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On the Stability, or Instability, of certain Fluid Motions. By
Lord RAYLEIGH, F.R.S., Professor of Experimental Physics in
the University of Cambridge.

[Read February 12th, 1880.]

In a former communication to the Society on the " Instability of
Jets,"* I applied a method due to SirW. Thomson, to calculate the
manner of falling away from equilibrium of jets bounded by one or
more surfaces of discontinuity. Such interest as these investigations
possessed was due principally to the possibility of applying their results
to the explanation of certain acoustical phenomena relating to sensitive
flames and smoke jets. But it soon appeared that in one important
respect the calculations failed to correspond with the facts.

To fix the ideas, let us take the case of an originally plane surface of
separation, on the two sides of which the fluid moves with equal and
opposite, constant velocities (=fc V). In equilibrium, the elevation hy

at every point x along the surface, is zero. It is proved that, if
initially the surface be a rest in the form defined by h = H. cos«?,
then, after a time t, its form is given by

7t = HCOSKX cosh K Vt (1),

provided that, throughout the whole time contemplated, the disturbance
is small. In the same sense as that in which the frequency of vibration
measures the stability of a system vibrating about a configuration of
stable equilibrium, so the coefficient icFof t, in equations such as (1),
measures the instability of an unstable system; and we see, in the
present case, that the instability increases without limit with K • that
is to say, the shorter the wave-length of the sinuosities on the surface
of separation, the more rapidly are they magnified.

The application of this result to sensitive jets would lead us to the
conclusion that their sensitiveness increases indefinitely with pitch.
It is true that, in the case of certain flames, the pitch of the most
efficient sounds is very high,. not far from the upper limit of human
hearing; but there are other kinds of sensitive jets on which these
high sounds are without effect, and which require for their excitation
a moderate or even a grave pitch.

A probable explanation of the discrepancy readily suggests itself.
The calculations are founded upon the supposition that the changes of
velocity are discontinuous—a supposition which cannot possibly agree
with reality. In consequence of fluid friction, a surface of discontinuity,

• "Proceedings," Vol. x., p. 4, Nov. 14,. 1878.
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even if it could ever be formed, would instantaneously disappear, the
transition from the one velocity to the other becoming more and more
gradual, until the layer of transition attained a sensible width. When
this width is comparable with the wave-length of the sinuosity, the
solution for an abrupt transition ceases to be applicable, and we have
no reason for supposing that the instability would increase for much
shorter wave-lengths.

In the following investigations, I shall suppose that the motion is
entirely in two dimensions, parallel (say) to the plane xyt so that (in
the usual notation) w is zero, as well as the rotations $, rj. The rota-
tion £ parallel to z is connected with the velocities u, v by the equation

<-•(£-=) «•
When the phenomena under consideration are such that the com-
pressibility may be neglected, the condition that no fluid is anywhere
introduced or abstracted, gives

^+f^ = 0 (3).
dx dy

In the absence of friction, £ remains constant for every particle of the
fluid; otherwise, if v be the kinematic viscosity, the general equation
t> * • • $Z t^w i dw . ydw . _ , < . fA\m
fo r * 1S Jt = ^ + t l TyU~dz+vVV: ( 4 ) '

. o d i d . d , d spv
where —. = y.+u T+V J-+W -y (o),

ot dt dx dy dz
, _ , d* , S? , d3

 / f t .
and v a =—--f—-3-f_ (6),

aar dy dz*
For the proposed applications to motion in two dimensions, these equa-
tions reduce to —=zvV*Z (7),

dt
8 d , d . d /O\

+u+v ( 8 )

dx dy
while the two other equations similar to (4) are satisfied identically.

In order to investigate the influence of friction on- stratified motion,
we may now suppose that v is zero, while u and £ are fnnctions of y
only. Our equations then give simply

• Lamb's Motion of Fluids, p. 243.
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which shows that the rotation £ is conducted according to precisely
the same laws as heat. In the case of air at atmospheric pressure, the
value of v is, according to Maxwell's experiments,

v = -16,*

not differing greatly from the number (22) corresponding to the con-
duction of temperature in iron.

The various solutions of (10), discovered by Fourier, are at once
applicable to our present purpose. In the problem already referred to,
of a surface of discontinuity y = 0, separating portions of fluid moving
with different but originally constant velocities, the rotation is at first
zero, except upon the surface itself, but it is rapidly diffused into the
adjacent fluid. At time t its value at any point y is

(12),

if Fs, T\ are the velocities on the positive and negative sides of the
surface respectively. If y% = 4u>t, the value of £ is less than that to be
found at y = 0, in the ratio ell. Thus, after a time t, the thickness of
the layer of transition (2y) is comparable in magnitude with 1'6 */t\
for example, after one second it may be considered to be about \\ centi-
metres. In the case of water, the coefficient of conductivity is much
less. It seems that v = '014; so that, after one second, the layer is
about half a centimetre thick.

The circumstances of a two-dimensional jet will be represented by
supposing the velocity to be limited initially to an infinitely thin layer
at y = 0. It is convenient here to use the velocity u itself instead of C

a. y . du du _ <Pu , 1 Qv
Since (= | ^ , Tt= v~% (13),

and thus the solution is of the same form as before : -

We may conclude that, however thin a jet of air may be initially, its
thickness after one second is comparable with l£ centimetres. A
similar calculation may be made for the case of a linear jet, whose
whole velocity is originally concentrated in one line.

* The centimetre and second being units.
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There is, therefore, ample foundation for the opinion that the
phenomena of sensitive jets may be greatly influenced by fluid friction,
and deviate materially from the results of calculations based upon the
supposition of discontinuous changes of velocity. Under these circum-
stances, it becomes important to investigate the character of the
equilibrium of stratified motion in cases more nearly approaching
what is met with in practice. Fully to include the effects of friction,,
would immensely increase the difficulties of the problem. For the
present, at least, we must treat the fluid as fricfcionless, and be satisfied
if we can obtain solutions for laws of stratification, which are free
from discontinuity. For the undisturbed motion, the component
velocity v is zero, and u is a function of y only. A curve in which u
is ordinate and y is abscissa, represents the law of stratification, and
may be called, for brevity, the velocity curve.

A class of problems which can be dealt with by fairly simple methods,
is obtained "by supposing the rotation <T to be constant throughout
layers of finite thickness, and only to change its value in passing a
limited number of planes for which y is constant. In such cases, the
velocity curve is composed of portions of straight lines which meet one
another at finite angles. This state of things may be supposed to be
slightly disturbed by bending the surfaces of transition, and the deter-
mination of the subsequent motion depends upon that of the form of
these surfaces. For £ retains its constant value throughout each layer
unchanged in the absence of friction, and, by a well-known theorem,
the whole motion depends upon £. We shall suppose that the func-
tions deviate from their equilibrium values by quantities proportional
to e{", so that everything is periodic with respect to x in a distance X
equal to 2vic~l. By Fourier's theorem, the solution may be generalised
sufficiently to cover the case of an arbitrary deformation of the surfaces.
As functions of the time, the disturbances will be assumed to be pro-
portional to e'"', where n may be either real or complex, and the
character of the resulting motion is determined in great measure by
the value of n, found by the solution of the problem.

By a theorem due to Helmholtz, the effect of any element dA rotating
with angular velocity {, is to produce, at a point whose distance froni
the element is r, a transverse velocity q> such that

(15).

In the application of this result to the problems in hand, it will be con-
venient to regard the actual value of C at time t as made up of two
parts, (1) its undisturbed value, (2) the difference between its actual
value and (1). The effect of (1) is to produce the undisturbed system
of velocities, on which the small effect of (2) is superposed; and the
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calculation of the latter effects evidently involves integrations which
extend only over the infinitely small areas included between the dis-
turbed and undisturbed surfaces of transition. Suppose that the equa-
tion of one of these surfaces, reckoned from its undisturbed position, is

(16),

in which E is not necessarily real. Then dA = 17 d£, and if A£ be the
excess of the value of <T on the upper above that on the lower side of
the surface, we get, by (15), at any point whose abscissa is x and dis-
tance from the surface is b,

where i* = fc'+tf-aj)8 (18).

The velocity q, given by (17), is perpendicular to r. The next step,
previous to integration, is to resolve it in the fixed directions of x
and y. The resolution is effected by introduction of the factors 6/r,
and (£—a?)/r; and thus, for the whole effect of the surface under con-

sideration, u == I *-£, v = I , /— j

«" J— ^ "" J-« ^
or, by (16), u = - - — j _

Tho integrals are readily evalnated by the theorem

and we obtain u = —

In the derivation of (21), 17 has been treated as infinitesimal in com-
parison with b, but in the sequel we shall require to apply the formula
to points situated upon the surface itself. The value of u would need
more careful examination, but that of v is easily seen to be equally
applicable when b is zero, since the neighbouring elements do not con-
tribute sensibly to the value of the integral. In fact, the value is the
same on whichever side of the surface the point under consideration is
situated, and b is in both cases to be taken positive. Accordingly,
when b is zero, we are to take simply

v = - iHlW* (22).
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We are now prepared to enter upon the consideration of special
problems. As a first example, let us suppose that on the upper
side of a layer of thickness 6 the undisturbed velocity u is equal to
+ V, and on the lower side to — F, while inside the layer it changes

uniformly. Thus £ = £ — = - (23)
dy b

inside the layer, and outside the layer K = 0. In the disturbed motion,
let the equations of the upper and lower surfaces be respectively, at

time t, tj = Eeinteu'

then, by (21), (22), (28), the whole value of v for a point on the npper

surface is v = %b"x Veinteu" (H-H'e-b) (24)',

and for the lower surface

v=ib-lVetnte<"(B[e-b-H') (25),

Prom these values of v the position of the surfaces at time t+dt may
be calculated. At time t, n corresponds to x\ at time t+dt, rj+vdt
corresponds to x+udt, u being the whole component velocity parallel
to x. Thus, at time t+dt, corresponding to. a?, we have

ri+vdt——• (n+vdt) . udt;
dx

or, on neglecting the squares of small quantities,

Now, from (24), § - inrj;

at

BO that, equating the two values of -A we get, from (24),
dt

inH= ib-1

or (^-l+*&) H+e-bH'=Q (26).

In like manner, by considering the motion of the lower surface, we get

e"bH+ (-^-l+Kb} H'= 0 (27).

By eliminating the ratio Hf: H between (26) and (27), we obtain, as
the equation giving the admissible values of n,

tf^Kri-l)*-,-"} ; (28).
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When Kb is small, that is, when the wave-length is great in comparison
with h, the case approximates to that of a sudden transition. Thus

= — i?V* approximately ..(29),

in agreement with equation (30) of my former paper. In this case
the motion is unstable. On the other hand, when Kb is great, we find,
from (28), »» = *8F8 (30) ;

and, since the values of n are real, the motion is stable. It appears,
therefore, that so far from the instability increasing indefinitely with
diminishing wave-length, as when the transition is sudden, a diminution
of wave-length below a certain value entails an instability which
gradually decreases, and is finally exchanged for actual stability. The
following table exhibits more in detail the progress of b%V~2n* as a
function of Kb :—

Kb

•2
•4
•6
•8

&8F-V

-•03032
-08933
-•14120
-•16190

Kb

10
1-2
1-8
20

68F"V

-•13534
-•05072
+ 01573
+ •98168

We see that the instability is greatest when Kb = *8 nearly, that is,
when X = 86; and that the passage from instability to stability takes
place when Kb = 13 nearly, or when X = 56.

Corresponding with the two values of n, there are two ratios of
IT: H determined by (26) or (27), each of which gives a normal mode
of disturbance, and by means of these normal modes the results of an
arbitrai-y displacement of the two surfaces may be represented. It
will be seen that for the stable disturbances the ratio IT: H is real,
indicating that the sinuosities of the two surfaces are at every moment
in the same phase.

We may next take an example of a jet of thickness 26 moving in
still fluid, supposing that the velocity in the middle of the jet is V, and
that it falls uniformly to zero on eithor side. Taking the middle line
as axis of x, we may write

in which the — sign applies to the upper, and the + sign to the lower

halfofthejet. Thus ^ = | 4 ! i = = F i T - (32)
* dij b

within the jet, and outside the jet £ = 0 . In this problom there are
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three surfaces to be considered. We will suppose the equation of the

upper 8urface,for which A£ = —, to be ti=Eei"eint; that of the middle

V
surface, for which A£ = — -{-> to be »/= JBYcVn<; and that of the lower

o
surface, for which A£ = Z , to be n"= H"e{"einl.

2b

From (22), the velocities v are to be calculated as before. We find

v (upper surface) = ^ e < B V " {-fl>2e-»jr-e"2*6JT'|,

^(middle fmrkce) ={-£ e^'e*" {-e-*bH+2H'-e-'hH"}>
ub

v (lower surface) = j£e'"V" { -

For the upper and lower surfaces the horizontal velocity is zero, and
for the middle surface it is V. In the same manner as for (26), we

thus obtain mH- 2yH' + y9fT= 0 )
yH+(m+2Kb-3)H'+yH"=ol (33),

y
%H-2yH'+viH"=o)

in which y is written for e~*b, and m is written 26F"In + l. The elimi-
nation from (33) of HI H': H" gives the following cubic in m :—

m8+(2K.-6-3)m* + y8(4-y8)w-y4(l-t-2k-6) = 0 (34).

By inspection of (33), we see that one of the normal disturbances is
defined by H'= 0, H+H"= 0, and that the corresponding value of m
is y*. It follows that m —•>* is a factor of the cubic expression in (34),
and the remaining quadratic factor is readily obtained by division.
Thus (34) assumes the form

(m-y*){mi + (2Kb-Z + yi)m + yi(l + 2i:b)} = 0 (35).
For the symmetrical disturbance

a real quantity, indicating that the motion is stable so far as this mode
of disturbance is concerned.

The other two values of n are real, if

(2 .6-3 + -/)8-4y8 ( 1 + 2K6) (37)

be positive, but not otherwise. When nb is infinite, y = 0, and (37)
reduces to 4<c'l/*, which is positive; so that the motion is stable when
the wave-length is small in comparison with the thickness of the jet.
On the other hand, as may readily be proved by expanding y in (37),
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the motion is unstable, when the wave-length is great in comparison
with the thickness of the jet. The values of (37) can be more easily
computed when it is thrown into the form

(5+2.c&-0-2*6)8-16(l+2<c&)..: (38).

Some corresponding values of (38) and 2«:6 are shown below:— .

2K6

•5
1-0
1-5
2 0

(38)

-•054
-•279
-•599
— -876

2Kb

2-5
30
35
4 0

(38)

-•975
-•794
-•263
+ •671

The wave-length of maximum instability is about 2 | times the thick-
ness (26) of the jet; while, for a wave-length about half as great again,
or more, the motion becomes stable.

Although it is the fact, as I have found by experiment, that a sensi-
tive jet breaks up by becoming sinuous as a whole, the result that a
symmetrical mode of disturbance is stable, is special to the law of
velocity assumed in the foregoing example. In order to illustrate
this, I will state the results for the more general law of velocity ob-
tained by supposing the maximum velocity V to extend through a
layer of finite thickness V in the middle of the jet. The rotation ( is
zero in this central layer ; in the adjacent layers of thickness 5,

y
£ = =F —-, as before. The equations of the four surfaces, in crossing

which £ changes its value, being represented by

n. i | . n . n « i jn* XX • xli • 'AM, 1 6 6

we may obtain four equations involving n and the three ratios
II '.IV: H": H"f. The elimination of these ratios gives a biquadratic
in «, which, however, is easily split into two quadratics, one of which
relates to symmetrical disturbances, for which H+ JT'"= 0, 7 i '+ l / "= 0;
and the other to disturbances for which 2Z—1F"= 0, H'—11"= 0.
The resulting equation in n is

)=.O (39),
y being written for e"**'. In (39) tho upper signs correspond to the
symmetrical displacements. Tho roots are real, and the disturbances
are stable, if

'=F 2K&y')] ...(40)
bo positive.

VOL. XI.—NO. 100.
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In what follows, we will limit our attention to the symmetrical dis-
turbances, that is, to the upper signs in (40), and to terms of orders
not higher than the first in V. The expression (40) may then bo

reduced to (1—y8-2*&)8+2K6'(l + y9) (1—y9—2c6) (41).

If *.fi be very small, this becomes

4*4&«-8K&\ «C869 (42).

If b' be zero, (42) is positive, and the disturbance is stable, as we
found before; but if b and b' be of the same order of magnitude, and
both very small compared to X, it follows from (42) that the distur-
bance is unstable.

If, in (39), we suppose that b is zero, we fall back upon the case of
a jet of uniform velocity V and thickness b' moving in still fluid. The
equation for «, after division by ft9, becomes

n9+ (1 ± y) KV. n + | (1 ± y) i-'F9 = 0,

or (n+*Vy ^ ^ , + M 8 = 0 (43).

In the notation of my former paper, &'= |Z, so that

i±^=cothiZ, ^=^
1—y 1+y

and the equations there numbered (48) and (55) agree with (43).

Another particular case of (39), comparable with previous results,
is obtained by supposing b' to be infinite.

I now pass to the consideration of certain cases in which the moving
layers are bonnded by fixed walls, instead of by an unlimited expanse
of stationary fluid. The effect of the walls may be imitated by the
introduction of an unlimited number of similar layers, in the same way
as the vibrations of a string fixed at- two points are often deduced from
the theory applicable to an unlimited string. The displacements of
the surfaces at which £ changes its value being taken equal and opposite
in consecutive layers, the value of v, at the places occupied by the walls,
is, by symmetry, zero; and thus the presence or absence of the actual
walls is a matter of indifference.

Let us first suppose that the distribution of velocity within the layer
in that given in (31), uniformly increasing from zero at the walls to a
maximum V in the middle, the distance between the walls being 26.
The actual surface of transition and its successive images make con-
tributions to the valno of v at the surface, which are alternately opposite
in sign, and, as regards numerical value, form a geometrical progression
with common ratio e~**b or y9. Thus, with the same notation as beforo,
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we have at the surface, from (21), (22), '

_iVE (nt

so that, as in previous problems,

or, as it may also be written,

^ = tanlt Kb-Kb. T (44).

If there be a layer of finite width b' in the centre, throughout which
the undisturbed velocity is V, we obtain

in which 2Z, 7T' refer to the two surfaces of transition, and y '= e~*v.
Equation (45) shews, as might also be inferred from symmetry, that
H ±.J2;=P, t . while

Since the values of n in (46) are real, the disturbance is stable.

N(

In these examples the velocity curves are those represented by figs.
(1) and (2). I have taken a further step in the direction of generali-
sation by calculating the motion for a velocity curve in the form of (3).
The criterion of stability is complicated in its expression, but it is nofc
difficult to shew that the motion is stable if the angle N be a projecting
angle. From these examples there seemed to be some reason for
thinking that the motion would be stable, whenever the velocity curve
was of one curvature throughout; and this led me to attack the ques-
tion by a more general method, which I will now explain.

Let us suppose that the conditions of steady motion are satisfied by
u= Z7, v = Y, £ = Z\ and let us trace the effects of superposing upon
this motion a disturbance for which « = Iw, v = Sv, £ =££. Both the
original motion and the disturbance satisfy the equation of continuity
(3).
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Since, in the absence of friction, the rotation of every element re-

mains unchanged, v ' • = 0,
dt

or | (Z+K) + (U+tu) i (Z+K) + (F+fr) §- (Z+$0 = 0.
at dx dy

This equation is satisfied by supposition, if tiu, Sv, 5£ = 0. If we omit
the squares and products of the small quantities, it becomes

+ F + r f + * , + f c = o (47).
at . ax ay dx dy

If F = 0, and IT be a function of y only, (47) reduces to

at aa; dy

or, since in this case Z —\ —,

)+f?fc! ,0 (48).
dy dx I ay

We now introduce the supposition that, as functions of x, Su and 2v
are proportional to e'"*, so that, by (3),

^ a O (49).
dy

We thus obtain, by elimination of dw,

If we further suppose that, as a function of t, Sv is proportional to eint
%

where n is a real or complex constant, we get

On this equation the solution of the special problems already con-
sidered ma.y be founded. If, throughout any layer, the rotation Z be

constant, -j-= = 0, and, wherever n+icU is not equal to zero, (51)
dy

reduces to ^-flv = 0 (52).
dy

Equation (52) may, in fact, be easily established independently, on the
assumption that the rotation throughout the layer is the same after
disturbance as before. From (2), •

& - i f *» - <ft>\ - _ s /<ft> • fo\
A*-"'* \dxdy d&) ~ S W^dyV'
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by (3); so that, when C is constant, V »v = 0. In like manner V 'tt = 0,
If Sv oc efax, (52) follows immediately.

The solution of (52) is
Sv = i

where A and B are constants, not restricted to be real. For each
layer of constant £, a fresh solution with fresh arbitraries is to be taken,
and the partial solutions are to be fitted together by means of the
proper boundary conditions. The first of these conditions is evidently

A3»= 0 (54).

The second may be obtained by integrating (51) across the boundary.

At a fixed wall Sv = 0. .
The reader may apply this method to the problem whose solution is

expressed in (44).

In cases where -r-y = 0, the substitution of (52) for (51), or the
&y •

corresponding supposition that K is unchanged by the disturbance,
amounts to a limitation on the generality of the solution. Suppose,
for example, that the motion takes place between two fixed walls, at
each of which Sv = 0. Under these circumstances (53) shews that
Sv = 0 throughout, or no disturbance is possible; and this is obviously
true if no new rotation is introduced by the disturbance. In order to
obtain a general solution, we must retain the factor n+ttU in (51).
For any value of y which gives n+icU — 0, (52) need not be satisfied;
and thus any value of — KTJ is an admissible value of n, satisfying all
the conditions of the problem.

I will now inquire, under what conditions (51) admits of a solution
with a complex value of n; or, in other words, under what conditions
the steady motion is unstable, assuming that, for two finite or infinite
values of y, Sv = 0. Let n -4- K = p+iq, Sv = a+i(i, where jp, g, a, /3
are real. Substituting in (51), we get

dtf
or, on equating to zero the real and imaginary parts,

(5G)

S? - M^V =S«±.(P+JQJ
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Multiplying (56) by (3, (57) by o, and subtracting, we get

ntfa _cPp_d'U q(d*+(i*) _ d I ,da d0\
Pdf dy* dy*(j,+ Uy+2'~-dy\Pdy dy Idf dy* dy*(j,+ Uy+2'~-dy\Pdy dy

At the limits 8v, and therefore both a and /3, are, by hypothesis, zero.
Hence, integrating (58) between the limits, we see that q must be zero,

if -=-y be of one sign throughout the range of integration ; so that, if
dy

the velocity curve is either wholly convex • or wholly concave for the
epace between two limits at which $v == 0, the motion is thoroughly
stable.* This result covers all the special problems of motion between
walls previously investigated. Its application to jets, for which

-r-y changes sign, leaves the question of stability or instability still

open.
Another general result worth notice may be obtained from (51).

Writing it in the form

%
iy

we see that, if n is real, Iv cannot pass from one zero value to another

zero value, unless -~ and n+KU be somewhere of contrary signs.
J7T

Thus, if we suppose that V is positive", and -r-j- negative throughout,
dy

and that F"is the greatest valne of U, we find that n + xV must be
positive. For an example see the equation immediately preceding (44).

If the stream lines of the steady motion be concentric circles instead
of parallel straight lines, the character of the problem is not greatly
changed. It may be proved that, if the fluid move between two rigid
concentric circular walls, the motion is stable, provided that in the
steady motion the rotation either continually increases or continually
decreases in passing outwards from the axis.

• More generally, the same conclusion follows if the ratio —- : 8t> has real values
at both limits.' dV
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Notas on a General Method of Solving Partial Differential Equa-
tions of the First Order with several Dependent Variables. By
H. W. LLOYD TANNER, M.A.

[HeadMarch IM, m0.]

1. The following notes relate to a method of solving equations with
several dependent variables, which is a generalization of the process
employed in the case where only one dependent variable occurs. The
extension to the more general equations herein considered is easy, but
it is perhaps worth stating since it leads to this curious conclusion ;
that the solution of such equations depends upon the solution of an
auxiliary system similar to that which is required in the integration of
equations with one dependent variable, but involving differential
coefficients of the second or higher orders.

When there is one dependent variable, zf we determine pi (or — )
by means of equations


