5 Vortex motion

5.1. Kelvin’s circulation theorem

THEOREM. Let an inviscid, incompressible fluid of constant
density be in motion in the presence of a conservative body force
g=—Vyx per unit mass. Let C(t) denote a closed circuit that
consists of the same fluid particles as time proceeds (Fig. 5.1).
Then the circulation

= [ u-dx (5.1)
C(1)
round C(t) is independent of time.

Proof. We appeal to the following lemma:

d f Du
— u-de = — - dx 5.2
dt C(r) C(1) Dt ( )

(Exercise 5.2). Then, by Euler’s equation (1.12),

dr

o], o) - [2o],

dt c@y ‘P P C
where the last term denotes the change in p/p + x on going once
round C (see eqn (A.12)). But this change is zero, as p, p, and x

are all single-valued functions of position. This proves the
theorem.

Notes on the theorem

(@) C denotes a ‘dyed’ circuit, composed of the same fluid
particles as time proceeds; the result is not true in general if
C is a closed curve fixed in space.

(b) The conditions of incompressibility and constant density are
not essential: Kelvin established his result subject to weaker
restrictions (Exercise 5.4).



158 Vortex motion

/./'\. . ,/
[ J ./ *
/./.ZTW S
~o— 4 o
N ()

Fig. 5.1. Definition sketch for Kelvin’s theorem, showing eight fluid
particles along a ‘dyed’ circuit C at time ¢,, and their positions at time ¢,.

(c) The theorem does not require the fluid region to be simply
connected, i.e. it does not require the dyed circuit C to be
spannable by a surface § lying wholly in the fluid.

(d) The inviscid equations of motion enter the proof only in
helping to evaluate a line integral round C, so if viscous
forces happened to be important elsewhere in the flow, i.e.
off the curve C, this would not affect the conclusion that T
remains constant round C.

The generation of lift on an aerofoil

We mentioned in §1.1 how the shedding of a starting vortex is
essential to the generation of lift on an aerofoil, and we now
investigate why this should be so.

Consider the situation at a time ¢ after the start. Vorticity and
viscous forces will be confined to (i) a thin boundary layer on the
aerofoil, (ii) a thin wake, and (iii) the rolled-up ‘core’ of the
starting vortex, as indicated by the shading in Fig. 5.2. Consider
now a dyed circuit abcda which is large enough to have been
clear of all these regions since the start of the motion. As the
original state was one of rest the circulation round that circuit
was originally zero. By Kelvin’s circulation theorem, then, the
circulation round that circuit will still be zero at time ¢ (see
especially note (d) above). Thus if we sketch in a line aec—an
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Fig. 5.2. The generation of circulation by means of vortex shedding.

instantaneous line in space at time ¢ such that the curve aecda
encloses the aerofoil but not the wake or the starting vortex—
then the circulation round aecda must be equal and opposite to
that round abcea.

What happens, then, as the aerofoil starts to move, is that
positive vorticity is shed in the form of a starting vortex. By
Stokes’s theorem,

fm-ndS=j u - dx,
s c

this gives a positive circulation round abcea. This in turn implies,
by the preceding argument, a negative circulation round aecda,
and this circulation is very evident in some classic photographs
taken by Prandtl and Tietjens (see, e.g., Batchelor 1967, Plate
13). The vortex shedding continues until the circulation round
the aerofoil is sufficient to make the main, irrotational flow
smooth at the trailing edge, as in Fig. 1.10(b), at which stage no
further net vorticity is shed into the wake from the boundary
layers on the upper and lower surfaces of the aerofoil. Thereafter
the aerofoil retains its final ‘Kutta—Joukowski’ value of the
circulation.

A novel mechanism of lift generation for hovering insects

An exotic variation on the above theme was discovered by
Weis-Fogh (1973, 1975) in the hovering motions of the tiny
chalcid wasp Encarsia formosa (wing chord ~0.2 mm). This
insect claps its wings together, then flings them open about a
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Fig. 5.3. The Weis-Fogh mechanism of lift generation. The first three

sketches give a 2-D model of (a) the ‘clap’, (b) the ‘fling’, and (c) the

parting of the wings. The remaining sketches (after Dalton 1977) show

the mechanism in practice, and the final sketch indicates also the flow

associated with the vortex (not shown) that extends, in a circular arc,
between the wing tips (cf. Fig. 1.12).

horizontal line of contact, so that air has to rush in to fill the gap
(Fig. 5.3(b))- Then it moves its wings apart, by which time each
one has acquired during the ‘fling’ movement a circulation of the
correct sign to give lift in the subsequent motion.

In practice, viscous effects are important, especially in causing
large leading-edge separation vortices (see the excellent photo-
graphs in Spedding and Maxworthy 1986). Nevertheless, one
remarkable feature of this novel lift generation mechanism is that
it could work, in principle, in a strictly inviscid fluid (Lighthill
1973). In this sense it differs markedly from the conventional
method for lift generation which we have just discussed, for that
relies in an essential way on viscous effects for boundary layer
formation, separation at the trailing edge, and consequent vortex
shedding. In the Weis-Fogh mechanism the circulation round one
wing essentially acts as the starting vortex for the other.

At first sight, perhaps, Kelvin’s circulation theorem does not
permit the situation in Fig. 5.3(c) for a strictly inviscid fluid: if
one views the circuits there as dyed circuits then the circulations
round them must have remained constant. Yet one cannot claim
that those circulations are zero, even if the fluid were wholly at
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rest at stage (a), for neither dyed circuit at stage (c) was a closed
circuit at stage (b), an unusual circumstance that arises only
because the topology of the fluid domain has changed in the
meantime.

The word ‘meantime’ gives, in fact, rather too leisurely an
impression; Encarsia formosa goes through the sequence in Fig.
5.3 roughly 400 times a second.

5.2. The persistence of irrotational flow

Let an inviscid, incompressible fluid of constant density move in
the presence of a conservative body force. Then if a portion of
the fluid is initially in irrotational motion, that portion will always
be in irrotational motion.

To prove this Cauchy—-Lagrange theorem suppose that the
vorticity @ =V A u were not identically zero throughout that
portion of fluid at a later time. By virtue of Stokes’s theorem:

fu-dx=jw-nd5,
C S

and it would then be possible to select some small closed dyed
circuit around which the circulation would be non-zero. But this
would violate Kelvin’s circulation theorem, because the circula-
tion round such a circuit must initially have been zero, on
account of Stokes’s theorem and the fact that o was initially
zero. Our initial assumption must therefore be false. This
completes the proof.

For 2-D flows the result is obvious from the vorticity equation
(1.27); if w 1s zero for a portion of the fluid at t=0 then,
according to eqn (1.27), w remains zero for each fluid element
constituting that portion for all time ¢. But in three dimensions
the result is not obvious from eqn (1.25), and it is here that the
theorem comes into its own. (Although it is of course quite
evident that if o is everywhere zero at t=0 then =0
everywhere for all ¢ is one solution of eqn (1.25).)

Irrotational flows are important, then, even in three dimen-
sions. The velocity field can then be written as

u=Vo, (5.3)

and ¢ will be a single-valued function of position when the flow
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region is simply connected (see §4.2). [In other circumstances—
as, for example, with the irrotational part of the flow due to a
vortex ring (Fig. 5.7(b))—¢ may be multivalued.] As the fluid is
incompressible, V- u =0, so ¢ satisfies Laplace’s equation

V2 = 0. (5.4)

The general theory of irrotational flow is a classical and
important part of fluid dynamics, and we explore something of it
in Exercises 5.23-5.29. We should emphasize, however, that
much of the present chapter is concerned with fluid motions in
which the vorticity is not zero, in which case there is no such
thing as a velocity potential ¢ and u cannot be written in the
form (5.3).

5.3. The Helmholtz vortex theorems

A vortex line is, at any particular time ¢, a curve which has the
same direction as the vorticity vector

0o=VAu (5.5)

at each point. Mathematically, then, a vortex line x =x(s),
y =y(s), z =z(s), is obtained by solving

dx/ds dy/ds dz/ds
0, w,  w,

at a particular time ¢.

The vortex lines which pass through some simple closed curve
in space are said to form the boundary of a wvortex tube (Fig.
5.4(a)).

Suppose now that we have an inviscid, incompressible fluid of
constant density moving in the presence of a conservative body
force (so that Kelvin’s circulation theorem applies). Then

(1) The fluid elements that lie on a vortex line at some instant
continue to lie on a vortex line, i.e. vortex lines ‘move with
the fluid’.

An immediate consequence of this is that vortex tubes move with
the fluid in a like manner.
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(b)
Fig. 5.4. (a) A vortex tube. (b) A vortex surface.

(@)

(2) The quantity
I‘=Jm-nd8 (5.6)
s

is the same for all cross-sections S of a vortex tube.
Furthermore, T is independent of time.

The quantity I is therefore a conserved property of the tube as a
whole, called the strength of the tube.

Proof of (1). We first define a vortex surface as a surface such
that o is tangent to the surface at every point (Fig. 5.4(b)). The
proof proceeds by viewing the vortex line, in its initial
configuration, as the intersection of two vortex surfaces. Mark
the particles which occupy one of the vortex surfaces, at ¢t =0,
with dye. Consider a closed circuit C made up of a particular set
of dyed particles and spanned by a portion S, of the vortex
surface. At ¢ =0 the circulation round C is zero, for by Stokes’s
theorem

fu-dxzj o-nds,
C *

and o - n is zero on S,. Now, as time proceeds the dyed sheet of
fluid will deform, but the circulation round C will remain zero,
by Kelvin’s circulation theorem. This being so for all circuits such
as C it follows, by using Stokes’s theorem again, that o - n will
remain zero at all points of the dyed sheet of fluid. That sheet
therefore remains a vortex surface as time proceeds. The proof is
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completed by noting that the intersection of two such dyed sheets
therefore remains the intersection of two vortex surfaces, i.e. it
remains a vortex line.

Proof of (2). The statement that I' is independent of the
cross-section S has nothing to do with the equations of motion,
but is simply a consequence of the fact that the vorticity
o =V A u is divergence-free (Exercise 5.5). The statement that I’
is independent of time follows on considering a circuit, such as
C, in Fig. 5.4(a), composed of fluid particles which lie on the
wall of the vortex tube and encircle it. By Stokes’s theorem, I is
the circulation round C,, and by Kelvin’s circulation theorem this
remains constant as time proceeds.

It is instructive to consider the particular case of a thin vortex
tube in which ® is virtually constant across any particular
cross-section. In that case I is essentially just the product w S,
where 65 is the normal cross-section of the tube. But 6S is also
the normal cross-section of the fluid continually occupying the
tube, and as the fluid must conserve its volume &S will vary
inversely with the length / of a small section of the tube. Thus the
vorticity w varies in proportion to /; stretching of vortex tubes by
the fluid motion intensifies the local vorticity.

In a tornado, for example, the strong thermal updraughts into
the thunderclouds overhead produce intense stretching of vortex
tubes, and hence the potentially devastating rotary motions
observed. The funnel cloud serves, in fact, as a direct marker of
the vortex tube, rather than the air occupying it, because it
essentially marks regions of very low pressure (where the air
rapidly expands and condenses), and these in turn are located in
the core of the vortex, where all the vorticity is concentrated (see
Exercise 1.3). Thus when the thunderclouds move on, and the
funnel cloud tips over in the manner of Fig. 5.5, we have a vivid
illustration of Helmholtz’s first vortex theorem at work.

In contrast, it is the shortening of vortex tubes that is
responsible for the gradual ‘spin-down’ of a stirred cup of tea
(Fig. 5.6). The main body of the fluid is essentially inviscid and in
rapid rotation, the centrifugal force being (almost) balanced by a
radially inward pressure gradient. This pressure gradient also
imposes itself throughout the thin viscous boundary layer on the
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(b)

Fig. 5.5. The deformation of a tornado as the thunderclouds move
overhead.

bottom of the cup, where it is stronger than required, for the
fluid in the boundary layer rotates much less rapidly. That fluid
therefore spirals inward (as evinced by the way in which tea
leaves on the bottom of the cup congregate in the middle), and
eventually turns up and out of the boundary layer, as in Fig. 5.6.
In this way vortex tubes in the main body of the fluid become
shorter and expand in cross-section, so that the vorticity
decreases with time. It is by this subtle mixture of inviscid and
viscous dynamics that the apparently innocuous spin-down of a
stirred cup of tea is achieved (see §8.5).

(b)
Fig. 5.6. The secondary circulation in a stirred cup of tea is driven by
the bottom boundary layer (beneath the dotted line) and turns a tall,
thin column of ‘dyed’ fluid into a short, fat one, so decreasing its angular
velocity.
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The Helmholtz vortex theorems and the vorticity equation

The vortex theorems above were first given by Helmholtz in
1858, but Kelvin did not obtain and publish his circulation
theorem until 1867. It goes without saying, then, that Helmholtz
took a different route; he appealed directly to the vorticity
equation (1.25):

Do

Dr (o V)u. (5.7)
We will not give his actual argument here,t but consider instead
the relationship between eqn (5.7) and the vortex theorems in
some simple specific cases.

It is possible, for instance, to see by inspection of eqn (5.7)
how stretching the fluid that lies along a vortex line leads to an
intensification of the local vorticity field. Suppose, for example,
that the vortex lines are almost in the z-direction, as in Fig. 5.5(a),
so that m = wk and

Do = ou : (5.8)
Dt oz
The z-component of this equation gives
Do_ o
Dt oz’

and the vorticity of a particular fluid element therefore increases
with time if dw/3z >0, i.e. if the instantaneous vertical velocity
increases with z. Such is the case, of course, if fluid elements are
being stretched in the vertical direction, whereas if they were
being carried up or down without any vertical stretching or
squashing, w would be independent of z.

A particularly simple case is that of 2-D flow. Vortex tubes are
aligned with the z-axis, and w=0. There is no stretching of
vortex tubes, and

Dw

—=0 .
=0, (59)

1 It in fact contains a flaw, which may however be corrected (see, e.g. Lamb
1932, p. 206; Rosenhead 1963, pp. 122-123).
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so that the vorticity w of any particular fluid element is
conserved.

A more revealing case in the present context is that of
axisymmetric flow:

u=ugr(R, z, t)eg + u,(R, z, t)e,, (5.10)

where (R, ¢, z) denote cylindrical polar coordinates.t The
velocity components are then independent of ¢, the streamlines
all lie in planes ¢ = constant, and the vorticity is ® = we,, where

_ Jun _ 0u.
8z OR’

o (5.11)

In axisymmetric flow the vortex tubes are therefore ring-shaped,
around the symmetry axis. According to the first vortex theorem
they move with the fluid. In doing so they will, in general,
expand and contract about the symmetry axis, and thus change in
length. As the fluid is incompressible the cross-sectional area 8S
of a thin tube will be in inverse proportion to the length 2zR of
the tube. But the second vortex theorem implies that w 8S will
be a constant, so we conclude that w will be proportional to the
length of the tube 27R. We leave it as an instructive exercise
(Exercise 5.7) to show that in the case of axisymmetric flow the
vorticity equation (5.7) reduces to

D/w

Dt (R) =0, (5-12)
which expresses just this result, that the vorticity of any
particular fluid element changes in proportion to R as time
proceeds.

When, in axisymmetric flow, an isolated vortex tube is
surrounded by irrotational motion, we speak of it as a vortex
ring. The familiar ‘smoke-ring’ is perhaps the most common
example, and provides a vivid illustration of the Helmholtz
vortex theorems, though the vortex core typically occupies only a
fraction of the smoke ring as a whole (see Fig. 5.7).

t+ This is not our usual notation, as we are shortly to use spherical polar
coordinates (r, 8, ¢) for axisymmetric flow. It seemed best not to have the same
symbol meaning two different things in the space of a few pages. Thus ¢ has the
same meaning in the two cases, and R =r sin 6.
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(a) (b)

Fig. 5.7. Flow due to a vortex ring (a) relative to a fixed frame and (b)

relative to a frame moving with the vortex core. Shading denotes smoke,

in the case of a smoke ring, while the vortex core is indicated by the
black dots.

5.4. Vortex rings

We showed in §5.1 how Kelvin’s circulation theorem plays a key
part in the mechanism by which an aircraft obtains lift at
take-off. While this is one of the theorem’s most elegant and
significant applications, it is not of course what Kelvin had in
mind in 1867. What he did have in mind is quite extraordinary,
but clear enough from the following:

Jan. 22, 1867.
My pear HerLmHoLTZ—I have allowed too long a time to pass
without thanking you for your kind letter .... Just now,

Wirbelbewegungen have displaced everything else, since a few days ago
Tait showed me in Edinburgh a magnificent way of producing them.
Take one side (or the lid) off a box (any old packing-box will serve)
and cut a large hole in the opposite side. Stop the open side loosely
with a piece of cloth, and strike the middle of the cloth with your hand.
If you leave anything smoking in the box, you will see a magnificent
ring shot out by every blow. A piece of burning phosphorus gives very
good smoke for the purpose; but I think nitric acid with pieces of zinc
thrown into it, in the bottom of the box, and cloth wet with ammonia, or
a large open dish of ammonia beside it, will answer better. The nitrite of
ammonia makes fine white clouds in the air, which, I think, will be less
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pungent and disagreeable than the smoke from the phosphorus. We
sometimes can make one ring shoot through another, illustrating
perfectly your description; when one ring passes near another, each is
much disturbed, and is seen to be in a state of violent vibration for a few
seconds, till it settles again into its circular form. The accuracy of the
circular form of the whole ring, and the fineness and roundness of
the section, are beautifully seen. If you try it, you will easily make rings
of a foot in diameter and an inch or so in section, and be able to follow
them and see the constituent rotary motion. The vibrations make a
beautiful subject for mathematical work. The solution for the lon-
gitudinal vibration of a straight vortex column comes out easily enough.
The absolute permanence of the rotation, and the unchangeable relation
you have proved between it and the portion of the fluid once acquiring
such motion in a perfect fluid, shows that if there is a perfect fluid all
through space, constituting the substance of all matter, a vortex-ring
would be as permanent as the solid hard atoms assumed by Lucretius
and his followers (and predecessors) to account for the permanent
properties of bodies (as gold, lead, etc.) and the differences of their
characters. Thus, if two vortex-rings were once created in a perfect fluid,
passing through one another like links of a chain, they never could come
into collision, or break one another, they would form an indestructible
atom; every variety of combinations might exist. Thus a long chain of
vortex-rings, or three rings, each running through each of the other,
would give each very characteristic reactions upon other such kinetic
atoms.

This atomic theory,t 40 years ahead of that of Niels Bohr, was
no speculative sideline to Kelvin’s hydrodynamic researches at
the time; it was the main impetus behind them, and in the
opening sentence of his 1867 paper he more or less says as much.

One hundred and twenty years later, vortex rings still exercise
a certain fascination, although more modest and less dangerous
ways of producing them are perhaps to be recommended. All
that is needed is some arrangement for discharging smoke
through a circular hole in a plane rigid boundary, where
separation of the boundary layer can take place and be followed
by the rolling up of the consequent vortex sheet (Fig. 5.9). Any
simple apparatus which achieves this will suffice; I employ a
syringe of the kind commonly used to squeeze icing on to cakes.

t Atiyah (1988) observes that one particular notion in this theory—that of using
topology as a source of stability—may be said to have surfaced again in modern
physics, albeit in a different guise.
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Fig. 5.8. Kelvin’s sketches of knotted and linked vortex rings, the basis
for his ‘vortex atom’ theory of matter.

A satisfactory procedure, having detached the nozzle itself, is as
follows. Push the piston fully in, then puff cigar smoke through
the circular hole while rapidly withdrawing the piston, so that the
smoke is sucked into the syringe. As soon as the piston is fully
withdrawn, put a hand over the hole to keep the smoke in. Allow
a few moments for the motions inside to die down, and then
generate vortex rings by holding the cylinder horizontally and
giving the piston short, sharp taps. Each ring should travel a foot
or so while maintaining its form, provided that the surrounding
air is fairly still.

Helmbholtz considered vortex rings in his 1858 paper, and after
deducing that rings of smaller radius travel faster, went on:

We can...see how two ring-formed vortex filaments having the
same axis would mutually affect each other, since each, in addition to its
proper motion, has that of its elements of fluid as produced by the
other. ..

Fig. 5.9. Generation of a vortex ring by the discharge of fluid through
a circular hole.
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If they have equal radii and equal and opposite angular velocities,
they will approach each other and widen one another; so that finally,
when they are very near each other, their velocity of approach becomes
smaller and smaller, and their rate of widening faster and faster. If they
are perfectly symmetrical, the velocity of fluid elements midway between
them parallel to the axis is zero. Here, then, we might imagine a rigid
plane to be inserted, which would not disturb the motion, and so obtain
the case of a vortex-ring which encounters a fixed plane.

The last sentence is, of course, an interesting example of the
method of images, while in saying earlier ‘they will approach
each other and widen one another’ Helmholtz is applying his first
vortex theorem.

He considers, too, the case when the vortex rings are travelling
in the same direction. On the same basis he deduces:

.. . the foremost widens and travels more slowly, the pursuer shrinks
and travels faster, till finally, if their velocities are not too different, it
overtakes the first and penetrates it. Then the same game goes on in the
opposite order, so that the rings pass through each other alternately.

Good photographs of this ‘leap-frogging’ phenomenon may be
found in Yamada and Matsui (1978), in Oshima (1978) and on p.
46 of van Dyke (1982). In practice, of course, viscous effects act
to stop such leap-frogging from continuing indefinitely; indeed
they have profound effects, more generally, on the behaviour of
real vortex rings (Maxworthy 1972).

Kelvin was of course well aware that real vortex rings do not,
on account of viscous effects, wholly retain their identity in the
manner indicated by Helmholtz’s vortex theorems. One never-
theless wonders, given his hopes for the theory of vortex
atoms, what he would have made of an experiment by Oshima
and Asaka (1975) in which a red vortex ring and a yellow vortex
ring (in water) collide at a certain angle. The rings merge, then
break up again into two separate rings, each half yellow and half
red. The way in which they do this is indicated in Fig. 5.10. In (a)
the vortex rings are coming towards us, but they are also
approaching one another. In (b) they collide, and after a
distortion (c) of the resulting (single) vortex ring two separate
rings are formed (d). These come towards us but move apart in a
plane at right angles to the plane of approach. Oshima and
Asaka provide excellent photographs of this collision process,
and further photographs and analysis may be found in Fohl and
Turner (1975).
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(d) (©)

Fig. 5.10. The collision of two viscous vortex rings.

Even within the framework of strictly inviscid theory there are
subtle aspects of vortex rings which have taken a long time to
emerge. Kelvin himself expressed the view that ‘the known
phenomena of...smoke rings...convinces...us...that the
steady configuration . . . is stable’, and J. J. Thomson purported
to demonstrate as much in his 1883 essay, A treatise on vortex
motion. But Widnall and Tsai (1977) have carried out a more
accurate calculation, and have shown that a vortex ring is in fact
unstable, even according to ideal flow theory. The instability
takes the form of bending waves around the perimeter, and these
grow in amplitude as time proceeds (Fig. 5.11).

5.5. Axisymmetric flow

The uniform motion of a vortex ring—let alone its instability—
presents theoretical difficulties, but there is one particular
circumstance in which it is quite easy to calculate the self-induced
motion of an isolated, axisymmetric patch of vorticity. Before
doing this we introduce one or two concepts that are of more
general value for axisymmetric flow.
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(a) t=t, (b) t=t, >1,

Fig. 5.11. The instability of a vortex ring.

The Stokes stream function

For incompressible flow in two dimensions the stream function
representation (4.8) ensures that V-u=0 is automatically
satisfied. It is natural to enquire, then, whether for axisymmetric
incompressible flow a representation of the form u=V A (y’e,)
exists, 1’ being a function of R, z, and ¢ only.

This is indeed the case, but a minor inconvenience is that '
turns out to be not constant along streamlines, but inversely
proportional to R. We therefore write instead

Y
u=Va (Eeqb), (5.13)
or, in spherical polars,
Y
-V ( : ) 5.14
“ A rsin 6 € ( )
whence
1 ¥ 1 ¥
= ’ = — R _— ’ 5. 5
“ r’sin 6 90 Ho rsin 6 Or (5-15)

Y being a function of r, 6, and ¢ only. We may verify
immediately that
o¥ Ug oY
-V q’ = —_— st ——=
VW =u 5+ 36
Thus the Stokes stream function W, defined by eqn (5.15), is
constant along streamlines.

0.



174 Vortex motion

Irrotational flow past a sphere

In steady axisymmetric flow the vorticity equation (5.12) reduces
to

W
V(=) =0, (5.16)
so that w/rsin @ is constant along streamlines. Consider, then,
uniform inviscid flow past a rigid sphere r =a. If there are no
closed streamlines in the flow, i.e. if all streamlines originate at
infinity, where w is zero, then w is zero everywhere in r >a, so
the flow is irrotational.
Now, the vorticity in axisymmetric flow is @ = we,,, where

10 130u,

=75 M) " 5

and this may be expressed in terms of the Stokes stream function
as follows:

0 (5.17)

(5.18)

w=-

1 [82l11+sin9 d ( 1 8‘1’)]
or? r* 386 \sin036/1
Thus, for irrotational flow past a sphere, we wish to solve

821P+sin9 3 ( 1 8\11)
or? r> 960 \sin 6 36

rsin @

=0. (5.19)

in r =a, subject to ¥ =0 on r =a and
u,~Ucos 0, ug~—UsinB as r— oo,
which, on using eqn (5.15), means
W ~1Ursin’0  asr— . (5.20)

This last condition suggests trying a separable solution of the
form W = f(r)sin?6, and this is indeed possible if

¥

r

f” 0,

ie. if

B
f=Aﬂ+—.
r
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The boundary conditions then determine the arbitrary constants
A and B, whence

a3

Y= %U(r2 — —)sinZG inr=a. (5.21)

r

The streamlines W = constant are sketched in Fig. 5.12(a).
There is, inevitably, a velocity of slip

L ow
rsin 6 or

Ug = — =—3Usin@ onr=a, (5.22)
and this implies, by Bernoulli’s theorem, a severe adverse
pressure gradient over the back of the sphere. In real, high
Reynolds number flow past a sphere, no attached boundary layer
can cope with this adverse pressure gradient, and separation of

the boundary layer leads instead to a large wake (see §§82.1 and
8.6).

Hill’s spherical vortex

Let us now suppose instead that the region r <a is also filled with
fluid. Remarkably, it is possible to find a closed-streamline
inviscid flow in r <a which matches on to eqn (5.21) in the sense
that (i) W is zero on r =a and (ii) the tangential component of
velocity ug matches with eqn (5.22) on r = a.

In this closed-streamline region (5.16) tells us only that
w/r sin O is constant along each streamline; there is no reason to
suppose it is the same constant along each one, let alone zero.

(a) (b)
Fig. 5.12. (a) Irrotational flow past a sphere. (b) Hill’s spherical
vortex.
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The most we can claim, then, is that

w

=c(W inr<a
r sin O (¥) ’

where the function ¢(¥) is at this stage unknown. Using eqn
(5.18) this implies that

82‘I’+sin9 8( 1 8‘1’)
or? r> 36 \sin 6 96

= —c(¥)r?sin’0 (5.23)

is r <a, and c(¥) is to be determined as part of the solution (if,
indeed, such a solution exists).

Now, in order that ug matches with eqn (5.22) on r=a we
need

_ 3Uasin’0  onr=a, (5.24)
or

and this suggests trying W=g(r)sin’0 in eqn (5.23). The
left-hand side is then a function of r times sin®8, and the form of
the right-hand side then shows that c(W) will need to be a
constant, c, if eqn (5.23) is to reduce to an ordinary differential
equation for g(r). The function g(r) then emerges as

B
g(r)=Ar*+ o cr.

We must choose B =0 to keep u finite at r =0, and A must then
be chosen so that ¥ = 0 on r = a. Finally, eqn (5.24) implies that
c=—15U/2a?, so

r2

Y= —%Urz(l — ?)sinzﬂ inr<a. (5.25)
The corresponding streamlines are sketched in Fig. 5.12(b).

The circulation round these streamlines varies from one to the
other, of course, because the flow in r =<a has vorticity, but the
circulation round the perimeter of a full hemispherical cross-
section is, by Stokes’s theorem,

I‘max=ffwrdrd6=cffrzsianrd9=—5Ua.
0 0 0 0



Vortex motion 177

Equivalently, a Hill spherical vortex will travel through station-
ary fluid with uniform speed I,,../5a, distinguished from an
ordinary smoke ring by the absence of a hole and by the way in
which the vorticity is spread throughout the whole of the closed
streamline region (cf. Fig. 5.7(b)).

5.6. Motion of a vortex pair

We now explore some aspects of 2-D vortex motion. Consider,
for instance, the vortex pair of Fig. 5.13(a), and suppose that the
core of each vortex, where all the vorticity is concentrated, is
quite small. The fluid momentarily occupying one of the vortex
cores will be swept downwards by the flow due to the other
vortex, and by eqn (5.9) that fluid will retain its vorticity, so the
vortex itself will be swept downwards. The two vortices therefore
move down together, maintaining their relative positions. It is
possible to observe this at airports by watching the trailing
vortices from the wing-tips of departing aircraft (see Fig.
1.12(b)).

To make these ideas more specific we treat each vortex as a line
vortex which moves at the local flow velocity due to everything
other than itself. If the vortices are of strength I" and —T', distance
2d apart, then each will induce a downward flow I'/47d at the

Fig. 5.13. Flow due to a vortex pair relative to (a) a fixed frame and
(b) a frame moving with the vortices.
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position momentarily occupied by the other, so the pair itself,
and the whole instantaneous streamline pattern, will move
downwards at this speed.

We may alternatively view the motion from a frame in which
the vortices are fixed. This in turn is equivalent to superimposing
a uniform upward flow with speed I'/4xd, i.e. just that required
to hold the vortices at rest. The complex potential for the
resulting flow is clearly

w= —.———log(z —d)+£log(z +d), (5.26)

the first term representing the uniform upward flow, and the
others representing the flows due to the two vortices. To confirm
that the vortex at z=d may indeed remain stationary in this
situation we calculate the contribution to dw/dz at z =d from
everything but the vortex at z = d itself. Thus if (U, V) denotes
the translational velocity of the vortex at z = d then

, [ d —iI'z i’
U-iv= | dz { 4nd 2:5 o8zt d)}]z=d
[ —ilC i’
- _4er+2n(z +d)]z=d—0' (5.27)

The stream function for the flow (5.26) is

A e
" 4nd 2m 8 z+d
r —d)? +y?
Rl
4 Ld (x+d)y+y

The streamlines are sketched in Fig. 5.13(b). If the fluid in the
closed streamline region were dyed, an observer in the original
frame would see this dyed fluid moving downward as a coherent
entity, without change of shape. This is by no means unexpected,
of course, as we are now dealing with a 2-D counterpart to the
vortex ring of Fig. 5.7.

5.7. Vortices in flow past a circular cylinder

Let a circular cylinder of radius a be initially at rest in a fluid of
kinematic viscosity v. Suppose that it is suddenly translated with
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speed U perpendicular to its axis, and suppose too that the
Reynolds number

R="" (5.28)

is somewhere in the region of 200 or so. With the simple home
apparatus of §1.1 this might be achieved, for example, with the
refill from a ballpoint pen (radius ~2 mm) and a towing speed U

of about Scms™!.

The initial phase: almost irrotational flow

According to inviscid theory the response of the fluid to the
motion of the cylinder will be determined by the vorticity
equation (5.9):

Do _,
Dt
which says that the vorticity of each individual fluid element is
conserved. Each has zero vorticity initially, as the fluid is at rest.
Each element therefore continues to have zero vorticity and the
subsequent flow is irrotational.

Consider now the real, viscous situation. During a very short
initial phase, which is over by the time the cylinder has moved a
distance comparable to its radius, the flow relative to the cylinder
is indeed predominantly irrotational, as in Fig. 4.4(a). There is
intense vorticity in the rapidly thickening boundary layer on the
cylinder, but despite the large adverse pressure gradient at the
rear of the cylinder there simply has not yet been time for
separation to occur, and the vorticity in the boundary layer has
not therefore found its way into the main flow.

During this initial phase irrotational flow theory plays a major
role by determining the velocity at the edge of the boundary
layer. This is important, for in impulsively started flows of this
kind reversed flow in the boundary layer first occurs at the place
where the velocity at the edge of the boundary layer decreases
most rapidly with distance along the boundary. In the case of a
circular cylinder, this place is the rear stagnation point, so this is
where reversed flow first occurs (Fig. 5.14(a)).
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Flow at a later stage: the von Karman vortex street

Thereafter the flow diverges substantially from that predicted by
irrotational flow theory. The two attached eddies behind the
cylinder grow in size, as in Fig. 5.14(b). At a later time still the
flow ceases to be symmetric about the centreline (Fig. 5.14(c))
and, even more strangely, it ceases to be steady relative to the
cylinder, even though the flow at infinity (relative to the cylinder)
is constant. Instead, the flow settles into an unsteady but highly
structured form in which vortices are shed alternately from the
two sides of the cylinder, so giving the remarkable von Kdrmdn
vortex street of Fig. 5.14(d, e).

Von Kéarmaén’s interest in the phenomenon stemmed from
about 1911, when he was a graduate assistant in Prandtl’s
laboratory in Gottingen. He tells of those early days in his
Aerodynamics (1954):

... Prandtl had a doctoral candidate, Karl Hiemenz, to whom he gave
the task of constructing a water channel in which he could observe the
separation of the flow behind a cylinder. The object was to check
experimentally the separation point calculated by means of the
boundary-layer theory. For this purpose, it was first necessary to know
the pressure distribution around the cylinder in a steady flow. Much to
his surprise, Hiemenz found that the flow in his channel oscillated
violently.

When he reported this to Prandtl, the latter told him: ‘Obviously your
cylinder is not circular.’

However, even after very careful machining of the cylinder, the flow
continued to oscillate. Then Hiemenz was told that possibly the channel
was not symmetric, and he started to adjust it.

I was not concerned with this problem, but every morning when I
came in the laboratory I asked him, ‘Herr Hiemenz, is the flow steady
now?’

He answered very sadly, ‘It always oscillates.’

It must be said that this picture of events is valid for a certain
range of Reynolds numbers only. Thus at R =2000 the wake is
essentially turbulent, with only traces of the periodic structure of
Fig. 5.14(d, e). At R =30, on the other hand, the wake develops
into two symmetrically disposed vortices which remain attached
as time proceeds, much as in Fig. 5.14(b). There are many
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Fig. 5.14. Time-development of flow due to an impulsively moved
circular cylinder. (a), (b), (c) Instantaneous streamlines relative to axes
moving with the cylinder at three fairly early times. (d) The
instantaneous streamlines, as implied by a streak photograph, relative to
fixed axes, at a rather later time; the cylinder has moved out of the
picture and left behind a trail of von Karmén vortices which follow it by
moving to the left at a much slower speed than that of the cylinder. (e) At
that same later time, typical dye traces, the dye essentially marking
those fluid elements which were, at ¢ = 0, close to the cylinder boundary;
to a fair degree, then, the dye traces also mark regions of strong vorticity.
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excellent photographs in the literature of these attached vortices
(Coutanceau and Bouard 1977; van Dyke 1982, pp. 28-30), the
early evolution of the wake at rather higher Reynolds number
(Prandtl and Tietjens 1934, pp. 279-280; Bouard and Coutan-
ceau 1980; van Dyke 1982, pp. 36-37; Perry et al. 1982; Loc and
Bouard 1985), the subsequent von Karman vortex street (Gold-
stein 1938, p. 552; Rouse 1946, p. 241; Rosenhead 1963, opp. p.
105; Batchelor 1967, plate 2; van Dyke 1982, pp. 4-5, 56-57;
Perry et al. 1982, opp. p. 90; Tritton 1988, pp. 25-26), and the
turbulent wake that occurs instead at still higher Reynolds
number (van Dyke 1982, p. 31; Tritton 1988, p. 30).

The von Karman vortex street: a simple model

We now model a fully formed vortex street (Fig. 5.14(d, e)) by
one set of line vortices of strength I' at z = na, and another set of
strength —T at z =(n + 3)a +ib, with n =0, +1, +2. . . (see Fig.
5.15). As in §5.6 we assume that each line vortex moves at the
local flow velocity due to everything other than itself, this being a
crude substitute for having finite patches of vorticity which move
according to eqn (5.9).

Consider any vortex. The local flow velocity due to the others
in the same row is zero, because their contributions cancel in
pairs. The y-components of velocity due to those in the other
row also cancel in pairs, but the x-components reinforce each
other to give a certain velocity V to the left (if I'>0). This
velocity is common to all the vortices, so the whole array moves
to the left at this speed, while maintaining its form.

4 o} - |
T [ J [ [ J o
b
l [ ] @ [ ] [ ]
- -/ . Y-
«—aq—>

Fig. 5.15. Line vortex representation of a von Karman vortex street.
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To find V, let us calculate dw/dz at, say, z = 3a + ib, where w
is the complex potential due to the whole of the bottom row. The
complex potential due to the member of that row at z = na may
be written as

il
——log(z — na
> 108( ),
but we note, as a preliminary, that an equally good repre-
sentation of this particular flow is

i
Y log(l — E)’ (n #0),

for the two differ only by an additive constant, which makes no
difference to the resulting flow. The complex potential due to the
whole of the bottom row can therefore be written

ir i
w=—;—210g(1—i) : logz——Zlog(l——)

T na 27 na
1F oo 22
)
o og[ nI_Il n2a’
= ;IJ; log(sm %) + constant, (5.29)

where we have used an identity drawn from complex variable
theory (e.g. Carrier et al. 1966, p. 97). Thus

L JES
dz 2a al’
whence
dw il imh I 7th
— =-— tan(—) =—— tanh( )
dz |,-40+i» 2a a 2a a
The whole vortex street therefore moves to the left with speed
r 7th
=L (). 530
2a an a (5-30)

This accounts for why the von Karman vortices in Fig. 5.14(d)
give chase to the cylinder, and why, relative to the cylinder, they
are not swept downstream at quite the free stream speed U.
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5.8. Instability of vortex patterns

Von Karméan went on to consider what happens if the vortices in
Fig. 5.15 are slightly displaced from their correct positions. He
showed that such displacements do not remain small as time
proceeds, so that the basic configuration is unstable, except in
the case

cosh %b =V2, i.e.b/a=0.281, (5.31)
when his analysis revealed no instability. The relevance or
otherwise of this special value of b/a to real vortex streets has
caused much consternation over the years, the issue being
clouded by the subsequent discovery that the system is more
weakly unstable even in the case (5.31).

Another classical problem involves the stability of n line
vortices spaced regularly around the circumference of a circle of
radius a. Now, it is obvious that two vortices of strength T,
placed a distance 2a apart, will rotate about the mid-point of the
line joining them with angular velocity I'/4wa®, because each
induces a velocity I'/4sta perpendicular to that line at the position
occupied by the other (Fig. 5.16(a)). More generally, it can be
shown that n equal line vortices can maintain themselves in a
circular array by rotating with angular velocity

r
47a*’

Q=(n-1) (5.32)

where I' denotes the circulation around any one such vortex
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(a) (b) (c)
Fig. 5.16. Stable rotating configurations of 2, 6, and 11 line vortices.
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(Exercise 5.14). The stability of this motion was first investigated
in 1883 by J. J. Thomson, who later discovered the electron. He
concluded that the motion was stable when n <7 and unstable
when n =7, but the case n =7 was subsequently shown to be
neutrally stable by Havelock in 1931. It is chastening to find this
apparently academic problem having very real application, nigh
on a century after Thomson’s analysis, to superfluid
hydrodynamics.¥ In liquid helium, at temperatures extremely
close to absolute zero, unusual line vortices are observed, each
with a circulation I which is quantized and equal to fi/m, where
#i is Planck’s constant and m is the mass of the *He II atom.
These vortices can be observed rotating in various types of array
(e.g. Fig. 5.16(c)), but, notably, only in the singly circular arrays
of Fig. 5.16(a, b) if n <7, as the stability results would suggest
(see the photograph in Yarmchuk et al. (1979) and Table II of
Campbell and Ziff (1979)).

We turn now to the evolution of finite patches of concentrated
vorticity. An early example was provided by Kirchhoff in 1876,
who showed that an elliptical patch of uniform vorticity @ will
rotate with angular velocity

ab

Q:
@+b2?

(5.33)

where a and b denote the semi-axes of the elliptical region (see
Lamb 1932, p. 232). Some years later, in 1893, Love showed that
this simple motion is unstable if b/a is greater than 3 or less than
i, and the subsequent evolution of such a vortex has been
investigated by Dritschel 1986 (see especially his Figs 12—-14).

A circular array of n finite patches of vorticity—a sort of
smeared-out version of Fig. 5.16(a, b)—turns out to be unstable
even when n <7, if the patches are big enough, the critical size
being larger for smaller values of n (Dritschel 1985, see especially
his Fig. 2 and §7).

We remarked above that the classical von Karméan vortex
street is stable for just one spacing ratio b/a =0.281, at least
according to linear theory (exemplified by Exercise 5.13). If the

+ This field seems to provide a wealth of other exotic applications of classical,
strictly inviscid, flow theory (see Roberts and Donnelly 1974, especially pp.
184-186, 196-199, 210-211; also Donnelly 1988).
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vortices have small but finite cross-sectional area A, there
remains just one spacing ratio for which the street is stable on
linear theory, this ratio being close to the von Karmén value and
only weakly dependent on the small parameter A/a® (Meiron et
al. 1984). This hard-earned result was somewhat unexpected (but
see the survey of the whole problem in the introduction to
Jimenez (1987)).
The evolution of a continuous 2-D distribution of vorticity
_Ov Ju

w—a—a—y

is of course governed by the vorticity equation (5.9)

dw dw dw
+u =0 5.34
ar Yoax Ve (5-34)

together with

ou, dv_
ox OJy -
Now, eqn (5.34) implies that w is conserved for an individual
fluid element, and the incompressibility condition (5.35) implies

that the element’s cross-sectional area in the x-y plane is
conserved, so

0. (5.35)

f w dS = constant, (5.36)

the integral being taken over the whole plane of the flow. There
are other relationships of this kind:

f xw dS = constant, f yw dS = constant (5.37)

(see Batchelor (1967, p. 528), and see Exercise 5.15 for the
equivalent result for line vortices), and such conserved quantities
provide valuable constraints on how distributions of vorticity can
evolve.

A particularly interesting case is that of wvortex merging.
Suppose that, at ¢t =0, two circular patches of uniform and equal
vorticity, each of radius R, have centres a distance d apart. Then
if d/R is greater than about 3.5 the (deformed) patches end up
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rotating about a common centre, much as do two line vortices of
equal strength (Fig. 5.16(a)). But if d/R is less than 3.5 the
vortex patches quickly merge, and to satisfy the conservation
laws they do this by wrapping around each other with
irrotationally moving fluid entrained between them like the jam
in a Swiss roll (Aref (1983), and see also the outstanding
photographs of a computer simulation of this process by Seren et
al., in Reed (1987)).

While two nearby like-signed vortices tend to merge in this
way, two nearby patches of vorticity of opposite sign stand a
chance of escaping from the vicinity of other such patches,
essentially as a lone vortex pair. An interesting example of this
occurs in the work of Cattaneo and Hughes (1988; see especially
their Figs 6 and 8). This behaviour has also been observed in the
truly remarkable soap-film experiments of Couder and Basdevant
(1986). By towing a cylinder through a soap film they produce
some extraordinary phenomena which are, presumably, lurking
in the 2-D equations of motion, but which are usually obscured
in more conventional experiments by an assortment of 3-D
instabilities (see especially their Figs 3 and 7).

5.9. A steady viscous vortex maintained by a secondary
flow

The Helmholtz vortex theorems are about the convection of
vortex lines with the fluid and the intensification of vorticity
when vortex lines are stretched. In a viscous fluid there is also
diffusion of vorticity (see §§2.3-2.5), and the three processes
correspond, respectively, to the second, third, and fourth termis
in the vorticity equation (2.39):
on )
m +((u-VYo=(o-V)u+ vVao. (5.38)
There is one exact solution of the Navier—Stokes equations—
known as the Burgers vortex—which involves all three processes.
It is essentially the vortex of Fig. 2.12, but with the radially
outward diffusion of vorticity countered by a secondary flow (Fig.
5.17) which (i) sweeps the vorticity back towards the axis and (ii)
intensifies the vorticity by stretching fluid elements in the
z-direction. The result is a steady, rather than decaying, vortex
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Fig. 5.17. 'The Burgers vortex.

of the form

I
r=_l ’ z = ’ l— l_e—a’rzm 5.39
u lar, wu,=az Ug 2m( ) (5:39)
(Exercise 5.19), where >0 and I' are constants. The velocity
profile is sketched in Fig. 5.18.
The vorticity

— al’ —ar?/av
w=_—¢ e, (5.40)
is concentrated in a vortex core of radius of order (v/a)z, which
is smaller for small viscosity fluids and for strong secondary
flows, as one would expect.

The Burgers vortex provides an excellent example of a balance
between convection, intensification and diffusion of vorticity, and
it is easy to show that without diffusion (v =0) the secondary
flow makes the vortex stronger and stronger as time proceeds
(Exercise 5.18).

The Burgers vortex is, unfortunately, untypical of real vortices
in one important respect; the radius of the core is firmly linked to
the strength of the secondary flow (via «), but the magnitude of
the rotary flow is not—I" and « are both free parameters in eqn
(5.39). This is essentially because there are no rigid boundaries.
For real vortices the presence of rigid boundaries plays a crucial
part by coupling the magnitudes of the rotary and secondary
flows (see §8.5.)
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Fig. 5.18. The variation of u, with r in a Burgers vortex.

5.10. Viscous vortices: the Prandtl-Batchelor theorem

In the 2-D, steady motion of an inviscid fluid, the equation for
the vorticity @ = wk reduces to

(u-V)o =0,

(see eqn (1.29)), so that w is constant along any streamline. We
may write, then,

0 =[0, 0, w(y)], (5.41)

the stream function vy being constant along streamlines, as
implied by its definition:

u=9oy/dy, v=-—-0vy/dx

(see eqns (4.5) and (4.7)). The representation (5.41) emphasizes
how w may well be a different constant on different streamlines.

In some cases, as in Fig. 1.8, w can be determined everywhere
without much more ado. In the case of Fig. 1.8, all streamlines
can be traced back far upstream, where the vorticity is zero. It
follows immediately that the vorticity is zero everywhere.
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What happens, however, if there is a region of closed
streamlines in the flow?

As long as we consider wholly inviscid theory there is in fact
nothing we can say about how @ might vary from one streamline
to another in such a region. We are, however, as usual, only
interested in inviscid theory insofar as it may describe the
behaviour of a real fluid in the limit v— 0, and for the steady
flow of a fluid of non-zero (but constant) viscosity v it is the case
that

f(v/\m)-dx=o, (5.42)

where C is any closed streamline (Exercise 5.20).

It is important to note that this integral constraint is exact, and
holds for any non-zero v, however small. Now, in the limit
v— 0, eqn (5.41) holds and

Jw OJw oy dy
0)0) =(_)__)0)= ’ (_)__) )
VAl @) dy ox @'(¥) dy ox
Combining this with eqn (5.42) we obtain
w'(zp)f u-de=0, (5.43)
C

the function w’'(y) being taken outside the integral because vy is
a constant on the streamline C. The line integral is of course the
circulation round the closed streamline C, and will be zero only
in exceptional cases; in a typical closed streamline region (such as
either of the two eddies in Fig. 5.14(b)) the flow will be in the
same sense all round C. So w'(y) is zero, and this is the
Prandtl-Batchelor theorem: in steady, 2-D viscous flow the
vorticity is constant throughout any region of closed streamlines
in the limit v— Q.

The computations by Fornberg (1985) of steady flow past a
circular cylinder provide a recent example of the theorem at
work. These computations give two attached eddies in the wake
of the cylinder, so that there are two regions of closed
streamlines. Such flows are unstable at high Reynolds number,
but they are nevertheless of some interest and importance. In
particular, the vorticity in each closed streamline region becomes



Vortex motion 191

progressively more uniform as the Reynolds number R increases,
and at R =600 it looks very uniform indeed (see Fornberg’s
Fig. 9).

Exercises

5.1. Let a closed circuit C of fluid particles be given, at t =0, by
x = (acoss, asins, 0), 0ss<2m,

so that each value of s between 0 and 27 corresponds to a particular
fluid particle. Let C(¢) be given subsequently by

x=(acoss +aatsins, asins, 0), 0<s<2m

Find the velocity u(s,t) of each fluid particle, and show that the
particles s =0 and s =s remain at rest. Find the acceleration of
each fluid particle, show that

u=(ay,0,0),

and sketch how the shape of C(¢) changes with time.
Now, by definition,
2n a
r= u-dx=f u- == ds.
c@) o os
Calculate the last integral explicitly at time ¢, confirming that it is
independent of ¢, in accord with Kelvin’s circulation theorem.

5.2. Let C(t) denote a closed circuit composed of the same fluid
particles as time proceeds. Then
d D
=] wede=| =-dr (5.44)
dt Jeo cwy Dt
To prove this, let x = x(s, t) be a parametric representation of C(¢), so
that each fluid particle has, throughout the motion, a particular value of
s lying between, say, 0 and 1. Then

d d (' ox ) dx
CH RS YU T
dt Je ah BT e\ )

where J/3t denotes differentiation with respect to ¢ holding s constant, s
being the variable of integration and the limits on s being fixed.
Continue the analysis to establish the result, eqn (5.2).

5.3. Let an ideal fluid be in 2-D motion. By virtue of eqn (5.9) the
vorticity @ of any fluid element is conserved. The fluid element must
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also conserve its volume, and because it is not being stretched in the
z-direction its cross-sectional area 4S in the x—y plane must therefore be
conserved. It follows that the integral

fwdS

taken over a dyed cross-section S in the x—y plane, must be independent
of time. By Stokes’s theorem, or by Green’s theorem in the plane
(A.24), it follows that I', the circulation round the dyed circuit which
forms the perimeter of S, must also be independent of time.

This is in some respects a nice way of seeing how Kelvin’s circulation
theorem comes about. It is, however, a wholly 2-D argument, and that
theorem is certainly not restricted to 2-D flows. What is the other
serious limitation to the above point of view?

5.4. Show that if we relax the assumptions of incompressibility and
constant density in §5.1 then
[ g 12
dt Jewy p cwy POS
A barotropic fluid is one for which the pressure p is a function only of
the density p, so that p =f(p). Kelvin’s circulation theorem holds for
such a fluid; apply Stokes’s theorem to the first integral above to give
one demonstration of this. What unnecessary assumption is involved in
this argument? Construct an alternative proof based on the second
integral above.
Use Exercise 1.5 to show that the vorticity equation for a barotropic
fluid is

D/o\ o

—(=)=—"-Vu, 5.45

Dt (p) p “ ( )
and note that this is just the vorticity equation (5.7), but with ®/p in

place of w.

As Kelvin’s circulation theorem holds, eqn (5.6) is independent of
time for a barotropic fluid. Modify the thin vortex-tube argument
following the proof of (2) in §5.3 to show that for a barotropic fluid it is
o/p, rather than o, that varies in proportion to /, the length of a small
section of the tube.

5.5. Prove that the quantity (5.6) is, at any time, the same for all
cross-sections of a vortex tube.

5.6. Show that if a(x, t) is any suitably smooth vector field and

(1) = a - dx,

Cc@)
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where C(t) is a circuit consisting of the same fluid particles as time
proceeds, then

d€ da
—= —+(V - dx.
dt L(,) { ot (Vaa)a u} dr

5.7. Use eqn (5.10) to show that the vorticity equation (5.7) reduces,
in the case of axisymmetric flow, to eqn (5.12):

D/w
—|=)=0.
Dt (R)
5.8. Inviscid fluid occupies the region x =0, y =0 bounded by two
rigid boundaries x =0, y=0. Its motion results wholly from the
presence of a line vortex, which itself moves according to the Helmholtz
vortex theorems. Show that the path taken by the vortex is
1 1
pERge

= constant.

When an aircraft takes off, the two vortices that trail from its wing-tips
(81.7) are observed to move downwards under each other’s influence
and then to move further apart as they approach the ground. Why is
this?

5.9. A Bernoulli theorem for unsteady irrotational flow. Use the
momentum equation for an ideal fluid in the form (1.14) to show that for
an irrotational flow:

°p P, ..,

—+S+ 3+ x=F(1),

3t " p U T X (6)
where ¢ is the velocity potential and F(¢) is a function of time alone.
(Note, too, that F(t) may be taken to be zero if desired, for its presence
is equivalent to adding [g F(t,) dt, to the velocity potential ¢, which is of
no consequence, the velocity field being u = V¢.)

5.10. Inviscid fluid occupies the region x =0, and there is a plane rigid
boundary at x =0. A line vortex of strength I is at (d, y,). Explain why
the instantaneous complex potential is
ir : ir :
w= —Z—J;log(z —d —1iy,) +2—nlog(z +d —iy,),
and why the vortex moves downward, parallel to the boundary, in such
a way that
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Consider, for simplicity, the motion when y,=0. Show that at that
instant

I'd o¢ I’
_n,( 2 5. and = T 2.2 2
y +d°) ot 4n*(y* +d°)

v= onx =0,

and hence use Exercise 5.9 to calculate the net force

f pdy
exerted on the wall x = 0.

What would the force on the wall be if the vortex were somehow fixed
at (d, 0)?

[This raises questions about the forces involved on the fluid in the core
of a vortex when it moves in accord with Helmholtz’s theorems, and
Lamb (1932, p. 222) makes some interesting observations on the
matter. |

5.11. Consider a symmetric vortex street in which one set of line
vortices of strength I is at z = na and the other set, of strength —TI, is at
z =na +ib. Show that the whole array may, in principle, maintain its
form by moving to the left with speed

r b
V= 2_a coth(%).

[This configuration is, however, unstable according to linear theory
for all values of the spacing ratio b/a; there is no exceptional value
corresponding to eqn (5.31). It is still not entirely clear whether this is of
any significance in connection with the observed asymmetry of real von
Karman vortex streets, particularly as symmetric streets have, it seems,
been observed, albeit under somewhat artificial circumstances (see
Taneda 1965; Figs 8a and 9).]

5.12. Suppose that there is, in y = 0, the irrotational flow
u=-ax, v =ay,

where a is a positive constant, and let there be a plane rigid boundary at
y =0. Suppose, in addition, there are two line vortices, one of strength
—I at z = z,(¢) and the other of strength I at z = 2,(¢), where z =x +iy.
Write down the instantaneous complex potential for the whole flow by
the method of images and, by letting the vortices move with the fluid
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according to Helmholtz’s first vortex theorem, show that

dz, i [ 1 1 + 1 ] o

— e — p— p— Zz ,

de 27 21— 2, Z;— 22 Z,— Zl 1

dz, il [ 1 1 N 1 ] . (5.46)
—_—— — _— - Z y

dt 2” 2 — 24 = 21 2= 22 ’

where an overbar denotes the complex conjugate.
Verify that the vortices may remain at rest at

Zl=d(_1+i), Zz=d(1+i),

where d*> =T'/8na (see Fig. 5.19(b)).
[This system, when rotated clockwise through 90°, may be regarded as
a simple model for the attached vortices in Fig. 5.14(a, b).}]

5.13. Investigate the stability of the vortex configuration in Fig. 5.19(b)
as follows. Introduce dimensionless variables

z1=2z,/d, z,=2,/d, t' =41,

and rewrite eqn (5.46) accordingly. Then disturb the vortices slightly,
so that

z1==1+1+£(1), z;=1+1+ &(),

where £,(t) and &,(¢) are complex variables with moduli which are
small compared to 1. Expand the right-hand sides of eqn (5.46)
binomially for small |&,| and |¢,|, and retain only terms of first order in
small quantities to obtain

48, = —i(e, — &)+ 3(e. — &) — &4,
4¢,=i(e, — &) + %(82 — &) — &,

where the dot denotes differentiation with respect to ¢'.

A

L
(a) (b)

Fig. 5.19. Irrotational flow away from a stagnation point (a) without
and (b) with ‘attached’ vortices.
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By introducing suitable new dependent variables in place of ¢, and &,,
or otherwise, solve these equations, and thus show that the vortex
configuration is unstable, in that any small initial difference in the
y-displacements of the two vortices will grow exponentially with time.

[An analysis of this kind with a cylindrical, rather than plane
boundary was first carried out by Foppl in 1913, with similar result, and
it was the basis for an early theory of how the asymmetry in the
downstream positions of the two vortices in Fig. 5.14(c) might come
about. |

5.14. Establish that an array of n line vortices of strength I', spaced
equally around a circle of radius a, can rotate with angular velocity

Q=(n-1)

drma®’

5.15. Let there be line vortices of strength I', at z =z, where
k=1,2,...,n, each moving under the influence of all the others. Show
that if the sth vortex has coordinates (x,, y,), then

dr,_ dy,_<ig T

1—=—= .
de dt 2m;2iz— 2z

k#s

Hence show that Y,7_, I''x,; and Y., [, y, are both constant.
5.16. The helicity of a blob of fluid is defined as

ju-de,
| %4

where the integral is taken over the volume of the blob. Using
Reynolds’s transport theorem (6.6a) we find that the rate of change of
the helicity of a dyed blob of incompressible fluid is

LDEt (u-w)dV.

Show that if ® - n =0 on S, the boundary of V, then the helicity of the
blob is conserved.

[The helicity of two closed vortex tubes is crucially dependent on
whether or not they are linked (Moffatt 1969), and its conservation is
then related to the immutability, by virtue of the Helmholtz theorems,
of the linkage between such tubes, which led Kelvin to his theory of
vortex atoms (see Fig. 5.8).]

5.17. Ertel’s theorem (1942). Consider the vorticity equation in its form
(1.24):
ow

a—t+V/\(m/\u)=0.
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Take the scalar product with VA, where A(x, ¢) is any scalar function of
position and time that we care to choose, and then use vector identities
to show that

D DA
~(®-VA) = (0-V)—=.
p; (@ V) =(e- V)

Hence deduce that if A(x, t) is any scalar quantity which is conserved by
individual fluid elements, then o - VA is likewise conserved.

[This is actually a special case of the theorem, which is not restricted
to incompressible fluids of constant density.}]

5.18. An intensifying vortex. Consider the flow

_ dar {9 wr }_ .{9 . }
x=e X cos a(e 1) — Ysin a(e 1)

L

-

Q Q
= —ia" {_ at __ } : { at _ }
y=e Y cos a(e 1){ + X sin P (e”-1)

-

z=Z7Ze",
where (x, y, z) denotes the position at time ¢ of the fluid particle that
was, at t =0, at (X, Y, Z) (see Exercise 1.7). Show that

=(—jax — Qye™, —jay + Qxe™, az)
and
o = (0, 0, 2Qe™).

Verify that V- u =0. Show too that the inviscid vorticity equation (5.7)
is satisfied, and note how it describes the rate of change of the vorticity
in terms of the stretching of the vortex lines resulting from the increase
of w with z.

Briefly describe the above flow.

5.19. The Burgers vortex. Seek an exact, steady solution to the
Navier—Stokes equations of the form

u=—jzare, + uy(r)e, + aze,,
where « is a positive constant. Note that w = we,, where

1d
= ;’5 (ruo).

Verify that V - u =0, and show that the equations of motion imply

. dw
—3arw =v—_—

dr’
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Deduce that

r 2
- 1_ —ar</4 ,
o ZJrr( © )

where I' is an arbitrary constant.

5.20. Steady viscous flow with closed streamlines. The steady momen-
tum equation for an incompressible viscous fluid of constant density p is

(u-Vu=-V(p/p)+ vVu.

Rewrite the first and last terms by means of suitable vector identities,
and then integrate both sides round a closed streamline C to show that

VL(V/\(!))'dx=O,

where ® =V A u.

5.21. Cauchy’s vorticity formula (1815). Let a fluid particle be at
position X at t=0, and let the vorticity there be w, at t =0. Let the
subsequent motion of the fluid particle be described by x =x(X, ¢) as,
for example, in Exercise 5.18. (This description will have a unique
inverse X = X(x, t).) Let the vorticity of the fluid at x, the position of
the particle at time ¢, be @. Then Cauchy proved that @ is related to w,
by

ox;

—_.’ .=1’2’ ’
aX, i 3

W; = Wy,

where x = (x,, x5, x3), X =(X,, X,, X3), and summation over j=1, 2, 3
is understood, by virtue of the repeated suffix.

Confirm, first, that this formula holds in the particular case of
Exercise 5.18, and then prove that it holds in general.

[One way is to use Ertel’s theorem (Exercise 5.17) on three scalar
quantities that are rather trivially constant following a particular fluid
element; this gives ®, in terms of o, which then has to be inverted.]

5.22. Alternative proof of the laws of vortex motion. Let X = X(s)
denote a line of dyed particles in the fluid, at t =0, s denoting distance
along the line at that time, and suppose that the line is also a vortex line.
Use Cauchy’s vorticity formula (Exercise 5.21) to show that the dyed
particles continue to lie on a vortex line. Investigate, too, the magnitude
of the vorticity, ||, in the neighbourhood of any particular dyed
segment, showing that || increases with time in proportion to the length
of that segment.
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Miscellaneous exercises on irrotational flow

5.23. Ideal fluid moves irrotationally in a simply connected region V
bounded by a closed surface S, so that u = V¢, where ¢ is the velocity
potential. Show that

Vi¢p =0,
and that the kinetic energy

T=3p f u’dv
\ 4
can therefore be written in the form
o
T=1p j ¢ —9 ds.
s on

5.24. Uniqueness of irrotational flow. Ideal fluid moves in a bounded
simply connected region V, and the normal component of velocity u - n
is given (as f(x, t), say) at each point of the boundary of V. Show that
there is at most one irrotational flow in V which satisfies the boundary
condition.

[This explains why such flows cannot, typically, satisfy a no-slip
condition as well. The theorem may, in addition, be extended to
encompass unbounded simply connected regions of irrotational flow, as
in the case of a sphere moving through a fluid at rest at infinity.}]

5.25. Kelvin’s minimum energy theorem. Consider the various smooth
velocity fields u(x, t) in a simply connected region V that satisfy (i)
V-u =0 and (ii) the condition u - n = f(x, t) on S, the boundary of V.
(We suspend, then, for the present, all consideration of whether or not
the velocity fields would be dynamically possible.) Show that the
(unique) irrotational flow has less kinetic energy than any of the others.

5.26. In §5.5 the problem of irrotational flow past a rigid sphere was
formulated, and solved, in terms of the Stokes stream function W.
Re-work the problem in terms of the velocity potential ¢, which satisfies
the axisymmetric version of Laplace’s equation (5.4), i.e.

10 28¢) 1 0 ( : 8¢)
S— + — —)=0.
2 aor (' or) T Psin636 \"" 954) =0

Check that the ‘slip velocity’ on the sphere is eqn (5.22), as before.

Show that the pressure distribution on the sphere is symmetric, fore and
aft, so that the drag on the sphere is zero.

5.27. A sphere of radius a moves in a straight line with speed U(¢)
through inviscid incompressible fluid which is at rest at infinity. Explain
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why, at the instant the sphere passes the origin,

o¢
—=U(t 0 =q,
" (t)cos onr=a
where r and 6 are spherical polar coordinates, the polar axis (6 = 0)
being in the direction in which the sphere is moving. Show that at the
instant in question

_ U@wa’

¢ - 2’,2

Calculate the kinetic energy of the instantaneous fluid motion, and
show, by considering the rate of working of the sphere on the fluid, that
the sphere experiences a drag force

cos 6.

dU
D=M=
7t

where M denotes the mass of liquid displaced by the sphere.

5.28. Two plane rigid boundaries 6 = £Q¢ are rotating with equal and
opposite angular velocities 2, and there is inviscid fluid in the region
between them, 0 <r <o, —Qt< 0 <Qt. The flow is irrotational, so a
velocity potential ¢(r, 0, t) exists which satisfies the 2-D version of eqn
(5.4) in cylindrical polar coordinates, i.e.
12 (ra—d)) +lzizi:=0.

ror\ or r-o6
Use the method of separation of variables to find the velocity potential
¢(r, 6, t), and then use eqn (4.9) to find the stream function y(r, 6, ¢).
Sketch the streamlines at time ¢. Find the pressure p on the boundaries
as a function of r and ¢.

Show that the whole solution breaks down when the angle between
the boundaries increases to x, but that until that time the origin is a
stagnation point for the flow.

[This last result is of practical significance in connexion with the ‘fling’
in Fig. 5.3.]

5.29. Ideal fluid occupies the gap a <r <b between two infinitely long
cylinders, which are fixed. The irrotational flow between them is

where I is a constant. ‘As there is no normal velocity on either bounding
surface, r =a or r = b, we find from the last result in Exercise 5.23 that
the kinetic energy is zero.’ This is evidently absurd. Explain the fallacy,
and show how to use the last result in Exercise 5.23 correctly to give the
kinetic energy of the flow.



