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Preface

This book is an introduction to fluid dynamics for students of
applied mathematics, physics, and engineering. The main
mathematical requirements are the vector calculus and simple
methods for solving differential equations. Exercises are pro-
vided at the end of each chapter, and extensive hints and
answers are offered at the end of the book. In order to indicate
how the text is organized it is first necessary to say a little
about the subject itself.

It is a matter of common experience that some fluids are more
viscous than others. No reader will be surprised to learn that the
‘coefficient of viscosity’ u i1s much greater for syrup than it is for
water. Many fluids, such as water and air, hardly seem to be
viscous at all. It is natural, then, to construct a theory based on
the concept of an inviscid fluid, i.e. one for which u is precisely
zero. This is how the subject first developed, and this is how we
begin, in Chapter 1.

Yet inviscid theory has its dangers. Careful analysis of the
equations of motion for a viscous fluid shows that strange things
can happen in the limit u— 0, so that a fluid with very small
viscosity may behave quite differently to a (hypothetical) fluid
with no viscosity at all. For this reason an elementary account of
viscous flow appears very early in the book, in Chapter 2. The
aim there, particularly in §§ 2.1 and 2.2, is to introduce some of
the key ideas as simply as possible. In order to do this the viscous
flow equations are merely stated; their derivation from first
principles appears later.

While inviscid theory has to be used with caution there are
major areas of fluid dynamics in which it is extremely successful,
and one of these is wave motion (Chapter 3). Another is flow
past a thin wing (Chapter 4), provided that the wing makes only
a small angle of incidence with the oncoming stream. Inviscid
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theory has a further role in the study of vortex motion (Chapter
5), which turns out to be central to much of fluid dynamics,
largely through the elegant theorems of Kelvin and Helmholtz.

In Chapter 6 we establish the equations of viscous flow from
first principles, although some readers may wish to consult this
chapter quite early. In Chapter 7 we explore very viscous flow,
i.e. the case in which u is large (in some appropriate sense). The
flow problems here have some novel features and are the object
of much current research. We return to fluids of low viscosity in
Chapter 8, focusing on thin ‘boundary layers’, where viscous
effects are of crucial importance, no matter how small u happens
to be. In the final chapter we examine the instability of fluid flow,
which, together with boundary layer separation, gives rise to
some of the deepest and most challenging problems in the
subject.

I am extremely grateful to all the students who have tried out
successive drafts of this book. I would also like to thank Brooke
Benjamin, David Crighton, Raymond Hide, Tom Mullin, Hilary
Ockendon, John Ockendon, Norman Riley, John Roe, Alan
Tayler, and Robert Terrill for their comments on various
chapters.

Finally, I take the opportunity to acknowledge all the help I
received, when I was first learning the subject, from Raymond
Hide at the Meteorological Office and from Norman Riley,
Michael Glauert, and others at the University of East Anglia.

Jesus College, Oxford
April 1989 D.J. A.
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1 Introduction

1.1. An experiment

Take a shallow dish and pour in salty water to a depth of 1cm.
Make a model wing with a length and span of 2cm or so,
ensuring that it has a sharp trailing edge. (One method is to cut
the wing out of an india rubber with a knife.) Dip the wing
vertically in the water and turn it to make a small angle of attack
« with the direction in which it is to be moved. Put a blob of ink
or food colouring around the trailing edge; a thin layer of this
should then float on the salt water.

Now move the wing across the dish, giving it a clean, sudden
start. If a is not too large there should be a strong anticlockwise
vortex left behind at the point where the trailing edge started, as
in Fig. 1.1.

Fig. 1.1. The starting vortex.

A ‘starting vortex’ of this kind forms a crucial part of the
mechanism by which an aircraft obtains lift, and we shall use
aerodynamics in this chapter as a means of introducing some
fundamental concepts of fluid flow.

Aerodynamics is, arguably, well suited to this purpose, but it
goes without saying that the theory of fluid motion finds
application in a wide variety of different fields. Within this book
alone we may point to waves on a pond (§3.1), the instability of
flow down a pipe (§9.1), the hydraulic jump in a kitchen sink
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(83.10), the interaction of two smoke rings (§5.4), the jet stream
in the atmosphere (§9.8), the motion of quantum vortices in
liquid helium (§5.8), the flow of volcanic lava (§7.9), the
swimming of biological micro-organisms (§7.5), and the spin-
down of a stirred cup of tea (§8.5) as examples of the breadth
and diversity of the subject.

1.2. Some preliminary ideas

The usual way of describing a fluid flow is by means of an
expression

u=u(xt) (1.1)

for the flow velocity # at any point x and at any time ¢. This tells
us what all elements of the fluid are doing at any time; finding
eqn (1.1) is usually the main task.

In general we must expect this task to be quite difficult. Let us
take Cartesian coordinates, for example, and denote the three
components of u by u, v, and w. Then eqn (1.1) is a convenient
shorthand for

u=u(x,y, z,t), v=u(x,y, z,t), w=w(x,y, z,t).

There are, however, special classes of flow which have simplify-
ing features.
A steady flow is one for which

Ju
—=0 1.2
=0, (1.2)

so that # depends on x alone. At any fixed point in space the
speed and direction of flow are both constant.
A two-dimensional (2-D) flow is of the form

u=[ulx,yt),vxy,t),0], (1.3)

so that u is independent of one spatial coordinate (here selected
to be z) and has no component in that direction.
A two-dimensional steady flow is thus of the form

u=[u(x,y), v(x, ), 0] (1.4)
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These are idealizations. No real flow can be exactly two-
dimensional, but in the case of flow past a fixed wing of long span
and uniform cross-section we might reasonably expect a close
approximation to 2-D flow, except near the wing-tips.

Before exploring such a flow more closely it is useful to
introduce the concept of a streamline. This is, at any particular
time ¢, a curve which has the same direction as u(x, t) at each
point. Mathematically, then, a streamline x =x(s), y =y(s),
z = z(s) is obtained by solving

(:bc/ds= dy/ds= dz/ds

u v w

(1.5)

at a particular time ¢.

To imagine streamlines it can be convenient to consider a
widely used experimental technique which involves putting tiny,
neutrally buoyant polystyrene beads into the fluid. One particu-
lar plane of the fluid region is then illuminated by a collimated
light beam, and the beads reflect this light to the camera, thus
appearing as tiny pin-pricks of light if they are stationary. When
the fluid is moving, however, the beads get carried around with
it, so that a short-exposure-time photograph consists of short
streaks, the length and direction of each one giving a measure of
the fluid velocity at that particular point in space. As an example,
we show in Fig. 1.2 a streak photograph for the flow (with
uniform velocity at infinity) past a fixed wing. Because this is a
steady flow the streamline pattern is the same at all times, and a
fluid particle started on some streamline will travel along that

Fig. 1.2. Streamlines for steady flow past a fixed wing, as inferred from
a streak photograph.
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streamline as time proceeds. (In an unsteady flow, on the other
hand, streamlines and particle paths are usually quite different;
see Exercise 1.8.)

It is evident from Fig. 1.2 that even though the flow is steady,
so that u is constant at a point fixed in space, u changes as we
follow any particular fluid element. In particular—changes in
direction of flow aside—an element riding over the top of the
wing first speeds up and then slows down again.

Rate of change ‘following the fluid’

This notion is of fundamental importance in fluid dynamics.

Let f(x, y, z, t) denote some quantity of interest in the fluid
motion. It could, for example, be one component of the velocity
u, or it could be the density p. Note first that 3f/3¢t means the
rate of change of f at fixed x, y, and z, i.e. at a fixed position in
space.

In contrast, the rate of change of f ‘following the fluid’, which
we denote by Df /D¢, is

Df_d
E—dtf[x(t)’ y(t)’ Z(t), t]’

where x(t), y(¢), and z(¢) are understood to change with time at
the local flow velocity u:

dx/dt = u, dy/dt = v, dz/dt=w
so as to ‘follow the fluid’. A simple application of the chain rule
gives
Df_ofdx ofdy ofdz of
Dt oxdt Odydt ozde ot

whence
Df_of o o &
Dt ot “ax Vo "oz
l.e.
Df 9
Df f+(u V)f. (1.6)

By applying eqn (1.6) to the velocity components u, v, and w
in turn it follows, in particular, that the acceleration of the fluid
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element at x is

Du Ou

—=—+(u-Viu 1.

Dr 5 T Vu (1.7)
As an immediate check on eqn (1.7) consider fluid in uniform

rotation with angular velocity Q, so that
u=-Qy, v = Qx, w =0.

Now Ju/at is zero, because the flow is steady, but

o
= —-Q%x, y, 0).

This is just as expected; it represents the familiar centrifugal
acceleration Q?r towards the rotation axis.

According to eqn (1.6) in any steady flow the rate of change of
f following a fluid element is (u - V)f, and it is quite easy to see
why this should be so. Let e, denote a unit vector which is always
parallel to the streamlines and in the same sense as the flow.
Then

3 3
(u-Vu= (—Qy—x+ Qxa—y)(—Qy, Qx, 0)

u-Vf=lule-Vf=lul=-,
os
where s denotes distance along a streamline. Now, 9f/3s is the
rate of change of f with distance along a streamline, so
multiplying it by the flow speed |u| evidently gives the rate of
change with time as we follow a fluid element along that
streamline.
The equation

(u-V)f =0, (1.8)

which arises at some important stages in the following theory,
thus implies that f is constant along a streamline. It should be
emphasized that eqn (1.8) offers no information at all about
whether f might be a different constant on different streamlines.
Suppose, for instance, that the flow is everywhere in the
x-direction, so that eqn (1.8) reduces to 3f/3dx = 0. This equation
says that f is independent of x, but it contains no implication
about how f might depend on y, z, or ¢.
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Likewise, the equation

bf_

0, .
Dr (1.9)

which also arises in the following theory, implies that f is a
constant for a particular fluid element, and this follows directly
from the definition of Df/Dt above. It does not preclude
different elements having different values of f; it just implies that
each such element will retain whatever value of f it started with.
Finally, it is worth remarking that there will be occasions on
which we wish to follow not just an infinitesimal fluid element
but a finite blob consisting always of the same fluid particles.
Such a blob, which will of course deform as it moves about, is
typically called a ‘material’ volume in the literature, but we shall
freely describe it instead as ‘dyed’, with the understanding, of
course, that no diffusion of this imaginary dye is envisaged. Such
terminology can become rather colourful, but if it evokes a sharp
mental picture of a moving and deforming blob of fluid, as
opposed to some region fixed in space, it serves its purpose.

1.3. Equations of motion for an ideal fluid

In this text we define an ideal fluid as one with the following
properties:

(1) It is incompressible, so that no ‘dyed’ blob of fluid can
change in volume as it moves.

(ii) The density p (i.e. the mass per unit volume) is a constant,
the same for all fluid elements and for all time ¢.

(ili) The force exerted across a geometrical surface element
n S within the fluid is

pn 8S, (1.10)

where p(x, y, z, t) is a scalar function, independent of the
normal n, called the pressure. (To be more precise, eqn
(1.10) is the force exerted on the fluid into which n is
pointing by the fluid on the other side of 4S.)

There is, of course, no such thing in practice as an ideal fluid.
All fluids are to some extent compressible, and all fluids are to
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some extent viscous, so that adjacent fluid elements exert both
normal and tangential forces on one another across their
common interface. For the time being, however, we explore
some consequences of the assumptions (i)—(iii).

To examine the implications of (i), consider a fixed closed
surface S drawn in the fluid, with unit outward normal n. Fluid
will be entering the enclosed region V at some places on §, and
leaving it at others. The velocity component along the outward
normal is u - n, so the volume of fluid leaving through a small
surface element 6§ in unit time is # - n S. The net volume rate
at which fluid is leaving V is therefore

]u-ndS.
S

But this must plainly be zero for an incompressible fluid, and on
using the divergence theorem we find that

JV-udV=0.
| %4

Now, this must be true for all regions V within the fluid.
Suppose, then, that V - u is greater than zero at some point in the
fluid. Assuming that it is continuous, V - u will be greater than
zero in some small sphere around that point, and by taking V to
be such a sphere we violate the above equation. The same
applies if V - u is negative at some point. We thus conclude that

V.u=0 (1.11)

everywhere in the fluid.

This incompressibility condition is an important constraint on
the velocity field u in virtually the whole of this book.t

To examine the implications of (iii) consider a surface §
enclosing a ‘dyed’ blob of fluid. The force exerted by the
surrounding fluid across any surface element 6S is, by hypothe-
sis, given by eqn (1.10), so that the net force exerted on the dyed
blob is

—jpndS=—f Vp dv,
A v

+ Air is, of course, highly compressible, but it can behave like an incompressible
fluid if the flow speed is much smaller than the speed of sound (see p. 58).
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where we have used the identity (A.14)—see the Appendix (the
negative sign arises because n points out of §). Now, provided
that Vp is continuous it will be almost constant over a small blob
of fluid of volume 8V. The net force on such a small blob due to
the pressure of the surrounding fluid will therefore be —Vp éV.

Euler’s equations of motion

We are now in a position to apply the principle of linear
momentum to a small ‘dyed’ blob of fluid of volume 6V.
Allowing for the presence of a gravitational body force per unit
mass g, the total force on the blob is

(=Vp + pg) 6V.

This force must be equal to the product of the blob’s mass (which
is conserved) and its acceleration, i.e. to

sy=2.
PO Dt

We thus obtain

2‘__1V +
Di pP7® (1.12)

Veu=0,

as the basic equations of motion for an ideal fluid. They are
known as Euler’s equations, and written out in full they become

du du 8u+ ou 19p
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i.e. four scalar equations for four unknowns: u, v, w, and p. In
dealing with the gravitational term we have momentarily taken
the z-axis vertically upward, setting g = (0, 0, —g).

Now, the gravitational force, being conservative, can be
written as the gradient of a potential:

g=—-Vyx. (1.13)

(In the above case, y = gz.) Using the expression (1.7) for the
fluid acceleration we may rewrite eqn (1.12) in the form#¥

Ou )/ )
—+ . e — 4
E (- V)u V<p x),

where we have used the assumption that p is constant.
Furthermore, it can be helpful to use the identity

(u-Vu=(VAu)Au+V3Eu?
to cast the momentum equation into the form

o
?':+(VAu)Au=—V(%+%u2+x). (1.14)

The Bernoulli streamline theorem

If the flow is steady, eqn (1.14) reduces to

(VAu)Au=-VH,
where

H=%+%u2+x. (1.15)

On taking the dot product with 4 we obtain
(u-V)H =0, (1.16)

t The way in which p/p + x appears as a combination is significant; there will be
many circumstances in this book in which gravity simply modifies the pressure
distribution in the fluid and does nothing to change the velocity u. Thus when we
speak occasionally of ‘ignoring’ gravity, or of gravitational body forces being
‘absent’, what we often mean is that separate allowance may be made for gravity
simply by subtracting py from the pressure field. This is emphatically not the
case, however, if there is a free surface—as with water waves in Chapter 3—or if
p is not constant—as in §3.8 and §9.3.
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SO
If an ideal fluid is in steady flow,
then H is constant along a streamline.

In the absence of gravity it follows that p + 4pu? is constant along
a streamline in steady flow.

The above theorem says nothing about H being the same
constant on different streamlines, only that it remains constant
along each one. There is, however, one important circumstance
in which H is constant throughout the whole flow field, and this
now follows.

DEFINITION. An irrotational flow is one for which

VAau=0. (1.17)

The Bernoulli theorem for irrotational flow

If the flow is steady and irrotational, then eqn (1.14) reduces to
VH =0, so H is independent of x, y, and z, as well as ¢. Thus

If an ideal fluid is in steady irrotational flow,
then H is constant throughout the whole flow field.

Whether this result is of any value rests, evidently, on whether
irrotational flows are of any real interest in practice. We address
this matter in the next section.

1.4. Vorticity: irrotational flow

The vorticity o is defined as
w=VAu, (1.18)

and it is a concept of central importance in fluid dynamics. The
vorticity is, by definition, zero for an irrotational flow.

We consider vorticity first in the context of two-dimensional
flow, for if

u=[ulx yt),vixy,t)),0]
then o is (0, 0, w), where

Jv Jdu
AL 1.19
Yo 5y (1.19)
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Interpretation of vorticity in 2-D flow

Consider two short fluid line elements AB and AC which are
perpendicular at a certain instant, as in Fig. 1.3. Note that the
y-component of velocity at B exceeds that at A by

)
vix+6x,y,t)—v(x, y,t) =8_;c) ox,

so that du/dx represents the instantaneous angular velocity of
the fluid line element AB. Likewise, du/dy represents the
instantaneous angular velocity (in the opposite sense) of the line
element AC. Thus at any point of the flow field

represents the average angular velocity of two short fluid line
elements that happen, at that instant, to be mutually perpendicu-
lar. In this precise sense the vorticity w acts as a measure of the
local rotation, or spin, of fluid elements.

We emphasize that vorticity has nothing directly to do with any
global rotation of the fluid. Take, for example, the shear flow of

ov

— 0

dy?y

c—> s

dy y

oy
v
— Ox
ox

Ox —» U 5
A B ox

Fig. 1.3. Sketch for the interpretation of vorticity in 2-D flow. The
velocity components shown are relative to the fluid particle at A.



12 Introduction

Fig. 1.4. Deformation of two short, momentarily perpendicular fluid
line elements in a shear flow.

Fig. 1.4, in which
u = (By, 0, 0), (1.20)

where B is a constant. The fluid is certainly not rotating globally
in any sense, but it has vorticity:

and two momentarily perpendicular line elements, AB and AC,
orientated as shown plainly have an average angular velocity (in
fact, of —3f), because while that of AB is zero that of AC is not.
A more colourful example of the distinction between vorticity
and global rotation of the fluid is provided by the so-called line
vortex flow given in cylindrical polar coordinates (r, 6, z) by

k
u=—e, (1.21)

where k is a constant. To find the vorticity of this flow we need
the expression (A.32) for V A u in cylindrical polar coordinates:

e, re, e,

119 e,
vau=1|2 2 2
r |or 060 0z
U, rug u,
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Plainly, then, the vorticity is zero except at r = 0, where neither u
nor V A u is defined. Thus although the fluid is clearly rotating in
a global sense the flow is in fact irrotational, since VA u=0,
except on the axis. This is quite understandable if we consider
two momentarily perpendicular fluid line elements, AB and AC,
at 6=0 in Fig. 1.5. Clearly AC is rotating in an anticlockwise
sense, because it will continue to lie along the circular streamline
as time proceeds, but AB is rotating clockwise because of the
decrease of uyz with r in eqn (1.21). This particular fall-off of u,
with r is, apparently, just the correct one—neither too slow nor
too rapid—to ensure that AB has an equal and opposite angular
velocity to AC at the instant they are perpendicular, so that their
average angular velocity is zero.

We keep emphasizing the instantaneous nature of this
conclusion about zero average angular velocity because two fluid
line elements such as AB and AC in Fig. 1.5 will not remain
perpendicular as they get carried about by the flow, and as soon
as this happens we have no cause to conclude from the
irrotationality of the flow that their average angular velocity
should any longer be zero.

ANSNIp
Fig. 1.5. The fate of a small square fluid element in a line vortex flow.
The size of the element has been greatly exaggerated for the sake of

clarity; an unfortunate consequence is that B does not look as if it is
following a circular path.
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- 4_- ~
AR
-(-\. /’
N P
~—p—~

(a) ue“J— ®)
r

~ "__,/
(c) uge< r

Fig. 1.6. A crude ‘vorticity meter’ (b), and its behaviour when
immersed in a line vortex flow (a) and a uniformly rotating flow (c).

What we have sketched in Fig. 1.6(a), then, is not what
happens to two momentarily dyed fluid elements, AB and AC, as
they get swept round but what would happen if we were to
immerse in the fluid a small ‘vorticity meter’ consisting of two
short, rigid vanes fixed at right angles to each other, as in Fig.
1.6(b). We have marked one tip of one of the vanes, and in Fig.
1.6(a) we see that this device would not rotate in this particular
(line vortex) flow, even though its axis would of course get swept
round on a circular streamline. This behaviour may be seen in
the bath by observing closely the strong vortex that may occur as
the water goes down the plug-hole. The azimuthal velocity u,
varies roughly as r~' over a fair distance from the axis, and a
crude but simple vorticity meter which serves the purpose
consists of a pair of short wooden line elements shaved off a
matchstick, sellotaped together at right angles and floated on the
surface.

However, if such a vorticity meter were to be inserted in the
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flow
u=Qre,, (1.22)

Q2 being a constant, the result would of course be as in Fig.
1.6(c), because the device would get carried around just as if it
were embedded in a rigid body. Its angular velocity would
evidently be Q, the same as the uniform angular velocity of the
fluid as a whole, and the vorticity of the flow is therefore
(0,0,2Q), as may be confirmed by direct calculation of V A u.

By putting the two flows in Fig. 1.6 together in the following
way:

Qr, r<a,
_ 2
“o ga—, r>a,
r
u,=u,=0, (1.23)

we obtain a so-called ‘Rankine vortex’, which serves as a simple
model for a real vortex such as that in Fig. 1.1. Real vortices are
typically characterized by fairly small vortex ‘cores’ in which, by
definition, the vorticity is concentrated, while outside the core
the flow is essentially irrotational. The core is not usually exactly
circular, of course; nor is the vorticity usually uniform within it.
In these two respects the Rankine vortex of Fig. 1.7 is only an
idealized model.

We have now said a fair amount about vorticity, albeit strictly

Uy w

2Q

Qa

(a) (b)
Fig. 1.7. Distribution of (a) azimuthal velocity u, and (b) vorticity @ in
a Rankine vortex.



16 Introduction

Fig. 1.8. The behaviour of a small ‘vorticity meter’ placed in the steady
flow past a fixed wing at small angle of attack. The flow is clearly
irrotational.

in the context of two-dimensional flow. We have discussed in
particular detail the absence of vorticity, i.e. irrotational flow. At
this stage, before the development seems to be getting rather a
long way from our starting point (the experiment in §1.1), we
should say that steady flow past a wing at small angles of
incidence « is typically irrotational, as indicated in Fig. 1.8.

Why this should be so emerges from the Euler equations in a
very elegant manner, as we now see.

1.5. The vorticity equation

In its form (1.14), Euler’s equation may be written

o,
—u+u)/\u=—VH,
ot

and on taking the curl we obtain

3
?‘:’+v/\(m/\u)=o. (1.24)

Using the vector identity (A.6) this becomes

d
?(:)+(u-V)m—(m-V)u+mV-u—uV-u)=0.
Now the fourth term vanishes because the fluid is incompressible,

while the fifth term vanishes because div curl =0. We therefore
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have
om
—+ (u-V)o=(o-V)u,
ot
or, alternatively,
Do
—=(o-V)u. 1.2
== (- V)u (1.25)

This vorticity equation is extremely valuable. Note that the
pressure has been eliminated; eqn (1.25) involves only u and o,
which are, of course, related by

o=V Au.

In particular, if the flow is two-dimensional, so that

u=|[ulx,y,t),vx,y,t),0] (1.26)
and
0= (0,0, w),
then
Ju
Vu=w—=0.
(0-Vu=w Py

It then follows that
—=0, (1.27)

and we thus conclude, referring back to eqn (1.9), that

In the two-dimensional flow of an ideal fluid subject to
a conservative body force g the vorticity w of each
individual fluid element is conserved. (1.28)

This result has important applications, which we discuss in
Chapter 5. In the particular case of steady flow, eqn (1.27)
reduces to

(-VYo=0 (1.29)
and consequently

In the steady, two-dimensional flow of an ideal fluid
subject to a conservative body force g the vorticity
w is constant along a streamline. (1.30)
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This, then, is the reason why the steady flow in Fig. 1.8 is
irrotational. Note first that there are no regions of closed
streamlines in the flow; all the streamlines can be traced back to

x = —oo, Now, the vorticity is constant along each one, and hence
equal on each one to whatever it is on that particular streamline
at x = —oo, As the flow is uniform at x = — the vorticity is zero

on all streamlines there. Hence it is zero throughout the flow
field in Fig. 1.8.

1.6. Steady flow past a fixed wing

In Fig. 1.9 we show typical measured pressure distributions on
the upper and lower surfaces of a fixed wing in steady flow. The
pressures on the upper surface are substantially lower than the
free-stream value p.,, while those on the lower surface are a little
higher than p.. In fact, then, the wing gets most of its lift from a
suction effect on its upper surface.

But why is it that the pressures above the wing are less than
those below? Well, because the flow is irrotational, the Bernoulli
theorem tells us that p + 3pu® is constant throughout the flow.
Explaining the pressure differences, and hence the lift on the

p—p. /@ER SURFACE
pU° >

A
»

UPPER
SURFACE

Fig. 1.9. Typical pressure distribution on a wing in steady flow.
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wing, thus reduces to explaining why (as in Fig. 1.2) the flow
speeds above the wing are greater than those below.

Let us first dispose of one bogus explanation that occasionally
appears, namely that the air on the top of the wing flows faster
‘because it has farther to go’. There are many woolly aspects to
this argument, but it seems to turn principally on the notion that
two neighbouring fluid elements, after parting to go their
separate ways round the wing, meet up again at the trailing edge,
and this is demonstrably false (see Fig. 2.4).

The right way forward to an explanation of the higher flow
speeds above the wing is in terms of the concept of circulation.

Circulation

Let C be some closed curve lying in the fluid region. Then the
circulation I" round C is defined as

I'= Lu - dx. (1.31)

At first sight, perhaps, there cannot be any circulation in an
irrotational flow, for Stokes’s theorem gives

fcu-dx=L(VAu)-ndS, (1.32)

and an irrotational flow is, by definition, one for which V A u is
zero. But such an argument holds only if the closed curve C in
question can be spanned by a surface S which lies wholly in the
region of irrotational flow. Thus in the two-dimensional context
of Fig. 1.8, for example, for which eqn (1.32) reduces to

Jv Jdu
r Ludx+vdy L(@x ay)dxdy, (1.33)
it is true that I' must be zero for any closed curve C not enclosing
the wing, but the argument fails for any closed curve that does
enclose the wing. The most that can be said about such circuits is
that they all have the same value of I' (Exercise 1.6).

Circulation round a wing is permissible, then, in a steady
irrotational flow; but the question still arises as to why there
should be any, and, in particular, why it should be negative,
corresponding to larger flow speeds above the wing than below.
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The Kutta—Joukowski hypothesis

In the case of a wing with a sharp trailing edge, one good reason
for non-zero circulation I' is that there would otherwise be a
singularity in the velocity field. The irrotational flow past a wing
with I' =0 is sketched in Fig. 1.10(a), but the velocity is infinite
at the trailing edge where, loosely speaking, the fluid is having a
hard time turning the corner. We show in Chapter 4 that only for
one value of the circulation, I'k say, is the flow speed finite at the
trailing edge, as in Fig. 1.10(b). It is natural to hope that this
particular irrotational flow will correspond to the steady flow that
is actually observed; this is the Kutta—Joukowski hypothesis.

This hypothesis is inevitably somewhat ad hoc, resting as it
does on the unsatisfactory state of affairs that would otherwise
arise because of the sharp trailing edge. (How are we to decide
between all the different irrotational flows if the trailing edge is
not sharp?) It is, nonetheless, one of the key steps in the
development of aerodynamics, and gives results which are in
excellent accord with experiment, as we shall shortly see.

The critical value I'y depends, naturally, on the flow speed at
infinity U and on the size, shape, and orientation of the wing. In
Chapter 4 we show that if the wing is thin and symmetrical, of
length L, making an angle « with the oncoming stream, then

I'k = —aUL sin a. (1.34)

Lift

According to ideal flow theory, the drag on the wing (the force
parallel to the oncoming stream) is zero, but the lift (the force

(a) (b)
Fig. 1.10. [Irrotational flow past a fixed wing with (¢) I'=0 and (b)
I'= FK < 0.
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perpendicular to the stream) is
¥ =—-pUT. (1.35)

This Kutta—Joukowski Lift Theorem is proved in §4.11.

That negative I' should give positive lift is entirely natural; we
have argued as much in the preceding sections. As a precise
theorem, however, eqn (1.35) is rather extraordinary, as it holds
for irrotational flow (uniform at infinity) past a two-dimensional
body of any size or shape; £ depends on the size and shape of
the body only inasmuch as I" does. For the thin symmetrical wing
of Fig. 1.10(b), for example, with I' as in eqn (1.34) by the
Kutta—Joukowski condition, the lift is

£ = apU>*Lsin a. (1.36)

Agreement with experiment is good provided that « is only a
few degrees (Fig. 1.11). Thereafter the measured lift falls
dramatically and diverges substantially from the predictions of
inviscid theory, for reasons to be discussed later. The angle « at
which this divergence begins may be anywhere between about 6°
and 12°, depending on the shape of the wing (see, e.g.,
Nakayama 1988, pp. 76-80).

Accounting for the flow past a wing at small angles of attack «
is nevertheless one of the great, and practically important,
successes of ideal-flow theory.

Inviscid
g A theory

[ ]
[ ]
Experiment

»
Y

(04
Fig. 1.11. Lift on a symmetric aerofoil.
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1.7. Concluding remarks

In this chapter we have introduced some of the basic concepts of
fluid dynamics and, at the same time, given some indication of
how they figure in one particular branch of the subject, namely
aerodynamics. Our treatment of this branch has inevitably been
sketchy.

We have, for instance, focused wholly on 2-D aerodynamics,
yet any real wing, no matter how long, has ends, and important
new phenomena then arise. The circulation round a circuit such
as Cin Fig. 1.12(a) is essentially that predicted by the 2-D theory
(i.e. eqn (1.34)), but plainly the flow cannot be everywhere
irrotational, because C can now be spanned by a surface S which
lies wholly in the fluid. Indeed, from Stokes’s theorem (1.32) we
deduce that there must be a positive flux of vorticity out of S,
and this is in practice observed as a concentrated trailing vortex
emanating from the wing-tip as shown. The higher the lift (and

(©)
Fig. 1.12. Trailing vortices: (a) definition sketch for application of
Stokes’s theorem; (b) view from some distance ahead of the aircraft; (c)
the original drawing from Lanchester’s Aerodynamics (1907).
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therefore the circulation), the stronger the trailing vortices.
Furthermore, the presence of these trailing vortices results in a
drag on the wing, even on ideal flow theory, for as they lengthen
they contain more and more Kinetic energy, and creating all this
kinetic energy takes work.

But even within a purely two-dimensional framework we have
left some key questions unanswered. We indicated how the
Kutta—Joukowski hypothesis provides a rational, although ad
hoc, basis for deciding the circulation round an aerofoil in steady
flight, and we have noted that this gives good agreement with
experiment. Yet we have given no account of the dynamical
processes by which that circulation is generated when the aerofoil
starts from a state of rest. It arises, in fact, in response to the
‘starting vortex’ in §1.1, but why this should be so is far from
obvious, and rests on one of the deepest theorems in the subject
(85.1).

Again, the sceptical reader may even be asking: ‘But what is
all this business about a starting vortex? If the aerofoil and fluid
are initially at rest, the vorticity w is initially zero for each fluid
element. By eqn (1.27) it remains zero for each fluid element,
even when the aerofoil has been started into motion. Therefore
there should not be a starting vortex.’

This is a legitimate conclusion—on the basis of ideal flow
theory. While that theory accounts well for the steady flow past
an aerofoil, the explanation of how that flow became established
involves viscous effects in a crucial way.

If this provokes the response: ‘But air isn’t very viscous, is it?’,
the answer is, ‘No, in some sense air is hardly viscous at all’. Yet,
as we shall see, viscous effects are sufficiently subtle that the
shedding of the vortex in §1.1, while being an essentially viscous
process, would occur no matter how small the viscosity of the
fluid happened to be.

Exercises

1.1. Whether a fluid is incompressible or not, each element must
conserve its mass as it moves. Consider the rate of mass flow through a
fixed closed surface S drawn in the fluid, and use an argument similar to
that on p. 7 to show that this conservation of mass implies

3
?’;’+ V- (ou) =0, (1.37)
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where p(x, t) denotes the (variable) density of the fluid. Show too that
this equation may alternatively be written

Dp

—+pV-u=0. .

D; HPV-u (1.38)
It follows that if V-u =0, then Dp/Dt =0. What does this mean,

exactly, and does it make sense?

1.2. An ideal fluid is rotating under gravity g with constant angular
velocity Q, so that relative to fixed Cartesian axes u = (—Qy, Qx, 0).
We wish to find the surfaces of constant pressure, and hence the surface
of a uniformly rotating bucket of water (which will be at atmospheric
pressure).

‘By Bernoulli,” p/p + ju®>+ gz is constant, so the constant pressure
surfaces are

QZ

z = constant — — (x> + y?).
28

But this means that the surface of a rotating bucket of water is at its
highest in the middle. What is wrong?

Write down the Euler equations in component form, integrate them
directly to find the pressure p, and hence obtain the correct shape for
the free surface.

1.3. Find the pressure p both inside and outside the core of the
Rankine vortex (1.23). Show that the pressure at r = 0 is lower than that
at r = by an amount pQZa’® (hence the very low pressure in the centre
of a tornado). Deduce that if there is a free surface to the fluid and
gravity is acting, then the surface at r =0 is a depth Q%?/g below the
surface at r = (hence the dimples in a cup of tea accompanying the
vortices that are shed by the edges of the spoon).

1.4. Take the Euler equation for an incompressible fluid of constant
density, cast it into an appropriate form, and perform suitable
operations on it to obtain the energy equation:

d
d—tf %pude=—f (p' + ipu®)u - nds,
\ 4 S

where V is the region enclosed by a fixed closed surface S drawn in the
fluid, and p' denotes p + px, the non-hydrostatic part of the pressure
field.

1.5. For an inviscid fluid we have Euler’s equation

u

1
at+m/\u+\7(§—,uz)=—I—)Vp—V)(,
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and, whether or not the fluid is incompressible, we also have
conservation of mass (Exercise 1.1):

Dp
_+ V- =0.
D PV
Show that
5 ()= v)u—2v()
—(=)=(=-V]u—=-=VI=] A Vp. 1.39
Dt \p p p \p P (1:39)

Deduce that, if p is a function of p alone, the vorticity equation is
exactly as in the incompressible, constant density case, except that o is
replaced by w/p.

1.6. Show that the circulation is the same round all simple closed
circuits enclosing the wing in Fig. 1.8. (Hint: sketch two such circuits,
and then make a construction so as to create a single closed circuit that
does not enclose the wing.)

1.7. Sketch the streamlines for the flow
u=ax, V= —ay, w=0,

where « is a positive constant.
Let the concentration of some pollutant in the fluid be

ot

c(x, y, t)= Bx’ye™™,

for y >0, where B is a constant. Does the pollutant concentration for
any particular fluid element change with time?

An alternative way of describing any flow is to specify the position x
of each fluid element at time ¢ in terms of the position X of that element
at time ¢t = 0. For the above flow this ‘Lagrangian’ description is

x=Xe", y=Ye ¥, z=2Z.

Verify by direct calculation that

(6‘x) (au) Du

—_— =u, —_ = —

ot/ x ot/x Dt

in this particular case. Why are these results true in general?
Write ¢ as a function of X, Y, and ¢.

1.8. Consider the unsteady flow
Uu=u,, v = kt, w=0,

where u, and k are positive constants. Show that the streamlines are
straight lines, and sketch them at two different times. Also show that
any fluid particle follows a parabolic path as time proceeds.



