MONITORAMENTO DE FLUXO SANGUÍNEO
POR ESPALHAMENTO DE LASER: O FENÔMENO
DO BIOSPECKLE COMO FERRAMENTA
DE DIAGNÓSTICO

Monitoring of Blood Flow through Laser Scattering: Biospeckle Phenomenon
as Diagnostic Tool

Resumo
Um tecido biológico iluminado com laser mostra-se coberto por um padrão granulado com pontos claros e escuros cintilando ao acaso. A esse fenômeno é dado o nome de biospeckle. As flutuações nas intensidades desses grãos têm origem no espalhamento de luz por estruturas em movimento como, por exemplo, as hemácias nos capilares subcutâneos. A análise da evolução temporal do biospeckle fornece, portanto, informações diretamente relacionadas à atividade no tecido. Objetivos: Avaliar o potencial do biospeckle no mapeamento do fluxo sanguíneo em vasos subcutâneos a partir da análise de contraste de laser speckle (LASCA). Metodologia: Ensaios preliminares foram realizados em voluntária saudável, que teve um dos dedos da mão coberto por uma fita. Uma fotografia com câmera CCD foi registrada e mapas de contraste foram construídos. Os resultados mostraram que a técnica permitia a identificação da zona de menor circulação. Em etapa posterior, o mesmo ensaio foi realizado em paciente com úlcera vascular no tornozelo direito. O mapeamento foi realizado antes e depois da aplicação de LBI (Laser de Baixa Intensidade). Resultados: As imagens obtidas mostraram importantes diferenças na atividade tecidual antes e depois das aplicações, com significativo aumento após o uso do LBI. Conclusão: O biospeckle tornou possível a distinção entre zonas teciduais com diferentes perfis de atividade, embora não tenha permitido estabelecer com detalhes as estruturas responsáveis pela atividade.

Descriptores: Fluxo sanguíneo, Espalhamento de luz, Biospeckle

Abstract
A biological tissue illuminated with laser appears covered by a grainy pattern with dark and bright points in random boiling. This phenomenon is named biospeckle. The fluctuations of intensities of grains has origin on light scattering by moving structures as, for example, the red blood cells in under skin capillaries. The analysis of time evolution of biospeckle gives, therefore, information directly related to activity on tissue. Objectives: To assess the potential of biospeckle on mapping of under skin vessels through laser speckle contrast analysis (LASCA). Methodology: Preliminary tests were realized on healthy voluntary whose ring finger was covered with band. One photography was recorded with a CCD camera and contrast maps were constructed. The results showed that the technique has been permitted to identify the zone with lower flow. In a subsequent stage, the same test was realized in-patient with vascular injury on right ankle. The mapping was realized before and after application of LPL (Low Power Laser). Results: The obtained images showed important differences on tissue activity before and after application, with a significant increase after use of LPL. Conclusion: Biospeckle became possible the distinction between zones with different tissue activity profiles, although did not permit to determine in details the structures responsible for activity.

Descriptores: Blood flow, Light scattering, Biospeckle

Endereço:
Laboratório de Óptica e Sistemas Amorosos do Instituto de Física da USP
Rua do Matão, 187 - CEP 05508-900 - Cidade Universitária - São Paulo - SP- Brasil
Telefones: (11) 30916622 e 30916772

JORNAL BRASILEIRO DE LASER
INTRODUÇÃO

Quando um feixe de luz coerente atinge uma superfície opacificamente rugosa ocorre espalhamento em todas as direções. Em um plano de observação, a superposição coerente de raios oriundos de distintos pontos da superfície forma um padrão granulado cujas intensidades variam aleatoriamente. Esse fenômeno recebe o nome de speckle. Trata-se de um efeito de interferência, tipicamente andalatório, observável não apenas no visível, mas também em outras partes do espectro eletromagnético e da acústica. Nos locais de interferência construtiva e destrutiva ocorre, respectivamente, a formação de pontos claros e escuros. Objetos iluminados com Laser geralmente apresentam-se cobertos por essa estrutura granular.

Tal efeito é devido ao fato de, na escala microscópica, grande parte das superfícies mostrarem-se extremamente rugosas. A figura 1-a ilustra esquematicamente o processo de formação do granulado óptico: a interferência entre raios distintos oriundos da superfície provoca o aparecimento de um ponto claro ou escuro, por exemplo, em P. A figura 1-b apresenta o efeito observado sobre a mão de um voluntário.

Caso a superfície espalhadora introduza variações no caminho óptico percorrido pelos raios interferentes, o padrão final será dinâmico e a modulação de suas intensidades constitui uma fonte de informação acerca da atividade na amostra. Essa situação é tipicamente encontrada em padrões speckle espalhados a partir de regiões recém pintadas, em processos de oxidação, líquidos com partículas sujeitas a movimento browniano ou a partir de tecidos vivos, onde movimentos celulares e fluxos biológicos podem ser detectados. Nesse último caso, o fenômeno recebe o nome de biospeckle.

O interesse no granulado óptico não é recente. Os primeiros estudos sistemáticos datam de fins do século. No entanto, a invenção do Laser nos anos 1960 deu novo impulso às pesquisas no campo. Atualmente, o fenômeno é empregado nos mais variados ramos da Ciência, da metrologia à astronomia, abrangendo, inclusive, a biomedicina. Várias publicações recentes apresentam aplicações do biospeckle ao estudo de temas importantes na área médica, tais como fluxo sanguíneo cerebral, monitoramento de tecido tumoral e caracterização de placa arteroesclerótica.

Também existem diversos trabalhos anteriores tratando de monitoramento de atividade biológica em espécimes botânicos e fluxo sanguíneo em artérias.

Nesse contexto, a técnica surge como uma potencial ferramenta de diagnóstico para acompanhamento de lesões vasculares, onde métodos de não contato e de rápido processamento são altamente desejáveis.

1. Análise de Contraste de Speckle (LASCA)

Padrões speckle possuem caráter inerentemente estocástico e, portanto, são descritos em termos estatísticos. A estatística do fenômeno tem sido extensivamente estudada desde seu ressurgimento nos anos 1960.

Uma característica importante de um padrão completamente desenvolvido (ideal), formado a partir de espalhamento por uma superfície estática, é que a média e o desvio-padrão de suas intensidades são idênticos. Portanto, partindo-se da definição de contraste de uma imagem, chega-se à conclusão de que, para um padrão ideal, o contraste é igual à unidade (equação 1).

\[C = \frac{\sigma_S}{\langle I \rangle} = 1 \]

Onde \(C \) é o valor assumido pelo contraste, \(\sigma_S \) é o desvio-padrão e \(\langle I \rangle \) é média das intensidades. Por outro lado, o dispositivo CCD utilizado para o registro do speckle possui um tempo de integração finito. Isto implica que, no caso do monitoramento de um padrão dinâmico (biospeckle, por exemplo), os valores de intensidade registrados correspondem a uma média ao longo do tempo de integração. Assim, quando o padrão registrado é dinâmico, os valores de intensidade de seus grãos são promediados e o contraste é mais baixo. Diante disso, o tempo de integração utilizado é um parâmetro altamente relevante. No caso extremo em que as variações do granulado são muito mais rápidas que o tempo de integração do dispositivo de registro, a imagem final apresenta-se completamente borrada, sem nenhum contraste. Matematicamente, o
Artigo Original
desvio-padrão \(\sigma \) é reduzido, enquanto a média \(\langle I \rangle \) permanece inalterada. Por outro lado, se o tempo de integração é muito curto comparado às velocidades das partículas da superfície, não variações de contraste entre as diferentes regiões não são detectadas, pois o padrão inteiro se apresenta altamente contrastado. Ou seja, desvio-padrão e a média das intensidades tenderão à igualdade, pois o registro é feito em um intervalo de tempo tão curto que tudo se passa como se a superfície fosse estática. Esses fatos nos levam à conclusão de que existe uma relação direta entre as velocidades dos centros espalhadores e o contraste do respectivo padrão: quanto maior a velocidade das partículas na superfície fotografada, menor o contraste da imagem final.

No entanto, a relação exata entre as velocidades dos centros espalhadores e o contraste na imagem de speckle não é simples, pois o fenômeno do espalhamento em si é inerentemente complexo. Espalhamentos múltiplos, por diferentes tipos de partículas, luz oriunda das diferentes camadas do tecido, fluidos não-newtonianos, entre outros, são alguns dos elementos que dificultam consideravelmente uma análise abrangente. Todavia, a partir de modelos simplificados, mapas qualitativos da atividade vascular no tecido e medidas relativas podem ser estabelecidos. Do ponto de vista de diagnóstico médico, estas características da técnica são bastante atraentes, especialmente por permitirem, em princípio, o acompanhamento da evolução do tecido lesado bem como sua resposta aos tratamentos. Outra vantagem reside no fato do processamento ser praticamente em tempo real e totalmente automatizado, permitindo a utilização em ambiente clínico sem maiores dificuldades.

A construção de um mapa de contraste a partir da fotografia de um tecido iluminado com Laser é um procedimento relativamente simples. A ideia básica consiste na divisão dos pixels da imagem original em células no interior das quais o contraste\(^1\) é calculado. Então, uma nova imagem é construída com os valores de contraste obtidos. Uma desvantagem do método é a inevitável perda de resolução. Assim, quanto maiores as dimensões das células em que se calcula o contraste, maior a perda de resolução. Por outro lado, células pequenas comprometem a validade estatística do contraste calculado. Trabalhos anteriores apontam que células quadradas com dimensões entre 5x5 e 7x7 pixels apresentam bons resultados na construção desse tipo de mapa\(^2\).

No presente trabalho, utilizou-se um sistema de aquisição com resolução de 480 x 640 pixels. Ou seja, foram obtidas fotografias com 307.200 pixels. Calculando-se o contraste no interior de células de 5 x 5, novas imagens com 12.288 valores foram obtidas. Portanto, a nova resolução caiu para 96 x 128 pixels.

MATERIAIS E MÉTODOS

A primeira etapa do trabalho consistiu na reprodução de resultados obtidos anteriormente por Briers e Webster\(^3\). O objetivo foi a familiarização com o método LASCA, o desenvolvimento de softwares para a construção de mapas de contraste e a determinação dos tempos de integração que produziriam melhores resultados. Também foram testados dois comprimentos de onda distintos para iluminação, de forma a verificar qual deles deveria ser aplicado para obtenção de melhores imagens. O arranjo básico utilizado nessa etapa é mostrado na Figura 2.

Uma tira de fita crepe foi utilizada para cobrir uma região do dedo anular de uma voluntária saudável (26 anos). Duas fontes de iluminação foram testadas, um Laser He-Ne (633 nm, 20 mW) e um Laser de Argônio (514 nm, 20 mW). O registro foi realizado com uma câmera CCD monocromática (Hitachi, KP M-1), com tempos de integração que variaram entre 100 μs e 17 ms.

Feitos esses ensaios preliminares, passou-se à aplicação do biospeckle no monitoramento de uma úlcera venosa crônica no maléolo lateral direito de paciente voluntária (65 anos). A paciente reportava dores agudas e a lesão estava presente havia três anos. Terapias tradicionais, com uso de medicación oral e tópica, já haviam sido realizadas sem êxito. A terapia possuía formato circular com diâmetro em torno de 3,6 cm e profundidade da ordem 0,5 cm. De posse

![Figura 2 - Fluxograma básico do arranjo experimental para aplicação do método LASCA](image-url)
dos resultados dos testes feitos na vol-
untária saudável, a equipe chegou à
conclusão de que o comprimento de
onda adequado para iluminação seria
633 nm (Laser de He-Ne), enquanto o
melhor tempo de integração foi es-
tabl escado em 17 ms.
Os testes na paciente foram rea-
lizados em dois dias, com intervalo
de uma semana. Em cada dia, foi
realizado um registro fotográfico da
lesão, iluminada com Laser, antes de
qualquer procedimento clínico. Em
seguida, a lesão foi irradiada com La-
s er de Baixa Intensidade (figura 3-b).
No primeiro dia, foram utilizados dois
comprimentos de onda distintos, 685
nm e 830 nm, com potência de 33 mW.
O primeiro comprimento de onda foi
irradiado em doze pontos, durante 7
segundos. Essa série foi repetida três
vezes. A seguir foi realizada varredura
torno da lesão durante 140 segun-
dos, totalizando energia de 12,94 J.
A fluência utilizada foi 7,3 J/cm². O
segundo comprimento de onda (830
nm) foi irradiado em apenas 8 pon-
tos no interior da lesão (vide figura
3-a) e a série foi repetida apenas uma
vez, totalizando energia de 6,47 J. A
fluência foi a mesma utilizada em 685
nm. Na tabela 1 são apresentados os
parâmetros do procedimento.
No segundo dia, o procedimento
adotado foi parecido. Contudo, em
virtude dos resultados da semana
anterior não terem sido satisfatórios,
a equipe médica optou por mudar
a dose de LBI. Novamente, um re-
gistro prévio da lesão (coberta com
biospeckle) foi realizado e, em segui-
da, os mesmos comprimentos de onda
foram irradiados. O comprimento de
685 nm foi irradiado em apenas dois
pontos no interior da ferida e o lado
externo foi irradiado por apenas 49
segundos, chegando à energia total
de 6,24 J. O comprimento de 830 nm
foi irradiado em uma quantidade bem
maior em relação à semana anterior
(22 vezes) e também a região poste-
rior da perna foi recebido tratamento,
totalizando energia de 10,86 J. O pro-
cedimento adotado no segundo dia
tem seus parâmetros resumidos na
tabela 2.
Após as irradi adões com LBI, a pa-
ciente foi posicionada para o registro
de imagem para processamento LAS-
CA. As circunstâncias foram as mes-
mas utilizadas antes da aplicação do
LBI e do ensaio na mão da voluntária
saudável. A figura 4 apresenta o pro-
cedimento de registro do biospeckle
da lesão. A região iluminada aparece
detalhe no campo superior direito
da imagem.
O mesmo tipo de ensaio foi rea-
lizado foi realizado em uma área sau-
dável na região contra lateral da mes-
ma perna da paciente. O objetivo foi a
obtenção de imagens para comparação.
A partir das fotografias registra-
das, foi construído um mapa de con-
trastes em tons de cinza utilizando a
equação¹. Adotamos células quadra-
das com 5 x 5, portanto, a estatísticas
do contraste foi calculado sobre 25
pixels. Em seguida, com objetivo de
facilitar a visualização, estes mesmos
mapas foram pseudo coloridos através
do software ImageJ®, disponível de
forma gratuita na internet¹⁰.

Figura 3: (a) Distribuição dos pontos de irradiiação na lesão e (b) aplicação de LBI

Figura 4: Registro do biospeckle da lesão para processamento LASCA.
RESULTADOS

Os primeiros mapas foram elaborados com os testes realizados na voluntária saudável. Os resultados apontaram que a visualização da região com fita (ou seja, da região sem fluxo superficial) era mais nítida quando utilizado comprimento de onda de 633 nm (Laser de He-Ne) e tempo de integração de 17 ms.

Os resultados dos ensaios feitos na paciente no primeiro dia são apresentados na figura 6. As imagens de (A) a (C) indicam o estado da lesão antes do processo de irradiiação com LBI, enquanto as demais (D) a (F) mostram os mapas de atividade obtidos após a aplicação da radiação. Mais à esquerda (imagens A e D, respectivamente) são apresentadas fotografias da área lesionada coberta com o biospeckle em decorrência da iluminação coerente. Ao centro estão os mapas de contraste em escala de cinza antes e depois da aplicação (imagens B e E, respectivamente). As imagens à direita (C e F) correspondem aos mesmos mapas exibidos em B e E, porém após o processamento de imagem para pseudo colorir e fornecer um relevo tridimensional que facilita a visualização. Na figura 7 são exibidos os mapas obtidos uma semana depois. Os mapas obtidos a partir das imagens da região contra lateral são exibidos na figura 8. Novamente, as imagens à esquerda representam os mapas de contraste em escala de cinza obtidos antes (A) e depois (C).

DISCUSSÃO E CONCLUSÃO

A análise do mapa de contraste observado na figura 5-b revela alguns pontos que merecem ser discutidos mais detalhadamente. O primeiro aspecto a ser ressaltado é referente ao fato das regiões mais claras indicarem maior contraste na imagem original (figura 5-a). Por isso, nota-se que as regiões de fronteira entre a imagem da
mão da voluntária e a mesa de apoio aparecem claras. Por outro lado também se percebe que os furos da mesa aparecem com tonalidades mais claras se destacando na imagem. Esse mesmo princípio é utilizado para detecção de borda em visão robótica, pois o contraste entre um objeto e o fundo no qual se encontra normalmente é elevado. Portanto, as regiões de borda não podem ser interpretadas como zonas de alta atividade quando a técnica LASCA é empregada.

Nas figuras 6 e 7, pode ser percebido aumento na atividade após a aplicação do LBI. No primeiro dia, aparentemente houve redistribuição da vascularização, com aumento de fluxo principalmente na região central da lesão. Isto nos leva a crer que houve regiões onde ocorreu bioestimulação ao passo que em outras teve lugar o processo inverso, a bioinibição. Já no segundo dia, houve aumento mais uniforme de atividade, sugerindo que a dose aplicada era mais adequada. Em relação aos mapas obtidos na região sadiã, não houve variação significativa entre a imagem obtida antes e aquela obtida após a aplicação do LBI, indicando que o fato das camadas inferiores da pele estarem exposta facilita a ação da radiação no estímulo do fluxo.

É importante ressaltar que todas as considerações feitas até o momento estão levando em conta um modelo bastante simplificado do espalhamento de luz. Ou seja, supusemos que o princípio que a principal fonte de espalhamento corresponde às hemácias nos capilares superficiais subcutâneos. Entretanto, várias outras fontes de espalhamento (e consequentemente de atividade) podem ser consideradas, entre elas, a evaporação de umidade da área lesada, por exemplo. Também é importante ressaltar que, embora grande parte da luz que atinge a câmera é oriunda da superfície da lesão (até alguns microns de profundidade), o espalhamento decorrente de camadas inferiores do tecido pode influenciar nos resultados. Esses fatores aumentam a complexidade do fenômeno, exigindo atenção redobrada na interpretação de mapeamento a partir de técnicas de análise de contraste. No entanto, tendo em vista o comprimento de onda utilizado na iluminação e resultados anteriores da literatura [Briers e Webster], a hipótese de que o fluxo sangüíneo nos capi-

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>Potência (mW)</th>
<th>Tempo (s)</th>
<th>Fluência (J/cm²)</th>
<th>Nº de Repetições</th>
<th>Nº de Pontos</th>
<th>Energia / Ponto (J)</th>
<th>Energia Total (J)</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>685</td>
<td>33</td>
<td>7</td>
<td>7,3</td>
<td>3</td>
<td>12</td>
<td>0,693</td>
<td>8,316</td>
<td>Interior da lesão</td>
</tr>
<tr>
<td>685</td>
<td>33</td>
<td>7</td>
<td>7,3</td>
<td>1</td>
<td>20</td>
<td>0,231</td>
<td>4,62</td>
<td>Varredura radial fora da lesão</td>
</tr>
<tr>
<td>830</td>
<td>33</td>
<td>7</td>
<td>7,3</td>
<td>1</td>
<td>8</td>
<td>0,231</td>
<td>1,848</td>
<td>Interior da lesão</td>
</tr>
<tr>
<td>830</td>
<td>33</td>
<td>7</td>
<td>7,3</td>
<td>1</td>
<td>20</td>
<td>0,231</td>
<td>4,62</td>
<td>Varredura radial fora da lesão</td>
</tr>
</tbody>
</table>

Tabela 1: Parâmetros da aplicação de LBI no primeiro dia.

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>Potência (mW)</th>
<th>Tempo (s)</th>
<th>Fluência (J/cm²)</th>
<th>Nº de Repetições</th>
<th>Nº de Pontos</th>
<th>Energia / Ponto (J)</th>
<th>Energia Total (J)</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>685</td>
<td>33</td>
<td>7</td>
<td>7,3</td>
<td>3</td>
<td>2</td>
<td>0,693</td>
<td>1,386</td>
<td>Interior da lesão</td>
</tr>
<tr>
<td>685</td>
<td>33</td>
<td>7</td>
<td>7,3</td>
<td>3</td>
<td>7</td>
<td>0,693</td>
<td>4,851</td>
<td>Varredura radial fora da lesão</td>
</tr>
<tr>
<td>830</td>
<td>33</td>
<td>7</td>
<td>7,3</td>
<td>2</td>
<td>22</td>
<td>0,462</td>
<td>10,164</td>
<td>Interior da lesão</td>
</tr>
<tr>
<td>830</td>
<td>33</td>
<td>7</td>
<td>7,3</td>
<td>1</td>
<td>3</td>
<td>0,231</td>
<td>0,693</td>
<td>Varredura radial fora da lesão</td>
</tr>
</tbody>
</table>

Tabela 2: Parâmetros da aplicação de LBI no segundo dia.
lares seja a principal fonte da modulação nas intensidades do biospeckle é bastante razoável. Embora não permita identificar de maneira detalhada as causas da atividade do granulado, a técnica revelou grande potencial no estudo de lesões vasculares e continuará sendo objeto de pesquisa por parte do grupo que trabalhou neste artigo.

AGRADECIMENTOS

Os autores manifestam os mais sinceros agradecimentos aos membros do Grupo Interdisciplinar na Física, especialmente às Dra. Elisabeth Matheus Yoshimura e Dra. Rosângela Itri pelas preciosas sugestões e discussões sem as quais o presente trabalho sequer teria sido concebido. Também gostaríamos de agradecer às duas voluntárias que participaram dos experimentos.

REFERÊNCIAS

