sequence of very reasonable steps. Since f (xp) is the maximum
of f(x) in the interval between a and b, it is immediate to see
that

hz/emh%ﬂ@—f@ﬂhmé

g/emﬂﬂ@—f@ﬂhm=a

where C' is a well-defined constant value.
Let us find an inequality in the reversed direction. It is always
possible to write

hz/emhﬂﬂ@—f@ﬂhmz
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> / T exp{nlf (2) — f (z0)} do

1
0_55

Supposing that f (z) is a continuous function, it is clear that,
given § > 0, there exists ¢ > 0 such that |f (z) — f (x0)| < 9,
for all §. Thus,

b2 / T e {nlf (1) — (@)} >

1
0= 53¢

2/0 ’ exp [—nd| dz = eexp [—nd].

Therefore,

which leads to

b
cexp [-nd)exp[nf (a0)] < [ explnf (x))do < Cexplnf (a).

Taking the logarithm and dividing by n, we have

b
%lne—é—kf (x0) < %ln{/ exp [nf (z)] dx} < %lnC—i—f () -

In the limit n — oo, and taking into account that ¢ is fixed, we
have

5+ f (20) < lim lm{/:exp[nf(x)]dm} < f(x0).

n—oo M,

Since 6 > 0 is arbitrary, we can take the limit § — 0, which leads
to the expected result. Note that the only requirements are the
existence of the integral and the continuity of the function f (z).
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Overview of Classical
Thermodynamics

1. The chemical potential of a simple fluid of a single component
is given by the expression

pw=p,(T)+ kgTIn

p
po (T)
where T is the temperature, p is the pressure, kp is the Boltz-
mann constant, and the functions p, (7') and p, (T') are well be-
haved. Show that this system obeys Boyle’s law, pV = NkgT.
Obtain an expression for the specific heat at constant pres-
sure. What are the expressions for the thermal compressibility,
the specific heat at constant volume, and the thermal expan-
sion coefficient? Obtain the density of Helmholtz free energy,
f = f (Tv U)'

ik Note that p (T, p) = g (T, p), where g (T, p) is the Gibbs
free energy per particle. Thus,

- (%) -t
o)y p’

which is the expression of Boyle’s law, and

—s= on *d'uo—i-k: -2 kel dp,
—\ar ), dr """ U p,(T)  p,(T)dT’
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from which we obtain the specific heat at constant pressure. All
other expressions are straightforward. In particular,

f=9—pv.
You should give f in terms of 7" and v, f = f (T, v).

2. Consider a pure fluid of one component. Show that

dey\ 0*p
(%)T =1 (W)U |

Use this result to show that the specific heat of an ideal gas does
not depend on volume. Show that

(&), ()
)y o ), n
*** From the definition of the specific heat, we have

CV:T(S—;> >

Jdcy 9?%s 0?%s 0 [0s
— (ZY) =7 —7 7| L (&) | .
(81} )T 0T Ov ovoT oT \ov ) ],
Note that s = s (T, v) is an equation of state in the Helmholtz
representation. Then, we write

0 0
oo () o= ()

N ds\ ([ 0p
o), -\ oT Y
which leads to the first identity.
The proof of the second identity requires similar tricks.

3. Consider a pure fluid characterized by the grand thermo-
dynamic potential

&=V, (T)exp (@LT) :
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where f, (T) is a well-behaved function. Write the equations of
state in this thermodynamic representation. Obtain an expres-
sion for the internal energy as a function of 7', V', and N. Obtain
an expression for the Helmholtz free energy of this system. Cal-
culate the thermodynamic derivatives kr and « as a function of
temperature and pressure.

*** From Euler’s relation, we have

I o [
P=—7= fo(T)e p<kBT)-

Thus, we can write
p
w=kgTIln ————
_f o (T)
which is identical to the expression for the chemical potential
in the first exercise, if we make p, = 0 and p, (T") = —f, (T).

Therefore, we have Boyle’s law and the usual expressions for xp
and a.

4. Obtain an expression for the Helmholtz free energy per
particle, f = f (T, v), of a pure system given by the equations
of state

u=5pv and p=avT?,
where a is a constant.

*** These equations of state can be explicitly written in the
entropy representation,

1 30\ /4 5 /343 V4
= (;) o2V and % =3 (76‘) v 23
from which we obtain the fundamental equation
4 /3a\ 4
=3 (3) e

where c is a constant. The Helmholtz free energy per particle is
given by
f(T,v)=u—-Ts=
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1/4 3/4
%(37&) / /2 (%U2T4> / +c

% Let us consider a similar problem, with a slight modifica-
tion in one of the equations of state,

3
- 7‘LUQT‘* -7

U= épv and p=avT".

Note that, instead of T%, we are writing 7™, where n is an ar-
bitrary integer. Is this a bona fide thermodynamic system? Is it
possible to have n # 47

Again, we rewrite the equations of state in the entropy rep-
resentation,

1 30\ /"
_:<_a) vy~ and

1/n
— 2 (3_(1) / U71+2/nu171/n
T 2 ’

P

T 3\ 2

In this representation we have
1 0s P 0s 01 dp
T (87) T (%>u:> [%f]u - {%TL’

from which we obtain

3a\""2 ., 2 (3a\"" 1
o o /n, —1/n _ 2 == —142/n 1— = —1/n
( > ) n. s\2) ° n)"

leading to the only thermodynamic bona fide solution, n = 4.

5. Obtain an expression for the Gibbs free energy per parti-
cle, g = g(T,p), for a pure system given by the fundamental

equation
S Loy
——c| =a—,
N N3
where a and ¢ are constants.

*** From the fundamental equation

s = a4yl /? + ¢,
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we write the equations of state

1 0 1
L ( 5) LR VIR VZ RSV

T \ou 2

and 3 )
P _(95S\ _ 1 14 -3/a 1/2
T <8v)u R

The Gibbs free energy per particle is given by the Legendre
transformation
T T T

where v and v come from the equations of state. Note that ¢
has to be given in terms of 7" and p.

6. Consider an elastic ribbon of length L under a tension f.
In a quasi-static process, we can write

dU = TdS + fdL + pdN.

Suppose that the tension is increased very quickly, from f to
f+ Af, keeping the temperature 7' fixed. Obtain an expression
for the change of entropy just after reaching equilibrium. What
is the change of entropy per mole for an elastic ribbon that
behaves according to the equation of state L/N = c¢f /T, where
c is a constant?

*** Using the Gibbs representation, we have the Maxwell re-

lation
05\ _ (0L
of ), \oT ),

From the equation of state, L/N = ¢f /T, we have

AS _of

N Tt

7. A magnetic compound behaves according to the Curie law,
m = CH/T, where C' is a constant, H is the applied magnetic
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field, m is the magnetization per particle (with corrections due
to presumed surface effects), and 7' is temperature. In a quasi-
static process, we have

du =Tds + Hdm,

where u = u (s, m) plays the role of an internal energy. For an
infinitesimal adiabatic process, show that we can write

AT = C—HAH,
CHT

where cy is the specific heat at constant magnetic field.

K We have to calculate the partial derivative (0T/0H) at
fixed entropy. Using Jacobians, it is easy to write

8_T _0(T,s) 0(T,s)0(T,H) ﬁ -1
oH ) -~ 0(H,s) O(T,H)O0(H,s) \0oH T (g—;)H'
All derivatives are written in terms of the independent variables

T and H. We then introduce the Legendre transformation

g=u—"Ts— Hm — dg = —sdl' — mdH,

from which we have

dg dg . s om
—8 = _ —m = R — _— = _— .
or ), oH ) 0H ) ; oT ) 4
Inserting the equation of state in this Maxwell relation, it is easy
to complete the proof.

8. From stability arguments, show that the enthalpy of a pure
fluid is a convex function of entropy and a concave function of
pressure.

*** The entalpy per particle is given by

h = u + pv,
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from which we have

dh:Tds—l—vdp:>T:(%) andv:(%) .
ds ’ dp )

It is easy to show that

0?h aoT T
W - a— = — > O
s*), S), ©Cp
Also, we have

(9])2 S— 8}9 S— VRg .

It is straightforward to use standard tricks (Jacobians, for ex-
ample) to write an expression for the adiabatic modulus of com-

pressibility,
1 [0v
Rs = —— | =— s
v \0p/,

in terms of positive quantities.

*9. Show that the entropy per mole of a pure fluid, s =
s (u,v), is a concave function of its variables. Note that we have
to analyze the sign of the quadratic form

10%s
2 Qu?

0%s 10%s
2. 2 i 2
ds = (du)” + auavdudv + 5 92 (dv)”.

*** This quadratic form can be written in the matrix notation

1 P Ds du
d23:5(du dv)( 9y 85‘22“)(610).

Oudv o2

The eigenvalues of the 2 x 2 matrix are the roots of the quadratic
equation

2 {823 825] ) 0?%s 9%s [ 0%s r _

02 02| T 9o | Buon
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For a concave function, the eigenvalues are negative, that is,

0%s 0?%s [ 0%s r
—_— >

ou2ov? | Oudv
and
P s
ou? = ov? )

Now it is straightforward to relate these derivatives of the en-
tropy with positive physical quantities (as the compressibilities
and the specific heats).



+

4

Microcanonical Ensemble

1. Consider a model of N localized magnetic ions, given by the

spin Hamiltonian
N
H=D) 53,
j=1

where the spin variable S; may assume the values —1, 0, or +1,
for all j (see exercise 6 of Chapter 2). Given the total energy
E, use the expression for the number of accessible microstates,
Q(E,N), to obtain the entropy per particle, s = s (u), where
u = E/N. Obtain an expression for the specific heat ¢ in terms
of the temperature T'. Sketch a graph of ¢ versus 7. Check the
existence of a broad maximum associated with the Schottky
effect. Write an expression for the entropy as a function of tem-
perature. What are the limiting values of the entropy for 7' — 0
and T' — oo?

%k The number of accessible microscopic states, Q (E, N),
has already been calculated in exercise 6 of Chapter 2. The
entropy per magnetic ion is given by

1
s=s(u) :kBlimNInQ(E,N),

This is page 29
Printer: Opaque this
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in the thermodynamic limit, £, N — oo, with u = E/N fixed.
We thus have

Lom (- p)n(ip) -
B

from which we obtains the equation of state

11, 2(1-u/D)

ksT D u/D

The inversion of this equation leads to the dependence of the
energy on the temperature,

_ 2Dexp(—8D)

1+ 2exp(—8D)’

where 8 = 1/ (kgT'). The specific heat ¢ = ¢ (T') is given by the
derivative of u with respect to T'. Check the broad maximum in
the graph of ¢ versus T

We now write the entropy s in terms of the temperature, s =
s (T). Check that ¢ = T'(0s/0T). Draw a graph of s (T") versus
T. Check that s(T)) — 0 as T'— 0, and that s (T') — kgln3 as
T — oo (for D > 0). What happens if D < 07

2. In the solid of Einstein, we may introduce a volume co-
ordinate if we make the phenomenological assumption that the
fundamental frequency w as a function of v = V/N is given by

w:w@):wo—mn(ﬂ),

Vo

where w,, A, and v, are positive constants. Obtain expressions
for the expansion coefficient and the isothermal compressibility
of this model system.

¥ Taking w as a function of v, w = w (v), the entropy of Ein-
stein’s solid can be written as a function of energy and volume,
s = s (u,v). From the equations of state, it is straightforward to
obtain the expansion coefficient o and the compressibility 7.
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3. Consider the semiclassical model of N particles with two
energy levels (0 and € > 0). As in the previous exercise, suppose
that the volume of the gas may be introduced by the assumption
that the energy of the excited level depends on v = V/N,

where a and 7 are positive constants. Obtain an equation of
state for the pressure, p = p(7,v), and an expression for the
isothermal compressibility (note that the constant v plays the
role of the Griineisen parameter of the solid).

ik Again, as € = € (v), we can write s = s (u,v). From the
equations of state, it is easy to obtain the isothermal compress-
ibility.

4. The total number of the accessible microscopic states of
the Boltzmann gas, with energy E and number of particles N,
may be written as

NI
QUEN) = 3, NNyl -

N1,Na,...

with the restrictions

> Nj=N and Y N;=FE.
J

J

Except for an additive constant, show that the entropy per par-

ticle is given by
N; N;
J

where {Nj} is the set of occupation numbers at equilibrium.

Using the continuum limit of the Boltzmann gas, show that the
entropy depends on temperature according to a term of the form
kpInT (note the correction!).
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*#* In the thermodynamic limit, we replace the sum by its

largest term,
N!

NyIN,! -

so the entropy per particle is written as

1 N; N;
S = kBNIHQ(EyN) ~ —I{JBZ <W) In (W) ’

J

Q(E,N) ~

which resembles the H-function of Boltzmann (see chapter 15).
Also, note the similarity with Shannon “s entropy of information
theory (see chapter 5).

In order to find { } we resort to the method of Lagrange

multipliers. Let s introduce the multipliers A\; and \,, and min-
imize the function

NI

HNJ-!Jr

J

A (N—%:N]) + Ao <E—zj:eij>.

It is straightforward to see that

J N}, AL A2) =In

Nj = exp (—)\1 — )\26]‘) s

so that B
N; exp (—Az€;)

N Z exp ( )\gej

The second Lagrange multiplier comes form the energy,

N
Yoy -y
j
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from which we have

0

u = —8—)\221, Zl = ;exp (—)\QEj) .

In the continuum limit, we have

2

2rm \ ¥/
7 = Zexp(—)\gej) ~ /d?’ﬁ> exp (_)‘ZQP_m> = ( ) ) )
, 2
j

which leads to the energy,

and to the identification of the Lagrange multiplier Ay = 3 with
the inverse of the temperature.

Now it is easy to write the continuum form of the entropy per
particle,

i [ 0 (2)
~ —RB

n =

Z Z

3
= kB§ InT + constant,

which should be compared with the entropy per particle for the
ideal gas (pv = kgT', u = 3kgT/2),

3
s = k‘B§ InT + kglnv + constant.

Note that s — —oo for T" — 0, which is a well-known difficulty
of classical statistical mechanics.

5. Consider a lattice gas of NV particles distributed among V
cells (with N < V). Suppose that each cell may be either empty
or occupied by a single particle. The number of microscopic
states of this system will be given by

V!
LN = Fror—wr
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Obtain an expression for the entropy per particle, s = s (v),
where v = V/N. From this fundamental equation, obtain an
expression for the equation of state p/T". Write an expansion of
p/T in terms of the density p = 1/v. Show that the first term
of this expansion gives the Boyle law of the ideal gases. Sketch
a graph of p/T, where p is the chemical potential, in terms of
the density p. What is the behavior of the chemical potential in
the limits p — 0 and p — 17

*** Look at the solution of exercise 7 of Chapter 2. The en-
tropy particle of this lattice gas model is given by

s=kglvlnv—(v—1)In(v—1)],

from which we have the equation of state

P 1 1 1 1
/{ZB_T_hl(l_;) —;—l—ﬁﬁ-%-l—...
Note that Bolyle’s law is already given by the first term is this
expansion.

In order to find u/T, we write the thermodynamic entropy
S = Ns = S(V,N), and take the partial derivative with re-
spect to N. Note that we can find ratios, as p/T and u/T, but
we cannot find an independent expression for the temperature
(since there is no mention to the energy in the definition of this
very simple and schematic model).

It is instructive to draw a graph of u/T versus the particle
density p = 1/v (remember that 0 < p < 1). Note that p is an
increasing function of p. Also, note that u/T — oo for p — 0,1
(in the vacuum).

*** This lattice gas model can be alternatively defined in
terms of a set variables {¢;}, ¢ = 1,...,V,