4 Classical aerofoil theory

4.1. Introduction

Let us begin by noting some of the key events in the early days of
aerodynamics.

1894 F. W. Lanchester presents a paper, ‘The soaring of
birds and the possibilities of mechanical flight’, to a meeting of
the Birmingham Natural History and Philosophical Society. It
contains the elements of the circulation theory of lift, but not in
conventional terms.

1897 Lanchester submits a written version of his paper for
publication by the Physical Society. It is rejected.

1901 The Wright brothers encounter failure with their first
attempts at glider design. One of them is heard to mutter that
‘nobody will fly for a thousand years’.

1902 Kautta publishes a short paper, ‘Lifting forces in flowing
fluids’. It contains the solution for 2-D irrotational flow past a
circular arc, with circulation round the surface and a finite
velocity at the trailing edge (Exercise 4.8). The connection
between circulation and lift is recognized, though not in the form
of the general theorem (1.35).

1903 17 December: The Wright brothers achieve their first
powered flight. It lasts for 12 seconds, although they improve on
this later the same day.

1904 Prandtl presents his paper on boundary layers to the
Third International Congress of Mathematicians at Heidelberg
(see §8.1).

1906 Joukowski publishes the lift theorem (1.35):

If an irrotational two-dimensional fluid current, having at infinity the
velocity V., surrounds any closed contour on which the circulation of
velocity is I', the force of the aerodynamic pressure acts on this contour
in a direction perpendicular to the velocity and has the value

L' =p.V.I.
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The direction of this force is found by causing to rotate through a right
angle the vector V., around its origin, in an inverse direction to that of
the circulation.

1907 Lanchester publishes his Aerodynamics, although some
of the most important results in the book date from as early as
1892. He was certainly years ahead of everyone else in
recognizing the inevitability, and the importance, of trailing
vortices from the tip of a wing of finite length (§1.7).

A list like this is a concise way of presenting some of the facts,
but it can be misleading, for the events within it were, at the
time, almost wholly unconnected. Thus Lanchester, Kutta, and
Joukowski came to their various conclusions about aerodynamics
quite independently, and Wilbur Wright, had he known, would
probably not have had much time for any of them. He and his
brother relied greatly on their own experimental work on
wind-tunnel flows past aerofoils of various shapes, but as late as
1909 he wrote to Lanchester:

... I note such differences of information, theory, and even ideals, as to
make it quite out of the question to reach common ground..., so I
think it will save me much time if I follow my usual plan and let the
truth make itself apparent in actual practice.

Our first aim in this chapter is to establish that for uniform
irrotational flow past an aerofoil with a sharp trailing edge there
is just one value of the circulation I' for which the velocity is
finite everywhere (Kutta—Joukowski condition). In particular, we
seek to show that in the case of a thin symmetrical aerofoil of
length L making an angle of attack a with the oncoming stream
the value I' is given by

I'=—aUL sin «. 4.1

We set about doing this by first solving the comparatively easy
problem of irrotational flow past a circular cylinder, and then
using the method of conformal mapping to infer the irrotational
flow past 2-D objects of more wing-like cross-section.

We must add one important warning before we start. The
present chapter is full of irrotational flows which involve slip at
rigid boundaries. While any particular flow may well serve a
quite different purpose, it will represent correctly the motion of a
viscous fluid at high Reynolds number only if the slip velocity can
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be adjusted to zero successfully, by a viscous boundary layer,
without separation. Rough guidelines on whether or not separa-
tion will occur have already been presented in §2.1.

4.2. Velocity potential and stream function

The velocity potential

The velocity potential ¢ is something that exists only if
V A u=0; it is defined at any point P by

¢=[:u-dx 4.2)

where O is some arbitrary fixed point. In a simply connected
fluid region ¢ is independent of the path between O and P, and
thus a single-valued function of position (Exercise 4.1.) Partial
differentiation of eqn (4.2) gives

u=Vo, (4.3)

and the vector identity (A.2) at once confirms that this flow is
irrotational, as desired.

This representation of an irrotational flow, eqn (4.3), is valid
also in multiply connected fluid regions, but the integral in eqn
(4.2) may then depend on the path from O to P, in which case ¢
will be a multivalued function of position. In this case, it is worth
noting at once that the circulation round any closed curve C in
the flow is given by

I‘=£u-dx=£v¢-dx=[¢]c, (4.4)

where the last expression denotes the change (if any) in ¢ after
one circuit round C (see eqn (A.12)).

Let us take some examples. The uniform flow u = (U, 0, 0) has
velocity potential ¢ = Ux (plus an insignificant arbitrary con-
stant, which has no effect on the flow (4.3)). The stagnation point
flow of Exercise 1.7:

u= ax, V= —ay, w=0
is irrotational, and writing
o¢/dx = ax, o¢/3y = —ay, o¢/3z=0
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we may integrate to obtain

¢ =1a(x* - y?).
In both these cases ¢ is a single-valued function of position;
there is therefore no circulation round any closed circuit lying in
the flow domain.
Now take the line vortex flow (1.21):

k
u=-—=~ey,
r

which is an irrotational flow except at the origin, where it is not
defined. To meet this difficulty, consider the flow domain to be
r=a, which is not simply connected, for there are now some
closed curves (i.e. those which enclose r =a) which cannot be
shrunk to a point without leaving the flow domain. To find the
velocity potential we integrate

3%_, 196_k  3¢_
ar rog r’ 3z
and thus obtain

0,

¢ = k6,

which is a multivalued function of position. As we go round any
circuit not enclosing r =a it is clear that 8, and hence ¢, will
return, at the end of that circuit, to its original value. There is
therefore no circulation round such a circuit. But as we go round
any closed curve which winds once round the cylinder r =a, 6
increases by 2w, and the circulation round such a circuit will
therefore be I'=2xk. Thus all circuits which wind once round
the cylinder have the same circulation (cf. Exercise 1.6).

The stream function

This is a useful device for representing flows which are
incompressible and two-dimensional. The essential idea is to
write

oY oY
=—, =—-—, 4.5
. ay ox (4.5)
thus automatically satisfying the 2-D incompressibility condition
Ju OJv
“+ o (4.6)

_—t—=
ox OJy
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That such a function y(x, y, ) may be found can be shown by a
similar argument to that used above (Exercise 4.1).

An important property of y follows immediately from eqn
(4.5), for
dy . 3y dydy dydy

—+
ox ”ay dy ox Ox Oy

(u-VYy=u =0, 4.7)
so Y is constant along a streamline. This gives an effective way of
finding the streamlines for a 2-D incompressible flow; if we can
just find y(x, y, t) the equations for the streamlines can be
written down immediately.

A useful way of viewing the representation (4.5) is as

u=V A (yk), (4.8)

where k is the unit vector in the z-direction. It provides, in
particular, a way of obtaining the plane polar counterparts to eqn
(4.5). Regarding y instead as a function of r, 8, and ¢, we obtain
at once

_1ov __9v

b 4 =¥ 4.9
r 30 "o T Ty (4.9)

u,

and such a flow automatically satisfies the 2-D incompressibility
condition in plane polar coordinates:

=2 (ru) + -2 g .
r or (ru,) r 90 (4.10)

(see eqn (A.35)).

4.3. The complex potential

Suppose now that we have a flow which is (i) two-dimensional,
(ii) incompressible, and (iii) irrotational. Then the velocity field
can be represented by both eqns (4.3) and (4.5), so that

o o o 5}
W0 v % v (4.11)
ox Jy dy ox

The second of the equations in each pair constitute the well
known Cauchy—Riemann equations of complex variable theory,
and provided that the partial derivatives in eqn (4.11) are
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continuous it follows that
w=¢+iy (4.12)

is an analytic function of the complex variable z=x +1y
(Priestley 1985, pp. 16, 184). We call w(z) the complex potential.

One of the most important properties of a 2-D incompressible,
irrotational flow is that its velocity potential and stream function
both satisfy Laplace’s equation, so

82¢ 82¢
T 4+22=0 4.
axZ ayZ ( 13)
and
Fy Sy
L+ 2=0, .
axZ ayZ (4 14)

as may be seen directly from eqn (4.11).
The velocity components u and v are directly related to
dw/dz, which is most conveniently calculated as follows:

dw Jd¢ .Jvy .
=—+ =u —iv. 4.
Qo g U (4.15)
(Note the negative sign.) The flow speed at any point is therefore
dw
=W +vY)i=|—|. 4.16
q=@ +v)i=| " (4.16)
We now consider a number of examples.
Uniform flow at an angle o to the x-axis
Here
u=U cos «a, v="Usin a,
so dw/dz = Ue™'*, and therefore
w=Uze™'* (4.17)

Line vortex

We may write this flow as

=—e, 4.18
“ .ﬂ'ree ( )
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where I is the circulation round any simple circuit enclosing the
vortex, and we already know from the previous section that

¢ =T0/2n. (4.19)

Using eqn (4.9) we may also write

1oy_ _ow_ T
rog ’ or 2mr’
whence
Y= —Llog r.
2
Thus

r i
¢+iw=ﬂ(6—ilogr)=—;—n(logr+i9),

and the complex potential for a line vortex at the origin is
therefore

i 1 (4.20)

w=—— : :

21082
By the same token, the complex potential for a line vortex at
Z=218

il
w=-— log(z — z). (4.21)

2-D irrotational flow near a stagnation point

If the complex potential w(z) is analytic in some region it will
possess a Taylor series expansion in the neighbourhood of any
point z, in that region (Priestley 1985, p. 69), i.e.

w(z) = w(zo) + (z — zo)W'(20) + 3(z — z0)*W"(z0) + . - . .

Now, the first term is an inconsequential constant which makes
no difference to dw/dz, and if z = z, is a stagnation point for the
flow, then w'(z,) =0, by virtue of eqn (4.15). Unless w"(z,) also
happens to be zero, it follows that the flow in the immediate
neighbourhood of the stagnation point will be determined by the
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Fig. 4.1. 2-D irrotational flow near a stagnation point.

quadratic term in the above expression. Now, w"(z) will
typically be complex, ae', say, but by first shifting our
coordinates:

2~ 20= 2,

so that the stagnation point is at z; =0, and then rotating them
so that

ip2 _
8 =2,

Z;€
we may write
w = constant + Jaz3+. . ..

Dropping the inconsequential constant, we see that relative to
suitably located and orientated coordinates the complex potential
in the neighbourhood of a stagnation point is

w=3az’ (4.22)
where « is real, the corresponding flow being
u= ax, V= —ay (4.23)
(cf. Exercise 1.7). The stream function is
Y = axy, (4.24)

so the streamlines are rectangular hyperbolae, as in Fig. 4.1.
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44. The method of images

Suppose there is a line vortex of strength I' at a distance d from a
rigid plane wall x =0, as in Fig. 4.2(a). A clever trick for
obtaining the flow is to imagine that the region x <0 is also filled
with fluid and that there is an equal and opposite vortex, i.e. of
strength —I', at the mirror-image point, as in Fig. 4.2(b). The
reason for doing this is that the x-components of velocity of the
two vortices obviously cancel on x =0, so there is no normal
velocity component there. Thus the complex potential
il il
w o log(z —d)+ o log(z + d) (4.25)

serves not only for the flow problem in Fig. 4.2(b) but, in x =0,
for the flow in the presence of a wall in Fig. 4.2(a). This is a
simple example of the method of images, which is all about
getting flows that satisfy boundary conditions.

Let us examine the flow in Fig. 4.2 a little more carefully. The
stream function vy is obtained by writing

i’ z—d
rip =L og(279), |
¢ty 27 8 z+d (4.26)
and the streamlines are therefore
—d
§+ 7= constant. (4.27)
(a) (b)

Fig. 4.2. Flows due to line vortices.
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These are circles, the so-called coaxal circles of elementary
geometry. Each circle cuts the circle |z| = d orthogonally, and if
the centre of any circle is distant ¢, and ¢, from the two vortices,
then c,c, = a*, where a is its radius.

It is a simple matter, then, to write down the flow inside a
circular cylinder |z| = a due to a line vortex at z = ¢ <a: it will be
as if the cylinder were not present and there were, instead, an
equal and opposite line vortex at z = a?/c. The complex potential
for the flow in Fig. 4.3 is therefore

i i a’
w o log(z —c¢) + o log(z . ) (4.28)

While it is not a matter of major concern at present, eqns (4.25)
and (4.28) are, in fact, only instantaneous complex potentials
corresponding to the momentary positions of the vortices; the
vortices, and the whole streamline patterns associated with them,
in fact move in a manner to be described in §5.6.

Milne-Thomson’s circle theorem

Suppose we have a flow with complex potential w = f(z), where
all the singularities of f(z) lie in |z| >a. Then

w=f(z) +f(a’/2), (4.29)

where an overbar denotes complex conjugate, is the complex
potential of a flow with (i) the same singularities as f(z) in |z| >a
and (ii) |z| = a as a streamline.

Fig. 4.3. Flow due to a line vortex inside a circular cylinder.
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The last property makes the circle theorem a sort of automated
method of images for circular boundaries. To prove it, note first
that as all the singularities of f(z) are in |z| >a, all those of
f(a*/z) are in |a@*/z|>a, i.e. in |z|<a. Second, on the circle
itself we have zZ = a?, so

w=Ff(z)+f(z) on |z| =a. (4.30)

Thus w is real on |z|=a, so =0 there, so |z|=a is a
streamline.

An elementary application of the circle theorem follows in the
next section.

4.5. Irrotational flow past a circular cylinder

Consider irrotational flow, uniform with speed U at infinity, past
a fixed circular cylinder |z| =a. If the stream is parallel to the
x-axis the complex potential for the undisturbed flow is
f(z) = Uz, which has a singularity only at infinity. Applying the
circle theorem we find

f@?/z2)=Ua%z, f(a*/z)= Ua?*/z,

SO
2

w(z)= U(z + a?) (4.31)

is the complex potential of an irrotational flow, uniform at
infinity, having |z| = a as a streamline.

It is not the only irrotational flow satisfying these conditions;
we may plainly superimpose a line vortex flow of arbitrary
strength I to give

a®>\ il
w(z)= U(z + . ) > log z (4.32)
as the complex potential of a more general irrotational flow
having no normal velocity at |z| =a, yet being uniform, with
speed U, at infinity.

Nevertheless, consider first the case (4.31) in which there is no

circulation round the cylinder. Putting z = re'® we find that

2

b= U(r + a—)cos 0 (4.33)

r
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and
a2
Y= U<r _ 7)sin 0, (4.34)
whencet
a® a?
u, = U(l —?)cos 0, Ug = —U(l + 7)sin 6. (4.35)

The flow is symmetric fore and aft of the cylinder, and some of
the streamlines are sketched in Fig. 4.4(a).

There is evidently slip on the cylinder—according to this
irrotational flow theory, at any rate—for

ug =—2Usin 0 atr =a. (4.36)

In discussing this it is convenient to use instead u; = —ug, which
is positive, and s = (& — 0)a, which is the distance along the top
of the cylinder from the forward stagnation point. Thus

u,=2Usin>, (4.37)
a
and
du, _ 2—Ucos 2
ds a a

The slip velocity therefore rises from zero at the front stagnation
point to a maximum of 2U at 6 = x/2; it then decreases again to
zero at the rear stagnation point.

When there is circulation I' round the cylinder, as in eqn
(4.32), the velocity components are

a’ a*\ . r
u,=U 1—;5)0056, ug=-U 1+;5)sm6+§;;. (4.38)
Anticipating the applications to aerofoil theory that lie ahead, we
have taken I'" to be negative in Fig. 4.4, so that the superimposed
circulatory flow is clockwise. The character of the streamline

T We do not, of course, need the full apparatus of complex variable theory and
circle theorem to establish this particular result; there is a much simpler way
(Exercise 4.4).
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(c) B=2 (d) B>2

Fig. 4.4. Irrotational flows past a circular cylinder.

pattern depends crucially on the parameter
B = -I'/2nUa, (4.39)

which is then positive.

One notable feature of the flow that changes with B is the
location of the stagnation points. When B <2 there are two of
them, both located on the cylinder r =a, at sin § = —3B. They
therefore move round as B is increased and coalesce when B =2
at 6 =3m/2. When B > 2 there is only one stagnation point, and
it lies off the cylinder at

r B [B? 3 3
—_—= g —— = — .40
a 2 (4 1)’ 0 2 (4.40)

This stagnation point thus moves further and further away from
the cylinder as B increases, and the region of closed streamlines
adjacent to the cylinder becomes steadily larger.

The net force on the cylinder may be calculated from the
pressure distribution on r =a. As the cylinder is a streamline,
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and the motion is steady, Bernoulli’s theorem gives

p +3ipu*=constant onr=a,
whence

P _ constant — 2U%sin?0 + —sin @  onr=a.

p ma
This pressure distribution is symmetric fore and aft of the
cylinder (i.e. unchanged by the transformation 8=z — 0), so
any net force must be perpendicular to the oncoming stream.
The force on a small element a d@ of the cylinder is pa d@ (per
unit length in the z-direction). The y-component of this force is
—pa sin 6 d6, and there is therefore a net force on the cylinder
of

2n
pf <2U2 sin’6 — (—]—I:sin G)a sin 0 d@ = —pUI' (4.41)
0 ma

in the y-direction, in keeping with the far more general
Kutta—Joukowski Lift Theorem of §4.11.

There is positive ‘lift’, then, if I' <0, and it is easy to see why
this should be so, as we have already observed in §1.6. On top of
the cylinder in Fig. 4.4 the circulatory flow reinforces the
oncoming stream (if I'<0), leading to high speeds and low
pressures. Beneath the cylinder the circulatory flow opposes the
oncoming stream, leading to low speeds—as evinced by the
stagnation points—and high pressures.

Before proceeding further we should emphasize again that we
are currently using the irrotational flows in Fig. 4.4 purely as a
mathematical device for the calculation of irrotational flows past
a thin aerofoil. We are deferring, in particular, all question of
whether the flows of Fig. 4.4 are themselves observable for a real
(i.e. viscous) fluid, whether at high Reynolds number or
otherwise (see §85.7 and 8.6, cf. §7.7).

For what follows it is convenient, in fact, to take the oncoming
stream at an angle « to the x-axis. The complex potential of the
undisturbed flow is Uze™'*, by virtue of eqn (4.17). Applying the
circle theorem and superposing a line vortex flow of strength I’
then gives

2 :
w(z) = U(ze‘i"‘ + 4 ei") _ log z (4.42)
z 2r
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as our starting point, and this corresponds to the flows of Fig. 4.4
turned anticlockwise through an angle a.

4.6. Conformal mapping

Let w(z) be the complex potential of some 2-D irrotational flow
in the z-plane, with w = ¢ +iy. Suppose now that we choose

Z=f(z) (4.43)
as some analytic function of z, with an inverse
z2=F(2Z) (4.44)
which is an analytic function of Z. Then
W(Z)=w{F(Z)} (4.45)
is an analytic function of Z. Now write
Z=X+1iY (4.46)
and split W(Z) into its real and imaginary parts:
W(Z)=®(X, Y)+i¥(X, Y). (4.47)

As W is an analytic function of Z, ® and W satisfy the
Cauchy—-Riemann equations, and it follows that the two
functions

u (X, Y)=0®/6X=0W/3Y, v.(X,Y)=03®/0Y=—03¥/3X,
(4.48)

represent the velocity components of an irrotational, incompres-
sible flow in the Z-plane.

Further, because W(Z) and w(z) take the same value at
corresponding points of the two planes (i.e. points related by
eqns (4.43) or (4.44)) it follows that W and vy are the same at
corresponding points. Thus streamlines are mapped into
streamlines. In particular, a fixed rigid boundary in the z-plane,
which is necessarily a streamline, gets mapped into a streamline
in the Z-plane, which could accordingly be viewed as a rigid
boundary for the flow in the Z-plane. The key question, then, is:
Given flow past a circular cylinder in the z-plane (see eqn (4.42)),
can we choose the mapping (4.43) so as to obtain in the Z-plane
uniform flow past a more wing-like shape?
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What happens to the circulation round a closed circuit is
important in this connection. Evidently ® and ¢ are the same at
corresponding points of the two planes, and it follows that if we
go once round some closed circuit of the z-plane and obtain
some consequent change in ¢, we will obtain the same change in
® on going once round the corresponding circuit in the Z-plane.
Appealing to eqn (4.4), then, we see that the circulations round
two such corresponding circuits must be the same.

What happens to the flow at infinity is also of importance.
Plainly

dW dw/dz
dz dz/dz’ (4.49)
SO
U, —iv, = (u —iv)/f'(2). (4.50)

If we want to map uniform flow past some object into the same
uniform flow past another object we must therefore choose f(z)
such that f'(z)—1 as |z| = .

One last general observation concerns a strictly local property
of conformal mapping which gives the method its name. Take
some point z, in the z-plane, with a corresponding point Z, in
the Z-plane, and let f"(z,) be the first non-vanishing derivative
of the function f(z) at z,. Typically, n will be 1, but there will be
occasions in what follows when f'(z,) = 0 but f"(z,) #0, in which
case n=2. Let 6z denote a small element in the z-plane,
originating at z =1z2,, and let 6Z denote the corresponding
element in the Z-plane, originating at Z = Z,. By expanding f(z)
in a Taylor series we find that

(82)"

0Z =
n!

f(z0) + O(6z)"*".

To first order in small quantities, then,
arg(6Z) = n arg(6z) + arg{f " (z)},

and it follows that if 6z; and 6z, denote two small elements in the
z-plane, both originating at z,, then

arg(6Z,) — arg(6Z,) = n[arg(dz,;) — arg(d6z,)].  (4.51)

Thus when two short intersecting elements in the z-plane are
mapped into two short intersecting elements in the Z-plane, the
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angle between them is multiplied by n. Usually, n =1, and such
angles are preserved. The shape of a small figure in the z-plane
(e.g. a small parallelogram) is then preserved by the mapping—
hence the name ‘conformal’.
A very effective transformation for our purposes is the
Joukowski transformation,
2

Z=z+ c; , (4.52)
and we shall exploit the fact that f'(+c) =0 but f"(£c)#0, so
that angles between two short line elements which intersect at
either z =c or z = —c are doubled by the transformation. The
inverse of eqn (4.52) is

=3Z+ (2% - %, (4.53)
although we have to take steps to pin down the meaning of this,
for there are branch points at Z = +2¢. In all that follows we
shall (i) cut the Z-plane along the real axis between Z = —2¢ and
Z =2c, which stops eqn (4.53) from being multivalued, and (ii)
interpret (4Z2—c?)? as meaning that branch of the function
which behaves like 3Z (as opposed to —3Z) as |Z|— %, which
ensures that z ~ Z when |Z] is large.

4.7. Irrotational flow past an elliptical cylinder

Consider the effect of the Joukowski transformation (4.52) on
the circle z = ae'®, where 0 =< ¢ <a. Plainly
2

. c® . c?\ .
X +1Y = a+;)cos€+1 a——)sm@,
a

so the circle is mapped into the ellipse
X? Y?
YR RVl
(a+c?/a)* (a—c®/a)
in the Z-plane (see Fig. 4.5).

Substituting eqn (4.53) into eqn (4.42) we thus obtain
2

W(2) = Ue™BZ + (12* - )] + U5 37 - (422 - )}

(4.54)

- |
— - logliZ + (322~ )] (4.55)
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(a) z—plane (b) Z—plane

Fig. 4.5. Flow past an elliptical cylinder by conformal mapping; no
circulation.

as the complex potential for uniform flow at an angle « past the
ellipse (4.54), with circulation I'. It is an elementary, but messy,
exercise to write Z = X +1Y and then extract the imaginary part
of W(Z), namely W(X, Y). The streamlines are sketched in Fig.
4.5(b) for the case I' =0.

4.8. Irrotational flow past a finite flat plate

If we choose ¢ = a, so that

2

z=z+“? (4.56)

the ellipse (4.54) collapses to a flat plate of length 4a. Consider
the velocity components u, and v, in the Z-plane:

. _dW_dw/dz_(U ey iaa_z_i)/(l_a_z)
T T4z Tazldz \C° © 7 2mz 2):

(4.57)

Using eqn (4.53) we can write them in terms of Z, but the
comparative simplicity of eqn (4.57) can be more helpful for
many purposes.

In particular, the flow speed is in general infinite at the ends of
the plate (Z = £2a), as these points correspond to the points
z = ta. The status of these sharp edges as singular points in the
flow is confirmed by a glance at the streamline pattern for the
case I' =0 in Fig. 4.6(a).
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I

/
(a) T=0 (b) '=—4alasina

Fig. 4.6. Irrotational flow past a finite flat plate.

Notably, however, the singularity at the trailing edge Z =2a
(i.e. z =a) may be removed if the circulation I is chosen so that
the numerator in eqn (4.57) vanishes at the trailing edge. Thus if

Ve — Vel — =0,
2ma
i.e. if
I'=—4xnUa sin «, (4.58)

then by writing z = a + € in both the numerator and denominator
of eqn (4.57) and taking the limit as € — 0 we find

u,—~>Ucosa, v,—0 asZ—2a,

so that the flow leaves the trailing edge smoothly and parallel to
the plate, as in Fig. 4.6(b). The sense of the circulation is
clockwise (for & >0), and this is why we chose to represent the
effects of a clockwise circulation in Fig. 4.4.

Of course, the presence of this circulation still leaves a
singularity in the velocity field at the leading edge in Fig. 4.6(b).

4.9. Flow past a symmetric aerofoil

In view of Figs 4.5 and 4.6 it will come as no surprise that if we
use the mapping (4.56) on a circle in the z-plane which passes
through z = a but which encloses z = —a, we obtain an aerofoil
with a rounded nose but a sharp trailing edge, as in Fig. 4.7(b).
If the centre of the circle is on the real axis in the z-plane, at
z = —A, say, the aerofoil is symmetric and given in terms of the
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A

(a) z—plane (b) Z—plane

Fig. 4.7. Flow past a symmetric Joukowski aerofoil by conformal
mapping.

parameter y by

a2

—A+(a+ A)e'’

Z=—A+(a+A)e"+ (4.59)

Its shape and thickness depend on A.

The complex potential W(Z) corresponding to uniform flow
past this aerofoil at angle of attack a is obtained by first
modifying eqn (4.42) to take account of the new radius and
location of the cylinder in the z-plane:

(a+2)y m]

Z+A) _r log(z + A),

w(z) = U[(z + A)e o+ =

and then substituting z = 1Z + (3Z% — a?):.
The counterpart to eqn (4.57) is

& e E) el mml/ (0-5) ee

but now it is only the vanishing of the denominator at z =a
(Z =2a) that causes concern, for z = —a corresponds to a point
in the Z-plane which is inside the aerofoil. The value of I" which
makes the numerator in eqn (4.60) zero at the trailing edge
(z=a)is

I'= —47U(a + A)sin a. (4.61)
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The flow is then smooth and free of singularities everywhere, as
shown in Fig. 4.7(b), and this is an example of the Kutta—
Joukowski condition at work.

When A < a the aerofoil described by eqn (4.59) is thin and
symmetric, with length approximately 4a and maximum thickness
3V/3A. By neglecting A in comparison with a in eqn (4.61) we
obtain the classic expression (4.1).

4.10. The forces involved: Blasius’'s theorem

Let there be a steady flow with complex potential w(z) about
some fixed body which has as its boundary the closed contour C,
as in Fig. 4.8. If F,-and F,, are the components of the net force (per
unit length) on the body, then

d 2
E,—iF, =1ip fﬁ (-—E) dz. (4.62)
C dz

This is Blasius’s theorem.

To prove it, let s denote arc length along C, and let 6 denote
the angle made with the x-axis by the tangent to C. Then the
force (per unit length) on a small element Os of the boundary is
(—sin 6, cos O)p Js, O

OF, —i 6F, = —p(sin 0 +i cos 0) 8s = —pie ¢ &s.

V4
Ve
s
Ve
//é\ »

Fig. 4.8. Definition sketch for proof of Blasius’s theorem.
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Now, C is a streamline for the flow, so
u=qcos6, v=gqgsinf on C,
where g = (u? + v?)2, so
dw

d—z=u—iv=qe‘“’on C.

Using Bernoulli’s equation we may write
SE, — i 8F, = (3pq” — k)ie ™' 8s,
where k is a constant, and substituting for ¢ we find

. . (dw\? : .
OF, —i0F, = %lp(d_z) e'® 8s — ki(dx — i dy).
Now, €'?ds = 6z. On integrating round the closed contour C
the final term disappears and we obtain eqn (4.62).
In a similar way we may establish a formula for &, the
moment about the origin of the forces on the body:

. dw\?
N = Real part of —§p§ z(—) dz] (4.63)
C dz

(see Exercise 4.5).
We now consider two examples.

Uniform flow past a circular cylinder

We have, of course, already calculated the net force in this case

by direct integration of the pressure distribution in §4.5.
Nevertheless, the complex potential is, in the case a =0:

U( + “2) i

w=Ulz+—)——logz,

z 2 5

so applying Blasius’s theorem:
a>\ il 7J?
HTAP Y z?) 2mz dz

When the integrand is expanded only the z~' term gives a

contribution to the integral. The coefficient of that term is
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—iUT/m, so a simple application of the residue calculus gives

iUT
E, —iF, = }ip - 2mi - (—‘7) =ipUT.
Thus
E=0, F

y

= —pUT, (4.64)

as found previously.

Uniform flow past an elliptical cylinder

Consider for simplicity the case when there is no circulation, as
in Fig. 4.5(b). By the Kutta—Joukowski Lift Theorem (§4.11)
there will be no net force on the ellipse, but there will in general
be a torque about the origin given by eqn (4.63), i.e.

d 2
Real part f[—l Z(—W> dZ].
. par ° 2P ellipse dZ

Now, the expression (4.55) for W in terms of Z=2z+c%/z is
quite complicated, even in the case I'=0. It is more sensible,
then, to write

dW_ dw dz
dZ dzdz

and change the variable of integration from Z to z, so calculating

2(2) & 4]

Real part of [—%p %) 4z

|z|=a

Now, when I'=0,
. a2 .
w= U(ze“"‘ +— e‘“),
z
so the torque on the ellipse is the real part of

2 . 2 \2 o2\ -1
(et )
2P i z . € -2 72 z

The integrand has poles at —c, 0, and c, all within the contour
(as 0 <c¢ < a). Expanding the whole integrand in a Laurent series
valid for |z| > ¢, and therefore valid on the integration contour,
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we obtain

2 2 4 2 4

C . 2a° a’ .. c° cC

(Z +—)(e_2'“——2+—;ez'“)<l +—5+—5+ .. )
Z Z Z Z Z

The coefficient of z 7! is

CZC—Ziaf _ 2a2 + CZC—Zia’
and the torque on the ellipse is therefore the real part of

—3pU? - 2mi - (2c’e %% — 2a?),
ie.
N = =2xpU?c?sin 2a. (4.65)

For the flow in Fig. 4.5(b) the torque is negative, i.e. clockwise.
More generally, it is such as to tend to align the ellipse so that it
is broadside-on to the stream.

4.11. The Kutta-Joukowski Lift Theorem

Consider steady flow past a two-dimensional body, the cross-
section of which is some simple closed curve C, as in Fig. 4.9.
Let the flow be uniform at infinity, with speed U in the
x-direction, and let the circulation round the body be I'. Then

F,=0, F,=-pUr. (4.66)

To prove this theorem, first choose the origin O so that it lies
inside the body. Then, assuming the flow to be free of
singularities, dw/dz will be an analytic function of z in the flow
domain and can be expanded in a Laurent series valid for
R <|z| <>, where R is the radius of the smallest circle centred
on O which encloses the body. Furthermore, the form of this
series must be

dw a, a,
P U+Z+22+... (4.67)
because the flow is uniform, speed U, at infinity.

Now, we stated Blasius’s theorem in the form of an integral
(4.62) taken round the contour C of the body, but if the flow is
free of singularities we may, by a cross-cut argument and use of
Cauchy’s theorem, take the integral equally well round any
simple closed contour C’' which surrounds the body. In
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Fig. 4.9. Definition sketch for proof of the Kutta—Joukowski Lift
Theorem.

particular, if we take it round a contour C’, such as that in Fig.
4.9, which lies wholly in the region |z|> R, we may use eqn
(4.67) to write

. 1= al a2 2
E, —1F, =3ip U+—+=+...) dz
C’ Z Z

On expanding the integrand only the z™' term contributes to the
integral, and with residue 2Ua, at z =0 this gives
F, —iE, = 3ip - 27i - 2Ua, = —2npUa,. (4.68)
To find a,, use eqn (4.67) to write

d
2mia, = hid dz,
C’ dz

where C’ lies wholly in |z| > R. We may then appeal again to
Cauchy’s theorem and a cross-cut argument to justify taking the
integral round C instead of C’, as dw/dz is analytic in the whole
of the flow region. Thus

d
2mia, = id—: dz =[w]c=[¢ +iy]c.

But C is a streamline, so the change in 9 after one journey round
C is zero. The change in ¢, on the other hand, is simply I, the
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circulation round the body (see eqn (4.4)). Thus
2.7[ia1 = r, (4.69)

and substituting this in eqn (4.68) establishes the theorem, eqn
(4.66).

4.12. Lift: the deflection of the airstream

Notwithstanding the importance of circulation, the Kutta—
Joukowski condition, and the theorem of §4.11, an aerofoil
obtains lift essentially by imparting downward momentum to the
oncoming airstream. In the case of a single aerofoil in an infinite
expanse of fluid this elementary truth is disguised, perhaps, by
the way that the deflection of the airstream tends to zero at
infinity. But in uniform flow past an infinite array of aerofoils, as
in Fig. 4.10, there is a finite deflection of the airstream at infinity,
so that the downward momentum flux is more readily apparent.
Moreover, the deflection is related in a most instructive way to
both the circulation and the lift. For this reason, it is worth
exploring, and to do this we first need a reformulation of the
equation of motion.

The steady momentum equation in integral form

For steady flow, and in the absence of body forces, Euler’s
equation (1.12) reduces to

p(u ' V)u = _VP:

and using a suffix notation and the summation convention this
may be written

ou; op
u—=——.
Plj ox;  Ox;

Let us integrate this over some fixed region V which is enclosed
by a fixed surface S, so that fluid is flowing in through some parts
of S and out at others. Then the left-hand side becomes

u; o
JV puja—xj dv = JV pa—xj (uju;)dV = J; puju;n; dS

=Lp(u -n)u; dS,
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the first equation holding because du;/dx;=V-u =0, and the
second holding by virtue of eqn (A.18). Thus

0
]p(u-n)u,-dS=—I—pdV=—fpn,-dS,
s v OX; s

where we have used eqn (A.15). In vector terms, then,

_ J’s pn dS = fs pu(u - n) dS. (4.70)

Now, pu is the momentum per unit volume of a fluid element,
and (u - n) 6S is the volume rate at which fluid is leaving a small
portion &S of the surface S, so the right-hand side represents the
rate at which momentum is getting carried out of S. The
equation states, then, that the total force on S is equal to the rate
at which momentum is carried out of S.

Flow past a stack of aerofoils

Let the (identical) aerofoils be a distance d apart, as in Fig. 4.10.
Consider the flow in and out of the control surface ABCDA,
where AB and DC are portions of identical streamlines a distance
d apart, AD being far upstream, where the velocity is (U, 0), and
BC being far downstream, where we assume the velocity to be

Fig. 4.10. Flow past a stack of aerofoils.
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uniform again, but equal to (u,, v,). Now, because the fluid is
incompressible the volume flux across AD must be equal to that
across BC, so Ud = u,d, and therefore

u, = U. (4.71)

We now apply the result (4.70) to the fixed region S which lies
within ABCDA but excludes the aerofoil. If the lift on the
aerofoil is F, there is a vertical component of force —F, on S.
(There is no other y-component to the first term in eqn (4.70),
for those at BC and DA are zero and those at AB and CD
cancel, because at any given x the pressures on AB and CD will
be the same, as the flow repeats periodically in the y-direction.)
There is no flux of momentum across either AB or CD, for they
are streamlines, and there is no flux of vertical momentum across
AD. Vertical momentum is, however, flowing out of BC at a rate
pv,Ud (per unit length in the z-direction). Equating this to the
force exerted on S by the aerofoil, we have

F, = —pUv.d. (4.72)

In this way we see clearly how the lift is related to the
deflection of the airstream; a downward deflection (v,<0)
corresponds to positive lift. Moreover, it is clear, too, how the
circulation is related to this deflection, and hence to the lift itself,
for the circulation round ABCDA is

I=uv,d, (4.73)

as the contribution from DA is zero and those from AB and CD
cancel. Thus

F,=—pUT, (4.74)

so that the Kutta—Joukowski result for a single aerofoil in fact
holds in this rather different situation also.

4.13. D’Alembert’s paradox

Consider the steady flow of an ideal fluid around a 3-D body
which is placed in a long straight channel of uniform cross-section
(Fig. 4.11). Let us apply eqn (4.70) to the fixed region bounded
by the obstacle, two fixed cross-sections §; and S,, and the
channel walls. The net force in the downstream direction on the
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Fig. 4.11. Definition sketch for D’Alembert’s paradox.

boundary of this region is

[ pldS“f pzdS“D,
S1 $2

where D is the drag exerted by the fluid on the obstacle.
According to eqn (4.70), this net force is equal to the
downstream component of the flux of momentum out of the
region, which is

pf u%dS—p[ ui ds,

S S1

where u; and u, are the velocity components parallel to the
channel walls at S, and S,. Thus

D=| (p,+pui)dS - f (p2+ pu3) dS. (4.75)
A S

Now let us assume that the flow is uniform with speed U, far
upstream, so that the pressure is a constant, p,, there. Let us
assume that conditions far downstream are similarly uniform;
then considerations of mass flow show that the speed must again
be U, far downstream, as the cross-sectional area of the channel
has not changed. Applying the Bernoulli streamline theorem
(1.16) to a streamline that runs along the channel walls from
x=-—o to x=+o we find that the uniform pressure far
downstream must again be p.

If, then, we let the cross-sections S; and S, in Fig. 4.11 recede
to infinity in the upstream and downstream directions, we see
that the two competing integrals in eqn (4.75) tend to the same
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limit, and we therefore deduce that
D =0. (4.76)

This is one of several ways of presenting D’Alembert’s paradox
namely that steady, uniform flow of an ideal fluid past a fixed
body gives no drag on the body.

Another instructive way of viewing this result is as follows.
Consider a finite rigid body which has as its boundary a simple
closed surface S, and suppose that it is immersed in an infinite
expanse of ideal fluid, the entire system being initially at rest.
Suppose that the body now moves with speed U(f) in the
negative x-direction. The resulting flow is necessarily irrotational
(85.2), and it is, at any instant, unique (Exercise 5.24),
determined entirely by the instantaneous normal component of
velocity at the surface of the body. Indeed, at any instant the
kinetic energy T(¢) of the fluid is proportional to the square of
U(t), the constant of proportionality being simply a function of
the shape and size of the body (see, e.g., Exercise 5.27). Now, if
D is the drag exerted on the body (i.e. the force opposite to the
direction of U(t)), then the rate at which the fluid does work on
the body is —DU. Equivalently, the body does work on the fluid
at a rate DU, and the only way this energy can appear, in the
present circumstances,t is as the kinetic energy of the fluid. So

DU =dT/dt. (4.77)

There is therefore a drag on the body during the starting process,
because the body needs to do work to set up all the kinetic
energy of the fluid. But suppose that after a certain time the
translational velocity U is held constant. D is then zero,
according to eqn (4.77), because the kinetic energy of the fluid
remains constant (although it is redistributed, of course, in a
rather trivial way, as the whole streamline pattern shifts to follow
the body).

The above energy argument can be adapted quite easily for
2-D flow past a 2-D object, provided that there is no circulation;
if there is circulation round the object the kinetic energy T is
typically infinite, and the argument based on eqn (4.77) breaks

t Equation (4.77) does not hold for a viscous fluid, because this energy can then
be dissipated (§6.5). Nor does it hold when water waves or sound waves are
present, because they can radiate energy to infinity (see, e.g., §3.7).
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down. The result nevertheless obtains; according to the Kutta—
Joukowski Lift Theorem (4.66) the drag is zero, whether or not
there is any circulation.

The result flies in the face of common experience; bodies
moving through a fluid are usually subject to a substantial
resistance, or drag. In Fig. 4.12 we see the drag on a circular
cylinder plotted as a function of the Reynolds number, and it
remains substantial even when R is changed from 10* to 10,
which is equivalent to decreasing the viscosity by five orders of
magnitude. But then, as the sketches indicate, the flow as a
whole shows no sign of settling down to the form in Fig. 4.4(a) as
v— 0. This is because the mainstream flow speed would, in that
event, decrease very substantially along the boundary at the rear
of the cylinder, and there would therefore be a strong adverse
pressure gradient. An attached boundary layer cannot cope with
that (see §2.1), and separation of the boundary layer leads
instead to a substantial wake behind the cylinder. This wake
changes in character with increasing R, as in Fig. 4.12, but shows
no sign of disappearing as R — .

D’Alembert described his result of zero drag as ‘a singular
paradox’. His original argument (c. 1745) was in fact quite
different to any of those above, and applied only to flow past
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Fig. 4.12. Drag coefficient ¢, =D/pU’a for flow past a circular
cylinder of radius a.
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bodies, such as a sphere, that have fore—aft symmetry (see Exercise
5.26). Such an appeal to symmetry is unnecessary, and Euler
came across the full ‘paradox’ quite independently. His argument
involved consideration of the balance of momentum, but it
differed significantly from the first argument presented above,
not least because the concept of internal pressure p was not
secure at the time (see §6.1).

Lighthill (1986) argues that ‘D’Alembert’s paradox’ might
better be designated ‘D’Alembert’s theorem’, for if only a body
is designed so as to avoid the kind of boundary layer separation
evident in Fig. 4.12, then very low drag forces may indeed be
achieved. The key feature in this respect is a long, slowly
tapering rear to the body—as with an aerofoil—for this typically
implies a very weak adverse pressure gradient at the rear of the
body, enabling the boundary layer to remain attached. For flow
past such a ‘streamlined’ body cp, is typically O(R “3) as R—>®
(see eqn (8.24)).

Exercises

4.1. (i) Show that in a simply connected region of irrotational fluid
motion the integral (4.2) is independent of the path between O and P.

(i) Show that in a simply connected region of two-dimensional,
incompressible fluid motion the integral

P
1,0=f udy —vdx
o

is independent of the path between O and P, and hence serves as a
definition of the stream function.

4.2. The velocity field
Qo

u,=-—, ug =20,
2nr °
where Q is a constant, is called a line source flow if Q >0 and a line sink
if O <0. Show that it is irrotational and that it satisfies V - u = 0, save at
r =0, where it is not defined. Find the velocity potential and the stream
function, and show that the complex potential is

=—log z.
w=>_logz
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v/,

Fig. 4.13. Irrotational flow due to a line source near a wall.

Observe that the stream function is a multivalued function of position.
Why does this not contradict part (ii) of Exercise 4.1?

Fluid occupies the region x =0, and there is a plane rigid boundary at
x =0. Find the complex potential for the flow due to a line source at
z =d >0, and show that the pressure at x = 0 decreases to a minimum at
|y| = d and thereafter increases with |y]|.

[Any attempt to reproduce the flow of Fig. 4.13 at high Reynolds
number would be fraught with difficulties. A viscous boundary layer
would be present, to satisfy the no-slip condition, but for |y| >d the
substantial adverse pressure gradient along the boundary would make
separation inevitable (see §2.1). More fundamentally still, there are
considerable practical difficulties in producing a line source, as opposed
to a line sink, at high Reynolds number. These are more easily seen by
considering the corresponding 3-D problem; a point sink can be
simulated quite well by sucking at a small tube inserted in the fluid, but
blowing down such a tube produces not a point source but a highly
directional and usually turbulent jet (see, e.g. Lighthill 1986, pp.
100-103). The streamline pattern in Fig. 4.13 may nevertheless be
observed in a Hele—Shaw cell (§7.7), although viscous effects are then
paramount throughout the whole flow, so the pressure distribution is not
given by Bernoulli’s equation.]

4.3. An irrotational 2-D flow has stream function y = A(x —c)y,
where A and c¢ are constants. A circular cylinder of radius a is
introduced, its centre being at the origin. Find the complex potential,
and hence the stream function, of the resulting flow. Use Blasius’s
theorem (4.62) to calculate the force exerted on the cylinder.



Classical aerofoil theory 153

4.4. Show that the problem of irrotational flow past a circular cylinder
may be formulated in terms of the velocity potential ¢(r, 6) as follows:

¢ 10¢ 1¢
+-—T——T=
or* rdr r*aé?

0,

with
¢~Urcos@ asr— x, o¢/dr=0 onr=a,

and obtain the solution (4.33) by using the method of separation of
variables.

When there is circulation round the cylinder, derive eqn (4.40), and
confirm that the stagnation points vary in position with the parameter B
in the manner of Fig. 4.4.

4.5. Establish the expression (4.63) for the moment, &, of forces on a
body in irrotational flow, using an argument similar to that for Blasius’s
theorem.

4.6. By writing z =a + ¢ in eqn (4.57) and taking the limit € — 0 check
that the choice of circulation (4.58) does indeed lead to a finite velocity
at the trailing edge.

4.7. According to eqns (4.1) and (4.66), the force on a thin symmetric
aerofoil with a sharp trailing edge is

¥ = npU?L sin a

in a direction perpendicular to the uniform stream. This amounts to a
component £ cos « perpendicular to the aerofoil and a component
Z sin « parallel to the aerofoil, directed towards the leading edge. This
latter component is, at first sight, rather curious; it might be thought that
the net effect of a pressure distribution on a thin symmetric aerofoil
should be almost normal to the aerofoil. That it is not is due to leading
edge suction, i.e. a severe drop in pressure in the immediate vicinity of
the rounded leading edge, this pressure drop being sufficient to make
itself felt despite the small thickness of the wing on which it acts.

To see evidence of this, consider the extreme case of flow past a flat
plate with circulation, as in Fig. 4.6(b) or Fig. 4.15. First, use eqns
(4.56) and (4.57), on z = ae®, with T chosen according to eqn (4.58), to
show that the flow speed on the plate is

(152) snel
cosa t sin «|,
1+s

U

where the upper/lower sign corresponds to the upper/lower side of the
plate, and s denotes X /2a, which therefore runs between —1 at the
leading edge and +1 at the trailing edge.
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Show that the corresponding pressure distributions are

_ Lol (178 2 1-s\? .
p(s)=p()—zpU [(1 +s>sm at 2<1 +s) sin & cos a],
(see Fig. 4.14). Note that there is a (negative) pressure singularity at the
leading edge, whereas if the leading edge were rounded this pressure
drop would be finite.
As far as the force component normal to the plate is concerned, note
that the pressure difference across the plate is

=2 Uz(:v)isin @ COS &
Pp = <p 1+ .
This too has a singularity at the leading edge, but it is integrable. Show
that

2a
[ pp dX = Zcos «,
—2a

in keeping with the Kutta—Joukowski Lift Theorem.

Finally, show that eqn (4.65) holds even if there is circulation I" round
the ellipse, and then take the case ¢ = a to show that the torque on a flat
plate about the origin is —%a cos «a, i.e. as if the whole lift force £ were

p(s)—p(1) 4 LOWER SURFACE

1 pUPsin 2

-6 UPPER SURFACE

_12 =

—14+

a=10°

_165

Fig. 4.14. Theoretical pressure distribution on a flat plate at a 10° angle
of attack.



Classical aerofoil theory 155

Fig. 4.15. The torque on a flat plate in uniform flow is as if the lift &
were concentrated at a point one-quarter of the way along the plate
from the leading edge.

applied at a point one-quarter of the way along the plate, as indicated in

Fig. 4.15.
[The fact that this point is independent of « is of practical value, and
makes for smooth control of an aircraft. |

4.8. Show that the Joukowski transformation Z =z +a*/z can be
written in the form

Z-2a (z - a)2
Z+2a \z+al’
so that, in particular,
arg(Z — 2a) — arg(Z + 2a) = 2[arg(z — a) — arg(z + a)].

Consider the circle in the z-plane which passes through z = —a and
z = a and has centre ia cot 8. Show that the above transformation takes
it into a circular arc between Z = —2a and Z = 2a, with subtended angle
2B (Fig. 4.16). Obtain an expression for the complex potential in the
Z-plane, when the flow is uniform, speed U, and parallel to the real
axis. Show that the velocity will be finite at both the leading and trailing
edges if

I'=—4xUa cot B.
[This exceptional circumstance arises only when the undisturbed flow
is parallel to the chord line of the arc.]
4.9. Provided that f'(z,) # 0, points in the neighbourhood of z = z, are
mapped by Z = f(z), according to Taylor’s theorem, in such a way that

Z - Zy=f"(2)(z — 20) + O(z — 2)’,
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z—plane Z—plane

Fig. 4.16. Generation of a circular arc by a Joukowski transformation.

where Z,=f(z,). Use this to show that a line source of strength Q at
z = z, is mapped into a line source of strength Q at Z = Z,, provided
that f'(z,) #0.

Fluid occupies the region between two plane rigid boundaries at
y = xb, and there is a line source of strength Q at z=0. Find the
complex potential w(z) for the flow

(i) by the method of images,

(ii) by using the mapping Z = e** with a suitably chosen a > 0.

4.10. Use the momentum equation in its integral form (4.70) to show
that there is a non-zero drag

E, = pI?/2d

on each of the aerofoils in Fig. 4.10.
Is this at odds with the Kutta—Joukowski Lift Theorem (4.66)?



