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Abstract
The most prominent intrinsic flame instability is the hydrodynamic, or Darrieus–
Landau (DL) instability, that results from the gas expansion caused by the heat
released during combustion, which induces hydrodynamic disturbances that
enhance perturbations of the flame front. The DL instability has many ramifi-
cations in premixed combustion; it promotes the creation of corrugated flames
with relatively sharp edges pointing towards the burned gas. In this presentation,
we first review the developments that led to a better understanding of the roles
of viscosity, heat conduction and species diffusion on the flame stability. This
includes the work of Markstein that attempted to phenomenologically improve
the Darrieus and Landau analyses, and the asymptotic studies that provided an
explicit dependence on the physical parameters. We then discuss the nonlinear
flame development starting with the weakly-nonlinear analytical studies and
proceeding with the more recent fully-nonlinear numerical results. We show
that, unlike the implication that may be inferred from the original publications of
Darrieus and Landau that premixed flames as a result of the instability will
always appear as turbulent flames, the instability leads to the formation of cusp-
like conformations with elongated intrusions pointing toward the burned gas
region. These structures are stable and, because of their larger surface area,
propagate at a speed that is substantially faster than the laminar flame speed.
Finally, we show that the DL instability remains relevant in turbulent flames, but
their influence appears limited to weak-to-moderate turbulence intensity flows.

Keywords: hydrodynamic theory of premixed flames, Darrieus–Landau
instability, hydrodynamic instability, thermo-diffusive instabilities, flame
speed and flame stretch
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1. Introduction

The hydrodynamic instability, discovered independently by Darrieus (1938) and Landau
(1944) nearly eighty years ago is the most consequential instability in premixed combustion.
Known also as the Darrieus–Landau (DL) instability, it is a consequence of the amplification
of the flame front by hydrodynamic disturbances induced by the gas expansion that results
from the heat released during combustion. Although the linear stability analyses of Darrieus
and Landau raise a number of fundamental questions, primarily their conjectures that the
flame speed along the flame surface is constant and independent of the influences of the
diffusion processes occurring inside the flame zone, the instability is nevertheless present and
dominant in large scale flames. It is responsible for the formation of sharp creases and crests
pointing towards the burned gas region, for the convex curving of flames propagating in
narrow tubes, and for the self-wrinkling of the surface of large expanding flames.

The simplest problem of premixed combustion is arguably the propagation of a planar
flame into a quiescent mixture. The flame propagates at a constant speed determined uniquely
by the thermo-mechanical properties of the combustible mixture. In a frame of reference
attached to the flame the problem is steady, but due to the highly nonlinear reaction term
appearing in the governing equations an exact solution describing the flame structure and
determining the flame speed is not available. Insight into the nature of the flame structure has
emerged since the work of Mallard and Chatelier (1883), but were firmly established only in
recent years by treating the overall activation energy large in comparison with the enthalpy of
the mixture. An analytical solution in this asymptotic limit was first presented heuristically by
Zel’dovich and Frank-Kamenetsky (1938) and later formally using matched asymptotic
expansions by Bush and Fendell (1970). Although the availability of such a solution appears
useful for stability considerations, the perturbed eigenvalue problem, due to the variation of
the flow properties with distance through the flame, comprises of a coupled system of
variable coefficient equations, which is a formidable task even when treated numerically. The
search for an explicit dispersion relation that exhibits a dependence on the various controlling
parameters affecting the flame propagation necessitates the construction of simplified models
that possess tractable solutions that can then be tested for stability.

In this presentation, we review the main developments that led to the current understanding
of the nature of the hydrodynamic instability, starting from the work of Darrieus and Landau who
considered the flame as a structureless surface separating burned and unburned gases and moving
at a constant speed relative to the flow, the subsequent work of Markstein (1964) who introduced
phenomenologically a correction to the flame speed that accounts for effects arising from the
internal flame region, and the more rigorous asymptotic studies by Pelce and Clavin (1982),
Frankel and Sivashinsky (1982) and Matalon and Matkowsky (1982) that systematically
accounted for the internal structure of the flame using a multi-scale approach. All three asymptotic
studies led to a correction term to the DL dispersion relation which, except for notation and non-
dimensionalization, is identical1. They differ only by their mathematical approach; Pelce and
Clavin and Frankel and Sivashinsky linearized the governing equations about the planar flame
solution, then used a multi-scale approach to incorporate the effects of diffusion to the
hydrodynamic problem. Matalon and Matkowsky, on the other hand, derived first a general
model for treating the flame as a thin interior layer separating the fresh combustible mixture
from the burned gases, and then used their model to examine the stability of planar flames.

1 The work of Pelce and Clavin also incorporated the effect of gravity which, as pointed out by Landau acts to
stabilize the long wavelength disturbances; gravity will not be discussed in this paper.
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The result of all three studies explicitly exhibit the influence of diffusion on the flame
propagation, showing that it often acts to stabilize the short wavelength disturbances.

The general model derived by Matalon and Matkowsky (1982) and referred below as the
hydrodynamic model has been cast in a coordinate-free form (Matalon and Matkowsky 1983)
and generalized to account for temperature-dependent transport, differential and preferential
diffusion (i.e., non-unity and distinct Lewis numbers), and effects due to stoichiometry and
reaction orders (Matalon et al 2003). The mathematical formulation consists of a nonlinear
free-boundary problem; the flame is represented by a surface separating burned from
unburned gases, with different densities and temperatures, and propagates relative to the fresh
mixture at a speed that depends on the local stretch rate modulated by a Markstein length that
mimics the influences of diffusion and chemical reaction occurring inside the flame zone. The
flame propagation is therefore affected by the local flow conditions through the flame stretch,
which consists of the curvature of the flame surface and the underlying hydrodynamic strain it
experiences, and by the local mixture composition through the Markstein length. The flow
field is modified in turn by the gas expansion resulting from the increase in temperature
caused by the heat released. The hydrodynamic model remains valid when the flow is either
laminar or turbulent, and has been therefore used to investigate the nonlinear consequences of
the DL instability in a laminar setting (Rastigejev and Matalon 2006, Creta and Mata-
lon 2011) and its effect on turbulent flames (Creta and Matalon 2011, Fogla et al 2015, 2017).

2. The Darrieus and Landau analyses

Darrieus (1938) and Landau (1944) were the first to address the stability of planar flames. The
flame in their description is a structureless interface separating fresh combustible gas mixture
from burned gas products. The flow field on either side of the flame front is described by the
Euler equations of an inviscid, incompressible gas, and must satisfy the Rankine–Hugoniot
(RH) jump relationships corresponding to statements of mass and momentum and energy
conservations across the flame. The mathematical formulation is completed by specifying the
flame speed defined as the propagation speed relative to the flow, which Darrieus and Landau
assumed to be constant along the flame surface.

Let the flame front be described mathematically by a function =( )F tx, 0, with F<0
identifying the unburned gas region and F>0 the burned gas region, the flame speed Sf is
defined from *º - +S V vnf f , where *vn is the normal component of the gas velocity just
ahead of the flame (the *, here and thereafter denotes conditions at the flame front on the
unburned side), and

=



= -


¶
¶∣ ∣ ∣ ∣

F

F
V

F

F

t
n ,

1
f

are, respectively, the unit normal to the flame surface pointing towards the burned gas and the
normal propagation speed (in the laboratory frame) of the interface; see figure 1. The Euler
equations are given by

r =
¶
¶

+  = -
⎛
⎝⎜

⎞
⎠⎟· ( · ) ( )

t
pv

v
v v0, 1

where v is the velocity vector, p is the pressure, and ρ the density represented by ρu and ρb in
the unburned/burned regions, respectively. The RH jump relations are given by
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where, the operator [[·]] defines the jump in the quantity, namely the difference between its
values at F=0+ and F=0−. The constant flame speed hypothesis is expressed as

= ( )S S , 3f L

where SL is the laminar flame speed, i.e., the speed of a planar adiabatic flame.
The problem depends on two parameters: the flame speed SL, representing the rate of

reactant consumption and the unburned-to-burned density ratio s r rº u b, or equivalently
the burned-to-unburned temperature ratio Tb/Tu, representing the extent of heat released by
the chemical reactions (the subscripts u and b stand for unburned/burned respectively). For
the exothermic reactions occuring in combustion studies, σ>1.

2.1. Linear stability analysis of a planar flame

The basic state corresponds to a planar adiabatic flame that propagates (along the negative x-
axis) at a speed SL into a quiescent mixture. It is convenient to refer to a coordinate system
attached to the flame front assumed located at x=0. In this frame, the problem is steady and
the flow field satisfying (1), (3) is given by

s s r= = -
<

- >
⎧⎨⎩

⎧⎨⎩( ) ( )u
S
S

p p
x

S x
,

0 for 0
1 for 0,

4L

u
0 2

L L

where p0 is the ambient pressure. Introducing disturbances, denoted by primes, all variables
are expressed in the form

= + ¢ = ¢ = + ¢( ) ( ) ( ) ( ) ( )u u x u x y t v v x y t p p x p x y t, , , , , , , ,

where, the ‘overline’ represents the steady, basic state (4). The perturbed flame front is
described by = ¢( )x f y t, . For simplicity we have restricted attention to planar (i.e., two-
dimensional) flows. For small disturbances, the Euler equations (1) linearized about the basic
state reduce to

Figure 1. Schematic of the flame front and its geometrical properties.
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and must be solved subject to

s¢ = ¢ = - -
¶ ¢
¶

¢ =[[ ]] [[ ]] ( ) [[ ]] ( )u v S
f

y
p0, 1 , 0 6L

across x=0, obtained from the RH relationships (2), with

¶ ¢
¶

= ¢ = ( )f

t
u xat 0 7

resulting from the flame speed relation (3).
Let the perturbed flame be described by ¢ = w+f A e ky ti where A is the amplitude, k the

wavenumber and ω the growth rate and, similarly, express all flow properties in the form

¢ = ¢ = ¢ =w w w+ + +( ) ( ) ( )u U x v V x p P xe , e , e ,ky t ky t ky ti i i

the problem reduces to the following eigenvalue problem
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for the determination of ω=ω(σ, SL). It is clear, based on dimensional analysis, that
w w s= ( )S kLDL

such that only the coefficient wDL
and, in particular, the sign of its real part is

of interest and remains to be determined.
It is instructive to examine first the special limit of ‘weak thermal expansion’, namely

 sº - 1 1. Since the discontinuity in velocity across the flame is small, the growth rate is
equally small which justifies writing  = =˜ ˜U U V V, ,  w w= =˜ ˜P P, . As a result, the
first term on the lhs of the second equation in (8) is neglected as a consequence of being ( )2 .
The solution is
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with = =C C kA1 2
1

2
and w =˜ kSL

1

2
. Hence w s~ -( )kS1 L

1

2
is positive for all k, and the

planar flame is unstable to disturbances of all wavelengths.
Note that although the vorticity is (to this order) zero everywhere, the discontinuity in the

transverse velocity along x=0 implies that vorticity is being concentrated along the sheet.
The disturbed flame is therefore equivalent to a flat vortex sheet along the mean position
x=0, as shown in figure 2. The sense of rotation, dictated by (6), is as shown in the figure;
counterclockwise when the slope of f′(y) is positive and clockwise when the slope of f′(y) is
negative. The concentrated vorticity through the Biot–Savart law induces an axial velocity u′
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which, according to (7) convects segments of the flame intruding towards the burned gas
further downstream and segments intruding towards the unburned gas further upstream, thus
amplifying the initially disturbed flame. A slightly different, but equivalent interpretation of
the instability can be found in Williams (1985).

The physical interpretation for the instability just outlined could presumably be extended to
the more realistic case of s - = ( )1 1 , except that now there will be vorticity distributed in the
burned gas as well, and its role on stability is not clear a-priori. We will show below that the
vorticity created at the flame front is convected in the burned gas region along streamlines and
does not affect the instability conclusion. Indeed, the larger heat release and the associated gas
expansion cause an increase in the growth rate ω and an enhancement of the instability.

For finite values of thermal expansion, the solution of the eigenvalue problem (8), (9) can
be easily obtained. One finds
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where the terms multiplying C3 clearly accounts for the vorticity in the burned gas region.
The conditions (9) then yield
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Figure 2. The perturbed planar flame, equivalent to a vortex-sheet.
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The solvability condition yields the dispersion relation

s w s w s s+ + - - =( ) ( ) ( )kS k S1 2 1 0. 112 2 2
L L

For σ>1, one of the two roots is always positive and given by

w
s

s s s s=
+

+ - -

w
  

[ ] ( )S k
1

1
. 12L

3 2

DL

This result can be easily extended to three-dimensions in which case the wavenumber
= +( )k k ky z

2 2 1 2, where ky and kz are the wavenumbers in the y and z directions,
respectively.

Thus, planar flames are unconditionally unstable. Disturbances of all wavelength are
amplified and the amplification rate increases with increasing σ. Moreover, the growth rate
increases when increasing k, implying that the short waves grow faster than the long waves.
This is the celebrated hydrodynamic or DL instability.

2.2. The Markstein model

The DL conclusion seems contradictory to observations, which prompted investigators to
seek improvements of the model to reconcile between theoretical predictions and laboratory
observations. The most notable results are due to Markstein (1951) who also treated the flame
as a surface of discontinuity, but assumed a dependence of the flame speed on the local
curvature of the flame front through a phenomenological constant assumed to be proportional
to the flame thickness; see also Markstein’s monograph (Markstein 1964). The only mod-
ification to the DL model is therefore the relation

k= - ( )S S 13f L

replacing (3), where k = - · n is the local curvature of the flame surface. The coefficient
, in units of length is nowadays referred to as the Markstein length. The linear stability
analysis of the planar solution yields the dispersion relation

 s w s w s s s+ + + - - - =( ) ( ) ( ) ( )k kS k k S1 2 1 1 2 0, 14L L
2 2 2

with the DL growth rate recovered when  = 0. When  < 0 the planar flame remains
unconditionally unstable, with disturbances growing at a rate faster than the DL growth rate
wDL

. When  > 0, on the other hand, the short wavelength disturbances are damped and only
disturbances with wavelength l p lº >k2 care amplified. The critical wavenumber is

l ps s= -( )4 1c . Hence, in domains of lateral size L<λc the planar flame is stable. The
stabilization mechanism is readily understood; the enhanced flame speed at the crests, where
κ<0, and the reduced speed at the troughs, where κ>0, tend to dampen the amplitude of
the corrugations.

2.3. Comments

The aforementioned analyses raise a number of questions.

• Although the flame zone associated with the region where heat conduction, species
diffusion, viscous dissipation and chemical reactions occur is thin, it nevertheless has a
finite thickness. Treating the flame as a discontinuity can be justified for perturbations of
large wavelength, but the assumption fails when the perturbation’s wavelength becomes
comparable to the flame thickness, i.e., for large values of k. One then expects that the

Fluid Dyn. Res. 50 (2018) 051412 M Matalon

7



physicochemical processes occurring inside the flame zone have some influence on its
stability. Markstein’s suggestion has clearly addressed this issue, but the dependence of
the Markstein length on the mixture properties remains unknown and must be determined.

• The assumptions that the flame speed is constant along the flame surface, as assumed by
Darrieus (1938) and Landau (1944), or depends solely on the flame curvature as
hypothesized by Markstein (1964), need to be reexamined. One may anticipate that the
flame speed also depends on nonuniformities in the underlying flow field, an idea first
explored by Eckhaus (1961). Preferably, such a relation needs to be derived from physical
first principles.

• Even when the diffusion processes occurring inside the flame zone provide stabilization
of the short wavelength disturbances, the long waves pertinent to large-scale flames are
amplified by hydrodynamic effects. The question then is whether the growth rate
eventually saturates by nonlinear effects, not accounted for in the linear theory, and what
is the ultimate conformation adopted by the flame surface.

• Finally, of interest is whether the DL instability, ubiquitous under laminar flow
conditions, has an influence on turbulent flames and under what conditions.

3. Hydrodynamic theory—multi-scale analysis

An appropriate mathematical framework for the description of time-dependent, multi-
dimensional flames is the hydrodynamic theory developed by Matalon and Matkowsky
(1982) using a multi-scale approach, and extended by Matalon et al (2003) to account for
temperature-dependent transport, differential/preferential diffusion and effects due to stoi-
chiometry. The asymptotic derivation exploits the disparity in length scales associated with
the hydrodynamic field, the flame zone where heat and mass transport occur and the reaction
zone where the chemical reactions take place. If L is a characteristic length associated with the
hydrodynamic field and =l Sf th La representative diffusion length, whereth is the thermal
diffusivity of the fresh mixture, the ratio d º l Lf is a measure of the flame thickness.
Chemical reaction occurs in a thin region within the flame on the order of lf/β where b  1 is
the activation energy parameter, or Zel’dovich number, given by b = -( )E T T Tb u b

2 with
E is the overall activation energy and the gas constant. A schematic of the flame structure is
given in figure 3.

The flame, consisting of the region where diffusion processes and chemical reaction
occur, is relatively thin (typically a fraction of a millimeter) and shrinks to a surface when
d  0. Viewed on the hydrodynamic length scale the entire flame may therefore be repre-
sented as a surface that separates the fresh mixture from the burned gas, as envisaged by
Darrieus and Landau. However, contrary to their structureless model, the balance equations
for the energy of the mixture and for the mass fractions of the fuel and oxidizer are integrated
across the flame zone to derive an expression for the flame speed. Since for thin flames the
integration is primarily carried out along the normal to the flame surface, the equations to
leading order are quasi-steady and quasi-one dimensional and can be integrated exactly in the
limit of large activation energy (b  ¥). To include effects due to the finite thickness of the
flame, the derivation must proceed to d( ). Asymptotic matching then provides expressions
relating the flow properties on the burned and unburned sides of the flame, as well as an
expression for the flame speed.

The flow field on either side of the flame front is governed by the incompressible Navier–
Stokes equations
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where E is the strain rate tensor and μ the viscosity of the mixture, which assumes different
values in the unburned and burned regions. Consistent will all other diffusion processes, the
viscous term in (15) is an d( ) correction term. The transport coefficients  m l r rc, , ,p F O,
where λ and cp are the thermal conductivity and specific heat of the mixture and  ,F O the
molecular diffusivities of the fuel and oxidizer, are assumed to have the same temperature
dependence implying that their ratios, corresponding to the fuel and oxidizer Lewis numbers
and the Prandtl number, given respectively by

 

l
r

l
r

m
l

= = =
c c

c
Le , Le , Pr ,

p

F

p

O p
F O

are constants. (There should be no confusion with the notation of λ here being the conductivity of
the gaseous mixture, because it is only used in the description of the hydrodynamic model.)

The flame speed is given by

= - ( )S S , 16f L

where  is the flame stretch rate, which is a measure of the deformation of the flame front
resulting from its motion and from non-uniformities in the underlying flow field. An invariant
expression for flame stretch given by Matalon (1983) takes the form

* k= - -  ´ ´· ( ) ( )V n v n , 17f

where the first term on the rhs corresponds to surface dilatation, resulting from the motion of a
segment of the flame surface of curvature κ, and the second term to surface extension
resulting from the velocity gradient along the flame surface2. Flame stretch can be also

Figure 3. The structure of a curved premixed flame. The inset shows the structure of the
flame zone, where the temperature rises from the unburned value Tu to the burned
temperature Tb and where the fuel (the deficient component in the mixture) diffuses
from its value Yu in the fresh mixture to Y=0 in the reaction zone. The reaction rate ω
is practically a delta-function centered near Tb.

2 Two canonical examples illustrating each of the two terms in (17) are, respectively, (i) a spherically expanding
flame where the flow is radial and  = Ṙ R2 , with R the flame radius and Ṙ the propagation speed; and (ii) a flat
flame in the straining field of a stagnation-point flow, which is being stretched by the transverse velocity gradient
equal to the strain rate.

Fluid Dyn. Res. 50 (2018) 051412 M Matalon

9



expressed in the form  k= - · ·S n E nL , where the first term contains all contributions
associated with the curvature κ and the second term is the hydrodynamic strain experienced
by the flame. When relating this expression to (17), the constraint  =· v 0 is imposed,
consistent with (15). The jump relations across the flame are generalized RH relations that
include  d( ) corrections accounting for accumulation and/or transverse fluxes inside the
flame zone; their explicit form can be found in Matalon et al (2003). The coefficient  in the
flame speed relation (16), which is being appropriately referred to as the Markstein length, is
given by

 ò ò
s
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l s
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1
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d . 18f
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Note that equation (16) not only generalizes Markstein’s hypothesis by including a
dependence on the strain rate, absent in the Markstein model (13), but also determines the
coefficient  from physical first principles.

The Markstein length is proportional to the flame thickness lf and depends on (i) the
thermal expansion coefficient σ, or the extent of heat released during combustion, (ii) the
common temperature dependence of the diffusion coefficients l̃( )T , scaled by its value in the
unburned gas, (iii) the overall activation energy of the chemical reaction, or the Zel’dovich
number β, and (iv) the effective Lewis number Leeff of the mixture. The effective Lewis
number Leeff is a weighted average of the individual Lewis numbers, LeF

and LeO
, respec-

tively. For unitary reaction orders with respect to each of the two reactants, the effective
Lewis number is expressed in the form








f

f
=

+
+

<

+
+

>

⎧
⎨
⎪⎪

⎩
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1
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F O

eff

where f is the mixture equivalence ratio, and


b f f
b f f

= + - <
+ - >

-⎧⎨⎩
( ) ( )
( ) ( )

1 1 1
1 1 1

1

measures the deviation from stoichiometry. The more general expression for arbitrary reaction
orders can be found in Matalon et al (2003). For a stoichiometric mixture (f=1), the
effective Lewis number is the average of the individual Lewis numbers of the two reactants.
For an off-stoichiometric mixture the deficient component is more heavily weighted such that
for very lean/rich mixtures (  1) the effective Lewis number is practically that of the
fuel/oxidizer, respectively. figure 4 shows the variations of Leeff with equivalence ratio for
two mixtures. Hydrogen, which is a light fuel diffuses relatively fast such that Leeff for a lean
mixture is smaller than unity. Propane, which is a heavy fuel diffuses slowly and Leeff

for lean
mixtures is larger than unity. In rich mixtures, Leeff

depends primarily on the mixture
composition and the diffusivity of the oxidizer. Accordingly, Leeff

for a hydrogen–air mixture
is a monotonically increasing function of equivalence ratio, whereas for hydrocarbon-air
mixtures (with the possible exception of methane) it is a monotonically decreasing function of
equivalence ratio.

The Markstein length  can, therefore, be positive or negative depending on the mixture
composition, or specifically on Leeff . It is generally positive for rich hydrogen–air and lean
hydrocarbon-air mixtures and negative for lean hydrogen–air and rich hydrocarbon–air
mixtures. In an experimental setting, changes in are accommodated by varying the fuel type
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and mixture composition, or by changing the system’s pressure, which affects the flame
thickness.

In summary, the hydrodynamic theory extends the DL model by accounting for all the
diffusion processes occurring inside the flame zone as a perturbation to the governing
equations, the jump relations across the flame, and the flame speed relation. The additional
parameters appearing in the formulation include the viscosities of the burned/unburned gas
and the Markstein length  that mimics all diffusion properties of the mixture.

3.1. Linear stability results

Reexamining the stability of a planar flame within the context of the hydrodynamic theory
leads to the following dispersion relation

w w b= - + - + +[ ( ) ] ( )S k l B B B S kLe 1 Pr , 19L f L1 2 3
2

DL eff

where B1, B2 and B3 are all positive and depend only on σ. They are given by
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Since typically l ~˜ ( )T Tu
a with »a 0.7, the two extreme cases a = 0, 1 corresponding to

constant transport and l ~˜ T , are of special interest. Simplified expressions for B1, B2, B3 for
these two cases are listed in the appendix.

The growth rate (19) shows that the correction to the DL result, proportional to the flame
thickness, consists of three terms representing respectively the influences of thermal, mole-
cular and viscous diffusion on stability. Thermal diffusion, which tends to smooth out
temperature differences, always has a stabilizing influence. Due to the large change in
viscosity across the flame, viscous diffusion also has a stabilizing influence. (This effect is
absent when the viscosity is assumed constant throughout the combustion field, in which case
B3=0 as noted in the appendix.) The effect of molecular diffusion, on the other hand

Figure 4. The effective Lewis number Leeff as a function of equivalence ratio, for
various values of the Zel’dovich number β.
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depends on the mixture composition, or the effective Lewis number of the mixture. It has a
stabilizing influence when >Le 1eff and a destabilizing influence, otherwise.

To ensure stabilization of the short wavelength disturbances, the overall contribution of
diffusion must be positive, implying that Leeff must exceed a critical value, *Le

eff
found to be

slightly less than unity; see figure 5. For *>Le Leeff eff
, stable flames may result when the long

wavelength disturbances are excluded due to the transverse size of the domain within
which the flame is propagating (or damped by other effects, such as gravity, not discussed
here). The instability, which will be predominantly observed in large-scale flames is evidently
the hydrodynamic instability. For *<Le Leeff eff

diffusion effects act to further destabilize the
flame, a limit referred here as the thermo-diffusive instability. The implication that in this limit
the competing effects of mass and thermal diffusion play an equally important role on the
instability is based on the results of Barenblatt et al (1962) and Sivashinsky (1977a) obtained
when the hydrodynamic disturbances have been filtered out by adopting a constant-density
approximation. Stabilization of the short wavelength will presumably arise in this case from
higher order terms, as implied from numerical simulations (Altantzis et al 2012), but these
have not been analytically computed (see the dashed curve in figure 5). Clearly, in this regime
hydrodynamic and thermo-diffusive effects act in synergy, unlike when *>Le Leeff eff

where
the instability is purely hydrodynamic. Since w ~ k when k 0, the distinction between the
thermo-diffusive and hydrodynamic instabilities may be associated with the existence, or lack
of an inflection point in the functional dependence of the growth rate ω on the wavenumber k,
a criterion verified in the simulations reported by Altantzis et al (2012).

It should be emphasized that the often expressed statement that the hydrodynamic and
thermo-diffusive instabilities result in rich/lean hydrogen–air, or lean/rich hydrocarbon–air
mixtures is a gross characterization of this observation. According to the theory, the transition
occurs at *=Le Leeff eff

which, for hydrogen–air flames corresponds to f » 0.75. And, indeed,
based on the inflection-point criterion, further substantiated by the nonlinear flame devel-
opment, numerical simulations of hydrogen–air flames (Frouzakis et al 2015) predicts that the
transition from hydrodynamic to thermo-diffusive instability occurs at a value of equivalence
ratio slightly larger than f=0.75.

Figure 5. The growth rate ω as a function of the wavenumber k, illustrating the
distinction between purely hydrodynamic ( *>Le Leeff eff

) and thermo-diffusive

( *<Le Leeff eff
) instabilities. The dashed part of the curve for *<Le Leeff eff

has been

extended in anticipation of short wave stabilization obtained at higher orders.
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3.2. Relation to the Markstein model

It was noted by Creta and Matalon (2011) that, when reconsidering the Markstein model
discussed in section 2.2 but with the correct expression (16) for the flame speed that includes
the effects of both curvature and strain, the dispersion relation (14) is replaced by

 

 

s s w s s w
s s s s

+ + - + +
- - - - - =

[( ) ( ) ] ( )
[( ) ( ) ] ( )

k k kS

k k k S

1 1 2 1

1 2 1 0. 20
L

L

2

2 2

As before, the planar flame is unstable when  < 0. For  > 0, however, only disturbances
with wavelength l l> c are amplified, with the critical wavenumber given by

l p s s= - -( ) ( )2 3 1 1c , compared to ps s -( )4 1 in the absence of strain. Hence
the inclusion of straining effects reduces the interval of unstable modes, adding a stabilizing
effect on the short wave disturbances. When s - 1 0, the effects of straining disappear
and (20) reduces to (14) implying that straining effects are a direct consequence of thermal
expansion.

Implicit in the Markstein model is the assumption that  k 1. This suggests expanding
the growth rate resulting from the dispersion relation (20) accordingly. The result

w w
s w s w

s s w
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+ +
+ +
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1
L L

2
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DL DL
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is similar in form to the rigorous asymptotic expression (19). Since variations in Markstein
length are primarily associated with variations in the effective Lewis number, the latter may
be also expressed in the form
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where c is a function of σ and Pr only. For constant transport properties (l =˜ 1), for
example, it depends only on σ since B3=0 (see appendix), and is given
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The two expressions are identical except for c, which identifies the Markstein length above
which diffusion effects have stabilizing influences on the flame dynamics. For the Markstein
model, the critical value is  = 0c . This suggests that the  d( ) corrections to the RH
relations, neglected in the Markstein model, affect only the determination of c, but the
qualitative prediction of this model remains similar to the predictions of the asymptotic
results.

The focus in the discussion below is on nonlinear studies associated with the hydro-
dynamic instability, namely when *>Le Leeff eff

or, equivalently  > 0.

4. Nonlinear flame development

Insight into the understanding of nonlinear development of hydrodynamically unstable flames
has been achieved by examining the problem in the weak thermal expansion limit. This limit
is discussed first, followed by numerical results carried out within the context of the
hydrodynamic theory, for realistic values of gas expansion.
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4.1. Weakly nonlinear analysis; σ�1{1

We consider first the weak thermal expansion limit  sº - 1 1, in which case the pro-
blem simplifies to a single equation that describes the evolution of the flame front. The
equation, known as the Michelson–Sivashinsky (MS) equation, was derived by Sivashinsky
(1977b) and the first numerical integration was provided by Michelson and Sivashinsky
(1977). Since in this limit the DL growth rate w s~ - 1DL , the evolution occurs on the slow
time t = t , with the perturbed front (in a coordinate system attached to the flame) expressed
as  j t= ( )x y, . If perturbations in the velocity and pressure fields are ( )2 , the flame
speed relation (16) simplifies to

*
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where * t˜ ( )u y, is the perturbation of the axial velocity component, evaluated at the flame
front. The first two terms are the simplification of the propagation speed Vf for weakly curved
flames. The third term represents the effect of curvature and is the only contribution of stretch
that remains in the present context; for the weakly induced flow the effects of strain are ( )o 2 .
The last term represents the induced velocity due to gas expansion. Correct to ( )2 the
density is practically constant, and Euler’s equations with the associated RH conditions (5),
(6) simplify to
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The solution, using Fourier transform in y, yields
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and, when substituted in (21), a single nonlinear integro-differential equation results for the
determination of j.

Let L, the transverse domain of integration, be used as a unit of length, SL as a unit of
speed and L SL as a unit of time, and let the density be scaled with respect to its value in the
unburned gas, the MS equation in dimensionless form,

j
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2

depends on a single parameter a º L corresponding to a ‘scaled’Markstein number. The
operator  j{ } is a linear, non-local operator which in Fourier space constitutes a
multiplication by ∣ ∣k ; i.e.,  ={ ( )} ∣ ∣ ( )kx k kxcos cos . It may also be expressed as the Hilbert
transform (denoted by ) of the derivative of j, namely  j j= -{ } { }y y; ;y .

The stability of a planar flame, j=0, is readily obtained by examining the linearized
form of equation (22). Seeking solutions wt~ +( )kyexp i , the growth rate w a= -( )k k1

2

implying stability for a p> -( )4 1, or in domains p s< -( )L 4 1 , in accord with the
results of section 2.2.

The nonlinear equation (22) was recognized by Thual et al (1985) to correspond to a
class of equations for which an infinite number of exact solutions, known as ‘pole solutions’,
exist. The pole solutions consist of a superposition of a finite number of poles. A pole in the
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complex plane corresponds in the physical plane to a sharp indentation of the flame surface,
pointing towards the burned gas and rounded at its tip, to which we refer loosely as a ‘cusp’.
The real part of the pole corresponds to the location of the cusp along the flame front and the
imaginary part of the pole is a measure of the depth of the cusp, or the amplitude of the flame
surface. A distinct set of pole solutions is the ‘coalescent pole solutions’ for which the poles
(or cusps) align themselves vertically and coalesce into a single location. Of particular interest
is the family of coalescent pole solutions for which the poles are time-independent. On a finite
domain,  y0 1, with periodic boundary conditions the solution takes the form

j t= - + F( ) ( )U y 23

and corresponds to a steadily propagating pattern; namely a pattern that propagates at a
constant speed U without change in shape. The propagation speed is directly obtained from
(22) by taking the spatial average, namely

ò=
F⎛
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y
y

1

2

d

d
d ,

0

1 2

so that the fractional increase in propagation speed is equal to the fractional increase in
surface area of the flame front.

The members of the family of steady coalescent pole solutions are distinguished by the
number N of pairs of complex conjugate poles that contribute to the solution, such that an N-
pole solution FN , with = ¼N 0, 1, is a solution made up of N pairs of poles. The zero-pole
solution corresponds to the trivial solution F = 0, or the planar flame front. The N-pole
solution, with N 1, takes the form

åa pF = - - -
=

( ) [ ( ) ( )]y x y y2 ln cosh cos 2 ,N
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N

n c
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2

where yc is the location of the cusp (the common real part of the poles) and the values xn (the
imaginary parts of the poles) for = ¼n N1, , are the solutions of N-nonlinear algebraic
equations
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The propagation speed of the N-pole solution is given

pa pa= -( )U N N2 1 4 .N

The larger the value of N, the larger the peak (or amplitude) of the flame front as shown in
figure 6(a), and the faster the propagation speed.

To discuss the properties of the pole solutions it is convenient to introduce the reciprocal
of the Markstein number, g pa= -( )2 1, which is directly proportional to the transverse size of
the domain of integration. For a given γ, there is an upper bound on the number of poles that a
member in the family of steady coalescent pole solutions can possess, i.e.,  g( )N N0 , where
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and Int(z) denotes the greatest integer less than or equal to the real number z. The trivial
solution Φ=0, or the zero-pole solution, exists for all g > 0. At γ=2 the one-pole solution
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emerges as a new bifurcating solution; at γ=6 the two-pole solution branches out from the
1-pole solution and, in general, the N-pole solution bifurcates from the (N−1)-pole solution
at γ=2(2N−1).

Of greatest importance is the stability of the pole solutions established by Vaynblat and
Matalon (2000a, 2000b), which show that for any value of γ there exists one and only one
stable coalescent pole solution, and that the stable solution corresponds to the one with the
maximum number of poles N0(γ ). Accordingly, the planar flame front, or zero-pole solution,
is the stable solution for g< <0 2; the one-pole solution is the stable solution for

g< <2 6; the two-pole solution is the stable solution for g< <6 10; etc, so that, in
general, the (N− 1)-pole solution loses stability in favor of the N-pole solution. The ampl-
itude of the flame profiles for increasing values of γ is shown in figure 6(b), where the stable/
unstable solutions are shown by solid/dashed curves respectively. Hence, as γ increases (or α
decreases), the stable equilibrium states of the MS equation undergo a cascade of supercritical
bifurcations corresponding to structures of sharper and sharper cusps that propagate at a speed
that increases with increasing γ and asymptotes to a constant value =¥U 1 8. As g  ¥ (or
a  0), the shape of the solution tends to a genuine cusp, but of finite amplitude, that
propagates at a speed ¥U .

The aforementioned results imply that when starting with arbitrary initial conditions, the
solution of the MS equation for given α converges to the corresponding stable pole solution.
Numerical simulations (Michelson and Sivashinsky 1977, Gutman and Sivashinsky 1990,
Rastigejev and Matalon 2006) show that the short wavelength corrugations introduced
through the initial conditions merge, forming bigger cells as time progresses that eventually
coalesce into a single-peak structure filling up the entire interval. We note parenthetically that
the solution for small values of α is quite sensitive to noise and reaching the stable solution
numerically requires a fine spatial resolution along with a very small time-step (Rahibe
et al 1996, Rastigejev and Matalon 2006).

The generalization of the MS equation to a two-dimensional flame surface j t( )y z, , is
straightforward. The MS equation (in dimensionless form) now reads

Figure 6. The structure of the flame front and its amplitude (solid/dashed curves
correspond to stable/unstable solutions) as a function of the inverse Markstein
number pa -( )2 1.
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On a domain,  y z0 , 1, with periodic boundary conditions, this equation admits solutions
of the formj t= - + F( )U y z, , obtained as the superposition of two uniformly propagating
pole solutions tF ( )y,1 and tF ( )z,2 of the form (23), namely

j t t= - + + F + F
F
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x z U U y z, , . 25
U y z

1 2 1 2

,

The corresponding flame has a tent-shape conformation with ridges or creases formed along
its surface, as shown in figure 7.

In summary, the planar flame propagating into a quiescent mixture is stable in narrow
domains L×L with p s< -( )L 4 1 . When the planar flame is unstable, the perturbed
flame evolves into a steadily propagating structure which, for weak thermal expansion, is
given by

s s= - + - + - F[ ( ) ] ( ) ( )x U S t L y z1 1 1 , .L
2

The flame surface consists of a single-peak structure with a sharp crest pointing towards the
burned gas region and propagates at a speed larger than the laminar flame speed by an
increment s -( ) U1 2 in units of SL

.

4.2. Nonlinear analysis; σ�1 ¼ ð1Þ

Motivated by the results for weak thermal expansion, a full nonlinear study for finite values of
the thermal expansion parameter σ was carried out within the context of the hydrodynamic
theory. The flow field is described by the Navier–Stokes equations (15), albeit with a suffi-
ciently small viscosity, but with the  d( ) corrections to the RH relations neglected for
numerical simplicity (as justified at the end of section 3.1). The general flame speed relation
(16) that includes both, curvature and hydrodynamic strain was retained. The numerical
implementation of the free-boundary problem is based on a hybrid NS/front-tracking scheme
(Rastigejev and Matalon 2006, Creta and Matalon 2011), which has been tested to reproduce

Figure 7. Analytical pole solution of the two-dimensional MS equation, computed
for a = 0.01.
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with sufficient numerical precision the bifurcation characteristics of a planar flame and the
small s - 1 exact pole solutions of the weakly nonlinear MS equation.

The governing equations were integrated in a sufficiently long (in axial direction) domain
of transverse dimension L (in two-dimensions), or of dimension L×L (in three-dimensions),
starting with a slightly perturbed planar flame propagating in a quiescent mixture. Periodic
boundary conditions were imposed in all spanwise directions. In dimensionless form, using
L S L S, ,L L as units of length, speed and time, the problem depends on the Prandtl number
(which was kept fixed), the thermal expansion coefficient σ (selected in the range 4–6) and the
Markstein number  º L. The latter is treated as the bifurcation parameter, since
according to linear theory the planar flame is stable for > c, where

 s s= - -
p

[( ) ( )] ( )1 3 1 , 26c
1

2

namely in sufficiently narrow domains, for mixtures with  > 0; see the discussion following
the dispersion relation (20).

The long time behavior of the flame front was verified to converge towards a steadily
propagating structure of the form

= - + + F( ) ( )x U S t L y z1 , ,L

where U, as before, is the increment in speed above the speed SL of the planar flame. For
 > c the planar flame is stable and, indeed, U 0 and F ( )y z, 0, as  ¥t . For
 < c, the flame shape Φ(y, z) becomes independent of time, as  ¥t , with U tending
towards a positive constant value. Figure 8 shows representative flame structures acquired in

Figure 8. Steady propagating flames in quiescent mixtures, for < c. The figure
on the left (Reprinted from Fogla et al 2017, Copyright (2017), with permission from
Elsevier.) also shows the magnitude of the induced flow through the contrast in colors
and the flow pattern through selected streamlines.
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two- and three-dimensional flows. The flame front acquires a cusp-like conformation pointing
towards the burned gas region and propagates (downwards) towards the fresh mixture at a
constant speed. Compared to the pole solutions the crests are more rounded, but become
significantly sharper for smaller values of . Figure 8(a) also illustrates the induced flow
resulting from gas expansion of a cusp-like flame. The color shades correspond to the
magnitude of the axial velocity component and the solid lines to selective streamlines. The
graph shows the deflection of streamlines across the flame, resulting from the large jump in
the gas velocity component normal to the flame front, and the vortical flow induced in the
unburned gas (otherwise at rest), which is responsible for sustaining the sharp cusp by
advecting towards the crest the mixture from the shallow troughs. The propagation speed of
the two-dimensional surface in a 3D flow field is nearly twice the speed of the one-
dimensional curve representing the flame surface in a 2D flow field.

The effect of systematically reducing, or increasing the reciprocal of the Markstein
numberc, is illustrated in the bifurcation diagram of figure 9, following Patyal and Matalon
(2018). The graph corresponds to σ=5, for which  »- 21.98c

1 , and displays the
dependence of the increment in propagation speed U, and associated increase in surface area,
of the stable flames on-1 in two- and three-dimensional flows. For sub-critical conditions
the stable flames are planar and propagate at the laminar flame speed, such that U=0. For
super-criticial conditions, the stable flames are cusp-like conformations that become taller
with sharper crests when increasing -1. The increase in propagation speed is directly
related to the larger surface area that the flame develops when-1 increases.

5. Turbulent flames

It has been suggested for some time, based on experimental studies, that the hydrodynamic, or
DL instability has an effect on the propagation speed of turbulent flames (Paul and Bray 1996,
Kobayashi et al 1998, Al-Shahrany et al 2006). This effect, however, has been invariably
neglected in theoretical studies; and, although it is implicitly included in numerical simula-
tions, its role in such studies has not been clearly singled out. Since the Markstein number,
which has clearly delineated the role of the instability under laminar conditions, is a parameter
in the hydrodynamic theory, the model is well-suited to depict the influence of the DL

Figure 9. Bifurcation diagram showing the dependence of the increment of the flame
propagation speed U (solid lines) and flame surface area (symbols) on the reciprocal of
the Markstein number-1 for flames in two- and three-dimensional flows; calculated
for σ=5.
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instability on turbulent flames. The objective is therefore to examine the propagation of a
premixed flame into a homogeneous, isotropic, turbulent flow of zero mean—the equivalent
of a quiescent mixture in the laminar setting, in a sufficiently long domain of transverse
dimension L. The pre-generated turbulent flow is characterized by a turbulence intensity
¢v Sc L, measured by the root mean square of the velocity fluctuations in units of the laminar
flame speed, and an integral scale that represents the average eddy size which has been kept
fixed; details can be found in Creta and Matalon (2011). Periodic boundary conditions are
imposed in the spanwise direction, so that the flame segment considered may be viewed as a
basic building block of a larger freely-propagating turbulent flame, devoid of the effects of a
particular experimental configuration. The mean propagation speed of the fluctuating flame is
then appropriately defined as the turbulent flame speed.

Although the notion of stability/instability for turbulent conditions cannot be rigorously
defined as for laminar flows, the conformation of the flame brush and the turbulent propa-
gation speed are found to change drastically when -1 increases above a critical value,
approximately equal to the bifurcation parameter-

c
1 determined from linear stability the-

ory. In figure 10 we show the turbulent flame brush for increasing values of the turbulence
intensity for two distinct values of the Markstein number. The flame brush consists of a
superposition of instantaneous flame fronts over a specified time interval. At subcritical
conditions, the flame brush remains on the average planar; i.e., it is equally concave as it is
convex, or the probability density function of the curvature is symmetrically distributed
around a zero mean. The turbulent flame speed increases with turbulent intensity due to the
larger surface area of the fluctuating flame but tends to one, when ¢ v S 0c L . It is evident
that under such conditions the turbulent propagation is not affected by the DL instability. At
supercritical conditions, the flames attain a distinct cusp-like conformation, reminiscent of the
cusp-like structures observed under laminar conditions, Due to the low turbulence intensities
the flow seems to only translate the flame, since it is not sufficiently energetic to significantly
deform it. The flame brush has therefore an overall robust appearance, hardly affected by the
turbulence. The turbulent flame speed is noticeably larger due to the larger flame surface area

Figure 10. Turbulent flames for sub-critical and super-critical conditions; the figure
shows the extent of the flame brush for various turbulence intensities ¢v S .c L Reprinted
from Fogla et al (2015), Copyright (2015), with permission from Elsevier.
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induced by the DL instability, and increases with increasing turbulence intensity. However, in
this case it tends to a constant larger than one when ¢ v S 0c L , corresponding to the pro-
pagation speed of the cusp-like flame shown in figure 9.

When increasing the turbulence intensity to higher levels, the influence of the DL
instability on the super-critical mode of propagation progressively decreases to a point that it
has no longer a visible effect on the turbulent flames. The increment in turbulent flame speed
between the two cases diminishes when the turbulence level increases indicating that the DL
mechanism is progressively weakened and overshadowed by the turbulence. These obser-
vations have been further substantiated by detailed examination of various statistical flame
characteristics. Recent experimental studies (Al-Shahrany et al 2006, Bradley et al 2013)
have also pointed out the limited range of dominance of the DL instability in a turbulent
setting.

6. Conclusions

Treating a flame as a surface of density discontinuity, Darrieus and Landau concluded in their
seminal work that due to gas expansion planar flames are unconditionally unstable. Effects
due to the finite thickness of the flame, introduced phenomenologically by Markstein and
more systematically using asymptotic methods, led to an understanding of the effects of the
diffusion processes occurring inside the flame zone on its stability. Specifically, it was
established that diffusion influences act to stabilize the short wavelength disturbances in
mixtures that are deficient in the less mobile reactant, or mixtures with positive Markstein
length. Long wavelength disturbances are amplified by the DL instability, unless they are
suppressed due to the finite transverse size of the domain within which the flame is
propagating.

The implication from the Darrieus and Landau publications is that the instability of a
flame front leads in itself to turbulence. Darrieus has further stated in a letter accompanying
the submission of his paper to the Sixth International Congress of Applied Mechanics that,
although the prediction of turbulence is essential and confirms the expectation of an ideal
fluid, it is paradoxical that the introduction of viscosity in the calculation does not assure
stability. The evidence from a weakly nonlinear theory, and from numerical simulations of a
fully-nonlinear model is that the instability does not lead directly to turbulent flames; instead
cusp-like conformations with elongated intrusions pointing towards the burned gas are
formed. These structures, which become taller with sharper peaks when the Markstein
number (the ratio of the Markstein length to the domain size) decreases, propagate much
faster than the laminar flame speed and may reach speeds 20%–50% faster than the speed of a
planar flame. The DL instability has also an influence on the topology and propagation speed
of turbulent flames. For super-critical conditions, the flame brush is much thicker than its
nearly-planar appearance in the absence of the instability, consists of fluctuating highly-
corrugated cusp-like structures that are the hallmark of the instability, and propagates at a
speed that is enhanced by the turbulence and further augmented by the instability. The DL
influence on turbulent flames, however, appears limited to low-to-moderate turbulence
intensities. Finally, we note that the nonlinear development of premixed flames under the
combined effects of hydrodynamic and thermo-diffusive instabilities has not been extensively
studied and remains poorly understood.
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Appendix

We present below the coefficients appearing in the dispersion relation (19) for two special
cases. For constant transport properties, or l º˜( )x 1, we have
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which are identical to the results presented in Matalon and Matkowsky (1982). For
comparison note that q, ò and le in the referenced paper are equivalent to σ−1, s b-( )1
and b s- -( ) ( )Le 1 1 , respectively.

For variable transport, with l ~˜( )T T , we have
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which appeared in Matalon et al (2003) with a minor typo in B2 (the extra factor s - 1 in the
numerator must be removed).
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