78 CHAPTER 2 FUNCTION SPACES

where { .Q.Mm\ 2 b &,M\ 2 } are the Discrete Fourier Transforms of n/2 interlaced

points. Each of the n/2 transforms requires only n2/4 multiplications (as they
stand) so to construct the set A&.:v”— requires only n?/2+ n multiplications, a
significant saving over n2, if n is large.

However, if n is a multiple of 4, we need not stop here since the Discrete
Fourier Transform of the two data sets {f2r4¢},£=10,1 can be split up again
for another significant computational saving. This further splitting requires
that we calculate transforms of the four sets of points {farse},£=0,1,2,3.

If n = 2°, the best thing to do is to use this simplification recursively,
and find the two point transform of all pairs of points which are spaced 2°-!
points apart. From these we construct the transform of all sets of four points
spaced 2°~2 points apart, and continue to build up from there until the desired
transform is found.

Suppose the number of multiplications required for this procedure to pro-
duce an n point transform is K (n). From our recursive formula we realize
that

K(2n) = 2K(n) + 2n

multiplications are required for 2n points. The solution of this equation is
K(n)=nlog, n=p-2°,

where K(2) = 2. Certainly, this is a significant saving over the naive calcula-
tion which required n? multiplications.

It is not a difficult matter to write a computer program that calculates dis-
crete Fourier transforms in this fast way. However, most computers currently
have available Fast Fourier Transform software that perform these computa-
tions in this efficient way, or if such a program is not readily available, the
code given in the book by Press, et al., will work quite well.

Other versions of the discrete Fourier transform may be appropriate in
certain situations. For example, with real data, one may prefer a real valued
transform (the discrete Fourier transform is complex valued). The discrete
Sine transform is defined for the data {f;)72} by

= wkj -

9 =) fesin—L
k=1 n

with inverse transform
foo 2 Ww i Th
= - i S1N ——,
T a TH % :

Of course, the transform and inverse transform are the same operation except
for the scale factor m.

22 >,_uvax_§>.—._Oz IN-HILBERT SPACES 79

Once this transform is defined, it is not hard to devise a fast mmbo transform
algorithm which is more efficient than using the direct o&aEm.SOb. ﬂoavﬁ._m—.
programs to implement this fast Sine transform are m,_mo readily wﬁ.:—m.zo.

One further observation needs to be made here. This transform is mog.&g
a matrix multiplication by a matrix A whose entries are ar; = sinwkj/n.
The columns of the matrix are mutually orthogonal o.bm the norm of .ownr
column is y/n/2. The usefulness of this transform will be ozrgo&. if we
can find matrices which are diagonalized by this transform. Hmaaom, just as
Fourier Transforms are useful in the study of ordinary and partial %m,on..ozsm_
equations, the discrete Fourier transforms, and @wva&w:%.ero mwm.e .&mon-@:ﬁ,
are quite useful in the study of the discretized versions of differential equations,
which we will see in chapters 4 and 8. ,

2.2.5 Walsh Functions and Walsh Transforms

WALSH FUNCTIONS are a complete set of orthonormal piecewise .oompmﬂge
functions defined on the interval z € [0,1), which are quite useful in the
ing of digital information: i)

EOnM.mMM—.M are em_.o equivalent definitions of the Walsh functions. The first is
inductive and gives a good understanding of how they are generated and why
they are orthogonal and complete. The goal is to build a mo@ of orthogonal,
piecewise constant functions. We first show that, if we do this correctly, the
set of functions will be complete. : : o

Suppose f(z) is a continuous function. For some fixed n, we divide the
interval [0,1] into 2" equal subintervals, and define

...w. ..
w@ =1 (L52) =122

for j —1 < 2"z < j, that is, on each subinterval, gn(x) is the mmaw as f .R..
the midpoint of the interval. It follows that |f(z) — gn ()| < w (f, 5) which
is smaller than ¢ for n large enough and that

\o H (f(2) ~ ga(2)) dz < €.

Since continuous functions are dense in L2, the piecewise constant functions
are also dense in L2, ‘ : .

To generate an orthonormal set of piecewise constant functions we take
Wal(0,z) = 1; for z in [0,1] and

1, 0<z<1/2

Wel(l,2) = -1, 1/2<z<1.

80 CHAPTER2 FUNCTION SPACES

Using these two functions as starters, we proceed inductively, defining

Wal(n, 2z) 0<z<1/2
Wal(2n,z) =
i} (-1)*Wal(n,2z—-1), 1/2<=z<1
and
Wal(n, 2z) 0<z<1/2
Wal(2n + 1,z) =

(-1)"+'Wal(n,2z - 1), 1/2<z<1..

In words, we take a known Walsh function Wal(n, z) defined on [0,1),
contract it down by a change of scale to the interval [0,1/2) and then reuse
the scaled down function on the interval [1/2, 1) with multiplier +1 to generate
two new Walsh functions. In this way Wal(1, z) is used to generate Wal(2, z),
and Wal(3, z), and these two in turn generate Wal(k,z), k = 4,5,6,7 in the
next step. Notice that the 2" Walsh functions Wal(k, z), ¥ =0,1,2,...,2" -1
are constant on intervals of length no less than 1/2". .

. A second definition of Walsh functions is a bit more direct and more
useful for computer programming, although less insightful. For any z € [0,1)
let z = 3572, a;277,a; = 0 or 1 be the BINARY EXPANSION of z. Define
ax(z) to be the k*» coefficient of this expansion. For example, to determine
a; we divide the interval [0,1) into two subintervals [0,1/2) and [1/2,1). If
z < 1/2, we take ay = 0 whereas if z > 1/2, we take a; = 1. Proceeding
inductively, we suppose a,, a,, ..., a; are known. Let

k
T = Munu.wlu.
i=1

x>z + wmu. we take axy1 = 1 whereasif z < =3 + mmﬂﬂ we take apy1 = 0.

In this way the a; are uniquely specified. For example, in this representation,

z=3/8hasa; =0,a=1,a3 =1, and a; = 0 for k > 4.
With z given in its binary expansion we define

Wal(2% — 1,2) = (—1)%(), .

The Walsh functions Wal(2¥ — 1, z) flip alternately between +1 at the vow:,vm

zj = j/2%,j=1,2,...,2F — 1. To determine the remaining Walsh functions,

we define the “exclusive or” binary operation @ (also called add without carry)
using the table

=l 5]
- OO
O =

2.2 APPROXIMATION IN‘HILBERT SPACES 81

0 , Eu_ﬁo.b

._,_ : _ _ wal(1,x)

° wal(2,x)
-1

1

o— _ Wwal(3,x)

11— —

o Wal(4,x)

”_j |l__|| | ll_im_nm.xv

...J [In_ |.<<m_6.xv

_ | _|J Wal(7,x
.HEFJE_]E a0

b + —p
L T N

0 1
FIGURE 2.2 The first eight Walsh functions.

For integers %,j, we define i @ j as the operation @ applied to 2.5, binary

representations of i and j. Since @ is its own additive inverse, i ® i = 0 and

(i® j) ® j = i. The definition of the remaining Walsh functions follows from
Wal(i @ j, z) = Wal(4,z) - Wal(j, z).

To make some sense of this definition, we note that we can uniquely
decompose any integer n into a @ sum of the integers 2¥ 1, as

2 2 4 .
uMsauM@@-_@sé-:essffs.
i=0 j=1
For example, 4 = 3@ 7, and 10 = 1 ® 3® 7 & 15. The way to view this
monoav.o&ﬁou operationally is via simple shifts. For example, to decompose

82 CHAPTER 2 FUNCTION SPACES

the integer 13, write its binary representation 1101 (since 8+4+1=13) and @
add this to its shift 0110 (shift the entries 1101 one position to the right to
get 0110) as 110190110 = 1011. The resulting zeros and ones are coefficients
of integers 2/ — 1. In this case 13 = 15® 3 @ 1. Another way to view this
decomposition uses the fact that @ is its own additive inverse. As a result,
13®15 = 110191111 = 0010 so 13015®3 = 0010911 = 1 and 130150301 =
Osothat 1I3=1503@®1 as found before.

The proof of this identity follows easily by induction o

n N. Suppose the
binary representation of 3 number is by, bnby oy ---

b1bo and suppose that,

N
bNbN-1 - -bibo =Y @ (b, ®b;)(2 -~ 1) @by (2V+! 1).
j=1

It is certainly true that bo = bo(2! — 1). We use that the binary representation
of 27 — 1 is the string of j ones, 11...11 and then

@2+H@2@2|u .. .@H@O = @2@2'# . .@M@Q [&3) @2+HO°. --00
=bnby_y - biby @ bryr ((2V+2 - 1) @ (2V+1 1))

N+1 . }
=2 @bi185) (2 ~ 1) @by, (V42 1)
ji=1 .

Now that n is decomposed as a linear combination of integers 2/ — 1 and
Wal(2" - 1,2) = (=1)%®_ it follows that

<<m~?.av = AICA %n. E.Cu.+~:r.v+az+.azv
or N
Wal(n, z) = (-1 AMUN.Q?M+$+L$+E§V

where z = Mww a;277. Notice that replacing @ by + in these formulas s not

a misprint. Why?
To verify that this definition Is equivalent to our firs

I t inductive definition,
we note that if n = M.%no b6;27, then 2n = MU.M,MMH b2=1 where b = bj_,,

50 =0and 2n 41 = N 4roi-1 ypore b = bj_1 with &) = 1. Thus for
m=2nor2n+1
Wal(m,z) = (—1)(T50 @ovarrsgransy)

= (-1 AMNZQ (ah+aly, Ybi-+aibotas (bo+5}))

= Wal(n, 2)(—1)a (bo+8,

2.2 APPROXIMATION IN'HILBERT SPACES 83

B
[] - _ﬁw
[] k=3

.

+—

0 1

FIGURE 2.3 The “natural basis” of piecewise constant functions.

= d when
! = a;iy1, & = (2z)mod1l. When 0 < z < 1/2, 01 = 0 an
NSRS I,H.s, = (=1)", so the two definitions agree. .
EEES N inducti w that for n > 1 h Wal(n, z)dz = 0, whereas
It is clear (by induction v 2 b
/. ! Wal(0, z)dz = 1. To show orthogonality of the set, note that
O K

1
H " . . . & ”mm-u
\o <<w_®..av<<@5.ev&an.\o Wal(i @ j,)dz = 6;;

ions Wal(j, z) are constant on
i i D1 = i~< 2" — 1, the Walsh functions : .
ntorte Mw “ M_Mn.p%ﬂ MOMme than 1/2". Since there are 2" m:owvwcwmwwbmmwwwm
Mﬂaozw_..w Mngomo:m._. hence linearly independent, they span ,
ey

the “natural” basis functions
1 k—1<2%z<k

k=1,2,...,2"
gr(z) =

. | 0 elsewhere'.

is functions
It follows that the Walsh functions are complete. The natural ,vmm_m
are shown for n'= 3 in Figure 2.3.

84 CHAPTER 2 FUNCTION SPACES

GS.E numbered Walsh functions are s
are antisymmetric about the point z =
trigonometric functions, the notation

cal(k, z)

Wal(2k,)
sal(k,z) = Wal(2k—1, z)
h .
as been adopted. Corresponding to this notation, the identities

cal(i, z)cal(j,z) = cal(i @ j, z)

i

cal(i, z)sal(j,) sal (i@ (7 - 1)) +1,2)

sal(i, z)sal(j,z) = cal((i— Do -1),2)
can be shown to hold.

Sin i
ce the Walsh functions are an orthonormal, complete, set of functions

sor2
in L2[0,1], we can represent any function in L2[0,1] as
[o o]
f(z)= MU a, Wal(n, z)
n=1

where

1
an = \a F@&)Wal(n, ¢)dt

which is the WALSH TRANSFO
\ RM P is i
Is easy to evaluate since Wal(n, z) is H.WH HW. Mﬂo\?v. o (o) s ntegral

uous but consists rather of evenl function f(z) is not contin-
Y spaced (digiti ;
DISCRETE WALSH TRANSFORM M&w WAMMMMW% Mvm sample points f;, the

N-
i = MUQ:S&?.EV
n=0

i=0,1,2,... N—1

N-1

. .

% = 23 faWalli,zn) , 2 = LH1/2
n=0 2

for N = 27, some

, power of 2. One can sh
factor Wf the forward and inverse smmwoﬂ nwmﬂ; D o the e e
sl 22.19). anstorm are the same operation

N . :
umerical routines that perform the discrete Walsh transforms are ex

tre
mely fast compared even to the Fast Fourier transform. If N = 2° for some

ymmetric and odd numbered ones
1/2. In light of the analogy with the

2.2 APPROXIMATION IN HILBERT SPACES 85
p, notice that

, PR
o = ¥ m frWal(i, zx)

M-1
1 i i
sif 2 (2 Wal (i 2a0) + foera Wal (i, 22641)
"k=0

where M = N/2. We now use that Wal(i,zx) = 2&@.&.& (see problem
2.2.19) to write that

M-1
1
* = o3t N.w (fax Wal(2k, ;) + far+1Wal(2k + 1,2:))

and finally, we use the inductive definition of the Walsh functions and find
M-1
s a = A.\NR +.ﬁww+uv sﬂhﬁwun‘wuv

L
M k=0 2

0<i<M-1

_ 1 = 0 far = Fak41 | wal(k. 2;
oM = .@.mﬁl) A B) al(k, £:)
where £; = w.%%m The obvious observation to make is that the first M co-
efficients a;, i = 1,...,M — 1 are the Walsh transform of the average of
consecutive data points and the coefficients a;, i = M, M +1,...,2M —1 are
the Walsh transform of half the difference of consecutive data points.

This formula applied recursively enables us to evaluate the Walsh trans-
form without ever evaluating a Walsh function, but merely by transforming
the data by adding or subtracting successive pairs of data points. The fol-
lowing FORTRAN code calculates the Walsh transform of 2 data points by
exploiting this formula to the fullest extent. In the code, the division by two
is not done until the very end, when it becomes division by 27. This step saves
time and gives an operation count of p2° adds or subtracts, and 27 divisions.
This is indeed faster than the fastest Fast Fourier Transform code.

SUBROUTINE FWT (F,G,N)
DIMENSION F(1),G(1)

F...INPUT VECTOR CONTAINING N DATA POINTS

aaQa

-]
S

2N NoNeNoNoNeNeNoRe Ne

(2o Ne!

 CHAPTER 2 FUNCTION SPACES .-

10

50

60

G...WORK VECTOR WITH LENGTH AT LEAST N

N... : ‘
WWZMHMmo“onmce VECTOR, ASSUMED TO BE POWER OF
T A POWER OF 2, THE § 3
UBRO |
LARGEST POWER OF TWO rmmw THAN N OHINE DSES]

wﬂmmmmwmow THE LOOP DO 60 I=..., THIS CODE CAN BE
IZED. THAT IS, ALL VARIABLES CAN
INTEGERS o USED Ast

CALCULATE P WHERE N.GE.2%*p
IP=0

ITP=1

ITP=2*ITP

IF (ITP.LE.N) THEN
IP=IP+1

GO TO 10

ENDIF

ITP=ITP/2

NN=ITP
WRITE (6, *)NN, IP

FIND TH
D wnwwwwm TRANSFORM OF THE VECTOR F
JS=NN/ITP
ITP=ITP/2
DO 50 J=1,JS
JST=1+42% (J-1) *ITP

oomwwwcmoszzAmAumev~mﬁumev\Hemv
DN=FLOAT (NN)
DO 60 I=1,NN
F(I)=F (I)/NN
CONTINUE
RETURN
END
THIS R , CON
o MHMMMMMMMOWUmesz SUBTRACTS CONSECUTIVE PAIRS
N PLommaTs OF E 2 D PUTS THEM BACK INTO THE
ON IN F.
SUBROUTINE COMBIN (F,G, NS)

DIMENSION F(1),G(1)

A=-1,

DO 100 I=1,NS

h=1/N and z; = j/N,j=0,1,2,..

2.2 APPROXIMATION IN I__.rmmm._.. SPACES 87

G(I)=F (2%I-1)-F(2*I))
A=-A
QAH+vaHP*AMAN*HIHVIMAN*HVv
100 CONTINUE
IST=2*NS
DO 200 I=1,IST
F(I)=G(I)
200 CONTINUE
RETURN
END

226 Finite Elements

As we know, mutually orthogonal basis functio
least squares approximations of a function f
% = MMOHH Qw&wA&v.
are not mutually orthogonal b
functions in a Hilbert space.

ns are useful because they give
using the Fourier coefficients

ak = (f, ¢x). FINITE ELEMENTS are functions which
ut nonetheless givé useful approximations to

is subdivided into N subintervals of length

Suppose the interval [0,1]
., N are the endpoints of the intervals.

Definition
A FINITE ELEMENT SPACE S*(k,r) is the set of all functions ¢(z)
defined on [0,1] satisfying

1. ¢(z) is a polynomial of degree less than or equal to k, on the interval

25, 25401],
2. ¢(z) is r times continuously differentiable on [0,1].

If r = 0, the functions ¢ are continuous but not differentiable and if é(z) is

allowed to be discontinuous we set r = —1.
* The finite element space S*(k,r) is a finite dimensional vector space of

dimension N(k —r) +r+ 1 and as a result has a finite set of basis functions.
The simplest example is the set of piecewise constant functions

4:(2) 1 zj1<z<z
(z) =

! 0 otherwise

denoted S*(0,—1). This is the set of functions from which we generated the

Walsh functions in the previous section.
The next reasonable choice of basis functions are the piecewise linear

