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1. Introduction

As is well known, the classical implicit function theorem assures the local
univalence of a mapping in a neighborhood of a point at which its Jacobian
does not vanish, but it does not necessarily imply global univalence in a region,
even if the Jacobian is everywhere non-vanishing. The purpose of this note
is to give some further useful conditions on the Jacobian matrix which are
sufficient to insure global univalence.

Our main result asserts that if all principal submatrices of the Jacobian
matrix have positive determinants the mapping is univalent in any rectangular
region. Matrices with this property are termed P-matrices and their algebraic
properties are derived in Section 2, especially as regards their relation to linear
inequalities. After establishing notations in Section 3, we extend the linear
results of Section 2 to the non-linear situation, from which a univalence theorem
is derived in Section 4.

Among the P-matrices two subclasses have received special attention,
Leontief matrices and positive quasi-definite matrices (these are defined in
Sections 2, 4) and for these one can prove somewhat stronger theorems. Thus,
if the Jacobian of a mapping is a Leontief matrix, then the inverse mapping is
monotonic (Section 4), while if the Jacobian matrix is quasi-definite, uni-
valence obtains not only on rectangular but on any convex regions (Section 5).

In Section 6, with the aid of the Kronecker theorem on indices, the principal
univalence theorems are generalized so that the conditions on the Jacobian
matrix are weakened.

* This paper is based on a joint research done by the both authors at the Institute of
Social and Economic Research, Osaka University. The first author is supported in part

by a contract with the Office of Naval Research, USA. The authors benefited from
valuable correspondence with Professor P. A, SAMUELSON.



82 D. GaLE and H. N1ga1Db:

The final section discusses some special two-dimensional cases.

We remark that these investigations were stimulated by an assertion by
P. A. SamuzrLsoN [5] that univalence holds if the upper left-hand principal
minors of the Jacobian do not vanish in a region. But this is not true even in
rectangular regions as shown by the following example: a mapping of R? into
itself is given by f(z,¥) = €2® — 4 + 3, g (%, y) = 4€2*y — 93 Then, f, = 2¢2*>0,
vf = f v
Tz T4
However there are two points (0, 2) and (0, — 2) which are mapped into the
origin.

Among the numerous questions which are not settled here are: (1) If all
principal minors are non-vanishing, does univalence obtain?; (2) If the
Jacobian i8 not zero and all the entries are non-negative, does univalence
obtain ? Both (1) and (2) are answered in the affirmative in rectangular regions
in B2, but even the conjunction of (1) and (2) has not been proved sufficient in
general, though it is solved in the affirmative in rectangular regions in R3, as
shown by a special argument not given here.

= 2e?%(4e2 + 5y?) >0 in R?.

2, Preliminary Results on P-matrices

2.1 P-matrices. An n X n real matrix 4 == (a,;) is said to be a P-matriz, if
all its principal minors are positive. We shall be concerned with some useful
results on P-matrices, which may also be of independent interest.

In the sequel frequent use will be made of a semi-order in the real n-space R".
For z = (z;), ¥ = (y,) € R", the following notations are defined:

z=2y o 2y, ((=12,...,n).
z=2y if z2y and z+y.
x>y # z,>y, (=1,2,...,n).

A vector z is termed nonnegative, if z = 0.
Theorem 1. If A is a P-matriz, then the inequalities

H Az <0, 220

have only the trivial solution x = 0.

Proof. The result is immediate for » = 1. Assume it true in dimensions lower
than n and let z = (&) satisfy (1). Since 4 is a P-matrix, it is non-singular,
and the diagonal entries of its inverse 4~ = (b;;) are positive, whence any
column of 4-3, say the first column, b certainly has some positive components.
Let 6 be the minimum of &,/b,, over all positive components of b and let this
minimum be attained for ¢=%. Then 8 20, y=2~— 0b=(5,) = 0 and
Ny = 0. Note that Ay =Az— 0 Ab= Ax— 0(5;;) £ 0, where §;; are the
Kronecker deltas. Let 4 be the principal submatrix obtained from 4 by
deleting its kth row and column, and let § be the (n — 1)-vector obtained
from y by deleting its kth component. Then, we have 49 < 0, § = 0. Since 4
isan (n — 1) X (n — 1) P-matrix, it follows, by the induction hypothesis, that
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# = 0. This, combined with %, = 0, gives y = 0, so that Az = 6(d;;) = 0. This
implies, in view of Az < 0, that 4« = 0. Whence, by the non-singularity of 4,
we have £ =0, q. e. d.

Corollary 1. If A is a P-maitriz, there is a number A > 0 such that for all
nonnegative vectors x = 0 of norm 1 (|x| = 1) some component of Ax is as great
as A

Proof. Let (n;) = Az and let (x) = maxn,;. Then #(x) is continuous and

?

attains a minimum A on the compact set of all nonnegative vectors of norm 1.
But, by Theorem 1, A must be positive.
Corollary 2. If 4 is a P-matrix, the inequalities

(2) Az >0, >0
have a solution.

Proof. This follows by standard duality for linear inequalities, say, the
theorems due to STIEMKE [6] and TuckeRr [7]. In fact, since 4 is a P-matrix
80 is its transpose A’. By Theorem 1, therefore, p'4 = 0, p" < Oimply p’4 =0,
p’ = 0, which is nothing but the Stiemke condition being equivalent to the
existence of positive vectors z > 0 and # > 0 such that Ax — » = 0. This
completes the proof.

2.2 Geometric Characterization of P-matrices. Note that Theorem 1 states
that a P-matrix can not map any point except zero from the positive into the
negative orthant. A simple generalization of this property turns out to be both
necessary and sufficient for 4 to be a P-matrix.

Let 4 be an n X » matrix, 2 = (§;) be a column vector, and let y = (%;)
= Az. Then 4 is said to reverse the sign of x if &;7, < 0 for all .

Theorem 2. A is a P-matriz if and only if A reverses the sign of no vector
except zero.

Proof. First, in proving necessity, we note that one has only to consider the
case where v = 0. For, if 2 = (£;,) 20, let L= {{| & < 0} and let D be the
diagonal matrix obtained from the identity matrix by replacing its ¢th rows
et(s € L) by —ét. Then, the matrix A* = DAD is again a P-matrix, since we
have simply changed the signs of a set of rows and the corresponding set of
columns of 4. Moreover, A* reverses the sign of Dx = 0.

Now suppose that x = (&)= 0 and A reverses the sign of x. Let
M = {i| & > 0}. Assume M + 0 and let 4 be the principal submatrix of 4
obtained by deleting its ith rows and columns for ¢ ¢ M and let £ be the
corresponding vector obtained from «. Then 4 is again a P-matrix and reverses
the sign of £#. As every component of # is positive, no component of 4 £ can be
positive, so that A# < 0. Whence, by Theorem 1, £ must be zero, contra-
dicting £ > 0. This proves necessity.

Conversely, let A* = (a;,), (1,7 € M) be any principal submatrix of 4,
where M is the corresponding set of numbers of rows and columns. If the
determinant of 4* were nonpositive, A* would have one real nonpositive
eigen-value and a corresponding real eigen-vector z* = (£*) < 0, since the
determinant of A* equals the product of all the eigen-values of 4* and complex
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eigen-values occur as pairs of conjugate complex numbers. If then we let = be
the vector whose component &; = &* fori¢ ¢ M, =0fors ¢ M, 4 clearly reverses
the sign of the nonzero z, arriving at a contradiction. Therefore, the deter-
minant is positive.

2.3 Examples of P-matrices. P-matrices include as special cases two
classes which occur frequently in economics: namely, («) matrices with positive
dominant diagonal, and {f) positive quasi-definite matrices. The following
explicit definitions will be helpful to see this situation.

An n X n matrix A4 is said to have dominant diagonal, if there are n positive
numbers d; > 0 such that

las,| di > % la:s| d; (t=12...,n).
T

If a matrix with dominant diagonal has positive diagonal entries, then it is a
P-matrix (see [3]). An important subclass of («) are matrices with dominant
diagonal and of the Leontief type (see 4.4).

On the other hand, an 7 X n matrix 4 is said to be positive quasi-definite,

if its symmetric part, namely —%w (4 + 4’) is positive definite. In this case,

A as well as%— (4 + 4’) is a P-matrix, as is well known.

3. Differentiable Mappings

3.1 Regions. A region is an open connected set in R», either without its
boundary or together with its boundary. If necessary, we term the former an
open region and the latter a closed region to distinguish one from the other. An
open rectangular region, or simply an open interval is the set {x | p; < z; < ¢;
(t=12,...,n)}, where p; and ¢; are real numbers; we allow some or all of
them to be foo. A closed rectangular region is the set {z|p, = 2, < ¢, (¢
=1,2,...,n)}, where — o0 < p; < ¢; < + . An arbitrary rectangular region
is the set obtained from a closed rectangular region by replacing some or all of
the defining inequalities by the corresponding striet inequalities.

3.2 Differentiable Mappings. A set of n real-valued functions f,(x) defined
on a region £2 gives rise to a mapping F : 2 - R», by the formula F (z) = (f,(x)).
The mapping F is said to be differentiable in £, if every component f,(x) has a

n
total differential 3 f,;(x) d=; at each point & of 2; that is, for z, a € 2, we
i=1

have the expression
@)  fi@) = fila) + 72%1 fis(@) (@, — a;) + o]z — af) (t=12...,2),

where o(Jz — a]) stands for the Landau’s o-symbol.

The Jacobian matriz of the mapping F is denoted by J, or Jp if necessary,
and defined by J () = (fi;(x)). Differentiability clearly implies continuity.
It also implies partial differentiability, and f,; turns out to be @f,/dz,. However,
it should be noted that in the case of a non-open region partial differentiation,
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even if one-sided, may not be carried out at some boundary points. Yet the
Jacobian can be defined by means of the coefficients of the total differential.
All the results below, except some of the last section, will be proved on the
assumption of differentiability, without requiring continuous differentiability.

4. Case of the P-Jacobian Matrix

In this section we extend Theorem 1 to the non-linear case from which we
will prove a univalence theorem for the case where the Jacobian matrix is a
P-matrix throughout a rectangular region.

4.1 Nonlinear Extension of Theorem 1. Let us consider a differentiable
mapping F : 2+ R*, where 2 is a closed rectangular region {z|p < = < ¢}
of R»,

Theorem 3. If the Jacobian matriz J(z} of the mapping F is a P-matrix
at every x € £2, then for any a and x in Q the inequalities

) F@)<F), z2a

have only the solution z = a.

Proof. By a simple translation we may assume that F (a) = 0. We proceed
by induction on n, the result being obvious for n = 1. Let X be the set of all
solutions of (4). We assert first that a is an isolated point of X. In fact, differen-
tiability implies, as was stated in (3), that

(5) lim (F()f]e — a] - 7 (a) @ — @)z — af) = 0.

Since J(a) is & P-matrix by Corollary 1 the second term above has some
component greater than some positive constant for all x = a. Then, (5) implies
that in some neighborhood of @, F (x) has at least one positive component for x
with x = a. Hence (4) with F (@) = 0 is satisfied only by @ in this neighborhood.

Now let X = X — {a}. From the preceding discussion X is closed and there-
fore compact. If X were not empty, it therefore should contain a minimal
element T with the property that no other element x of X satisfies z < Z.
We now distinguish two cases.

Case 1. & > a. Since J (7} is a P-matrix, by Corollary 2 there is a vector
% < 0 such that J(Z)u < 0. Because ¥ > a we can choose A positive but so
small that 2(3) = Z + Au > a. Thus @ < 2(4) < T so x{A) lies in Q. Further,
since F is differentiable, we have

F(A)=F@ + AJ @)u + o(A]u])
so that
F(z(4) —F (%) U

7 A
can be made as small as we like by choosing further smaller positive values 1.
This implies that F(x (1)) < F(Z) = F(a) and 2(A) € Q for a sufficiently small
positive A, contradicting the minimality of %. Hence X = 8.

Case 2. Some component of 7 = (&,) is equal to the corresponding component
of a = («;). By a simple identical renumbering of the equations and variables
we may assume that the first component &, of Z equals «;, the corresponding
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one of a. Then define a new mapping ' : Q - R*-1 by the formula

fo@g, - o m0) = filoy, @g, - - ., 2,) (=2,...,7)
where @ = {(#y,...,%,) | p; < @ < ¢; (1=2,...,7)}. The Jacobian matrix
of this new mapping is again a P-matrix, and clearly f;(e,, ..., 0,) =0 =

=fiEs...,8) (=2,...,m). So by the induction hypothesis o; = &
(1=2,...,n), and therefore Z = a, contrary to the assumption a ¢ X. This
completes the proof.

4.2 Proof of @ Univalence Theorem. We are now ready to prove

Theorem 4. If F:0 > Br, where 2 i3 a closed rectangular region of R,
is a differentiable mapping such that the Jacobian mairiz J (x) is a P-matriz for
all x in Q, then F is univalent in Q.

Proof. Suppose a,b €2 and F(a)= F(b). We must show that a=15.
Letting @ = (a;), b = (f;) we may suppose, reordering if necessary, that

(8) w< BEsk), = B (0>k).
Then, if &k = n, we observe that F (a) = F (b} and a < b; that is, the conditions

of Theorem 3 are met. Hence, by the theorem, we have a = b. The case k = 0
can be managed likewise. If 0 < k < n, define the mapping D : R* > R» by

D@y, ooy @) = (@, 0+ o Bpy — Ty o o 05 — Ty

Then D is univalent on R® and D-!= D. Further D(£) is again a closed
rectangular region. Let D{a) = a* and D(b) = b*. Finally let H: D(Q)—~ R»
be the composite mapping given by H = D o F o D. One verifies that H (a*)
= H(b*) and a* = b*. Moreover the Jacobian matrix of H is a P-matrix
since it is obtained from that of F by changing row and column signs in the
same way as in Theorem 2. Hence by Theorem 3 we have a* = b*, which
implies @ = b, as was to be shown.

Theorem 4 will be used to prove univalence on some weaker conditions
for two-dimensional cages in Section 7.

4.3 We remark that Theorems 3 and 4, although stated for closed rec-
tangular regions, are immediately true also in arbitrary rectangular regions,
either open or semi-closed, which are obtained from closed rectangular regions
by replacing either some or all of the defining inequalities by strict inequalities.
For if the assertions fail to be true on some rectangular regions, they also fail
to hold in some suitable closed rectangular subregions.

4.4 Monotonicity of the Inverse of @ Leontief Mapping. A subclass of
P.matrices is formed by matrices whose off-diagonal entries are nonpositive.
They are often referred to as ‘‘of the Leontief type” on account of their
prominent role in studies initiated by LEONTIEF in economics. It is very well-
known (cf. [2, 3]) that for a matrix of the Leontief type 4 the following four
conditions are equivalent:

(I) There is a vector x = 0 such that 4z > 0.

(IT) A is non-gingular and all the entries of A-? are nonnegative.

(II) A is a P-matrix.

(IV) All the upper left-hand corner » principal minors are positive.
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Thus the following theorem might be regarded as a generalization of this
tesult on Leontief matrices to nonlinear mappings.

Theorem 5. Let F: 82— B», where 2 is a region of B, be a differentiable
mapping whose Jacobian matrix is of the Leontief type. Then we have

(i) If Q2 is rectangular and the Jacobian mairix is a P- matm'x, F i3 univalent
in Q2 and F-1 {s monotonic increasing, that is, F(a) <= F(b) for a, b € Q implies
a< b

(it) Suppose that F is univalent in 2 which is an arbitrary open region, not
necessarily rectangular. If the inverse F-1 is differentiable and monotonic in-
creasing, then the Jacobian matriz of F is a P-matrix.

Proof. (i) Univalence is already proved in Theorem 4 together with the
preceding remarks. Also, monotonicity is obvious if » == 1. Thus, we proceed by
induction on n. In general, if F{a) £ F{b) for a = (&), b= (f;) €2, then
Theorem 3 implies that for some &k we have , < ;. Without loss of generality,
this & may be assumed to be 1. As was noted, differentiability implies partial
differentiability whenever partial differentiation is performable. We may also
note that it can be carried out throughout a rectangular region, if one has one-
gsided partial differentiation in mind at a boundary point. Then we have for
i>1
(7) fi(ﬂv Kas o o vy “n) = fi(‘xl’ Aoy« « oy “n) = fi(ﬁlﬂ ﬂz’ ey ﬂn) ’
the first inequality holding because 9f;/d%; < 0 (i > 1). We now define #': Q —
- Rr-1 by the rule

F(xz’ e mn) = (fz(ﬂxrxz’ v x'n)v cx vy fn(ﬂli Loy « ¢ <5 xn)) *
where ( is the image of £2 under the projection (x,, @,, . . ., T,) = (Zg, . . ., T,).
Now Floy, ..., a,) < F(Bs, - - ., f) from (7), and the Jacobian matrix of F
is again a P-matrix of the Leontief type. Hence by the induction hypothesis
= B; 0=2,...,n) and thus a < b, as was to be shown.

(it} This F turns out to be a topological mapping, and, by the invariance
of regionality, F'(£2) is also an open region. Let a be any point of £, and let
a* = F(a). Take some positive vector u* > 0. Then, since F (£2) is open, there
is some &> 0 such that x*(1) = a* + Au* ¢ F(2) for 4 with |A| <e. Let
F-1(z*(A)) = «(A). Then, since F-! is differentiable and monotonic increasing,

x(A) is differentiable and —%—x(l) = u(A) = 0 (JA] < ¢). Hence, again differ-
entiating a*(1) = F(x(A)) at 4 =0, we have J(a)u(o) = u* >0, u(o) = 0,
where J (a) is the Jacobian matrix of F. Since J(a) is of the Leontief type,
in view of the equivalence of (I) and (III), J (¢) must be a P-matrix.

b. Case of the Quasi-definite Jacobian Matrix

8.1 Quasi-definite Jacobians. In this section the univalence assertion will
be examined for a special P-Jacobian matrix case, namely the quasi-definite
Jacobian matrix case. It was noted in Section 2 that positive quasi-definite
matrices are P-matrices. Yet separate consideration will be made of this case
on account of the weaker condition on the structure of regions than in
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Theorem 4. We also note that the result can be applied to a Theorem due to
NosHIRO in the theory of univalent (schlicht) functions.

Theorem 6. If a differentiable mapping F : 2 — R, where 2 is a convex
region (either closed or nonclosed) of R*, has the Jacobian matrix which is every-
where positive (negative) quasi-definite in £2, then F is univalent in Q.

Proof. Let a, x €2 and x = a. Let further x(t) = a + th, where 2 — a
= h = (k). By convexity we have 2(f) € 2(0 £ ¢t < 1). Define the function
D(t) by

0= 3 (i) - @), O=t=s1).

Then, upon differentiation and appealing to the quasi-definiteness, it is
immediate to see that
0
() = .g’lfu(x(t}) hih;

gt
is identically positive or identically negative. Since @ (o) = 0, D (1) cannot
vanish and hence f,(z) — f;(a) = 0 for some ¢. Therefore, multivalence is ruled
out.

5.2 Application to Univalent Functions. The following sufficiency condition
for the univalence of an analytic function was first given by NosHIiro [4]. It is
noted that his result can easily be deduced from Theorem 6.

Corollary (NosuIRO [4]). Let f(2) be an analytic (complex) function of
a complex variable z in a convex region £2. Then, f(2) is univalent in £, if the
range of the derivative ' lies in a half-plane not containing the origin in its
tnterior.

Proof. We first show that it suffices to consider the case in which the real
part of the derivative is positive in . In fact, let f(z) = u + tv. Thus /' (2)
= u, + v, and, by assumption, there are some real numbers p and ¢ such that
Py + qu, > 01in L. Then, A(z) = (p — 1q) f(2) is analytic and A’'(z) has the
positive real part in £.

Now, we may assume that Re(f'(z)) = u, > 0 in £, and examine the
Jacobian matrix J of the mapping F:Q - R% where F(z,y)= (u(z,y),
v{z, ¥)). It is positive quasi-definite in £2, since

R %, O
5 m(o uﬁ),uw>0

by virtue of the Cauchy-Riemann equations u, = v,, %, = —v,. Hence uni-
valence is assured,

5.3 Non-univalence in Non-convexr Regions. In Theorem 6 the convexity
assumption is indispensable. An example is given to show that Theorem 6
is no longer true in a non-convex region. In view of the result in 5.2, it suffices
to give a non-univalent analytic function f{z) in a non-convex region, whose
derivative has positive real part in 0.

Such an example is given by considering the Joukowski mapping f(z)

=z + —:— {z &= 0) in suitable regions. Let £* be the common exterior portion
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of the two cireles of radius 1/2 and having their centers at (1/2, 0) and (~ 1/2, 0).
‘The real part of the derivative f'(2) = 1 — —zl; may be arranged as

12 1 1 1 -
Re(f (2)) = (z 2* 4)(1"’2;}42} 4)+(I @) ’

which is positive in £2*. Yet f(¢) = f{—1¢) = 0 while ¢, —¢ € 2*. Also one can
easily construct a simply-connected subregion of £2* which eontains 7 and — 3.

6. Weakening of the Jacobian Conditions

6.1 Weaker Conditions on Matrices. The purpose of this section is to relax
the conditions on the Jacobian in Theorems 4 and 6 to some extent without
losing univalence. The proof will be worked out in a straightforward way by
means of the Kronecker index. It should be noted, however, that the results
will be stated only for open regions in order to avoid complication which might
ocour on the boundary.

We begin by giving some definitions. An n X n matrix 4 is said to be a
weak P-matriz, if |A] > 0 and all the other principal submatrices, of order less
than », have nonnegative determinants. Also, 4 is said to be weakly posttibe
quasi-definite, if |4| > 0 and —;— (4 + A') is positive semi-definite. A weakly
negative quasi-definite matrix can be defined likewise.

6.2 Univalence Theorems under Weaker Conditions. We prove

Theorem 4w. If F:02 - R", where 2 is an open rectangular region of B»,
18 a differentiable mapping such that the Jacobian malriz J (x) is a weak P-matrix
for all x in £2, then F is univalent in 2.

Theorem 6w. If a differentiable mapping F : 2 — B*, where  is an open
convex region of B®, has the Jacobian matriz which is a weakly positive quasi-
definite matrix in Q, then it is univalent in Q.

Proof. The method of proof is exactly the same for the both theorems.
In the course of the proof, however, it should be kept in mind that by a sub-
region we mean a rectangular subregion in Theorem 4w and a convex subregion
in Theorem 6w.

Letting @ be an arbitrary point of £2, we must show that z € 2 and F(z)
= F(a) imply z = a. To this end, it suffices to prove that there is no other
solution to F{x) = F(a) than « = a in any bounded closed subregion 4* of 2
containing @ in its interior. Now take any larger bounded, closed subregion 4**
of £ such that the interior of 4*¥ includes 4*. Since the Jacobian is positive
in £, every solution of F(z) = F(a) is isolated, so that there are only a finite
number of solutions of F (x) = F (a) in A4**. Then we can choose a suitable open
intermediate region 4 whose boundary I” contains no solutions of F(z) = F(a).
I' is topologically equivalent to an (n — 1)-sphere, and may be regarded as a
basic (orientation-giving) (n — 1)-cycle, bounding A, when suitably triangu-
lated. We denote this cycle by I'. Likewise F'(I") stands for the image cycle,
while ¥ (I") denotes the image of I" as a point set.
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Now since F(I") $ F(a), the order of F(a) relative to the cycle F(I*) can be
defined and is denoted by w(F(I"), F(a)). By the Kronecker theorem on
indices (cf. (1], pp. 4567—478), w(F(I"), F(a)) equals the sum of the indices
of all the solutions to F (x) = F(a) in 4. Moreover, since the Jacobian is assumed
to be identically positive, the index of every solution of F(x) = ¥ (a) equals one.
Whence, we have

(8) w(F(I), F(a)) = number of solutions of F(x) = F(a)in 4.

Therefore, we have only to show that o (F([), F(a)) = 1.

To this end we first prove that there is no z € {2 such that = = a, F(z) —
— Fla)=—A(x— a) for some 1> 0. In fact, suppose that F(b)— F(a)
= — A{b — a) for some b € £2 and some 1 > 0. Then, by rearrangement, we have

) ia -+ Fa)=Ab+ F(b).

Now let F(x) = Az + F(x) and consider the mapping F : Q - R». This is
clearly differentiable. Further, the Jacobian matrix J; of this new mapping
equals A + J, where [ is the identity matrix and J is the Jacobian matrix
of F. Let K; be an arbitrary principal submatrix of J;. Then, K; = AI, + K,
where K is a principal submatrix of J and I, is the identity matrix of the
corresponding order k. It is readily seen that

(10) |Ki| = |AL + K| = A% + @(4),

where (1) is a polynomial of degree at most ¥ — 1 and whose coefficients equal
certain sums of the principal minors of K. Since these determinants are assumed
to be nonnegative in Theorem 4w, A > 0 implies |K;| > 0 because of (10).
On the other hand, if J is weakly positive quasi-definite as in Theorem 6w,
clearly J; = AI + J is positive quasi-definite because 1 > 0. Therefore the
Jacobian of the mapping F is identically either a P-matrix or a positive quasi-
definite matrix in Q. But (9) gives F (a) = F (b) and bence we have, by either
Theorem 4 or Theorem 6, a = b.

Now, since there is no z in £ such that z + a, F(z) — F(a) = —A(z — a)
for some i > 0, the mapping ¥ : I"— R* is homotopic to the mapping G (x)
=F(a)+ «— a:I'-> R*in B" — {F(a)} by the homotopy
(11) Ha,H)=1—-0)Fa)+t@@) el 05t 1),

Whence w(F([), F(a)) = oG, F(a)). But, dearly w(G([), Fa))=1 so

that, in (8), we have w(F(['), F(a)) = 1. Therefore, A* contains, a fortiori,
no other solution of F(z) = F(a) than z = @, q. e. d.

7. Two-dimensional Cases

The results in this section are rather fragmentary, but are presented because
of the directions they suggest for further generalizations of the preceding
theorems.

Throughout this section F : 2 — R%is a mapping given by F(z, ¥) = (f(z,%),
gz, v)), (x, y) € L2, where £2 is a region of R2,
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7.1 One-signed Principal Minors. We shall prove

Theorem 7. (i) Suppose that 2 is an arbitrary rectangular region either
closed or nonclosed and F has continuous partial derivatives. If then no principal
minors of the Jacobian vanish, F is univalent.

(i) Suppose that Q is an open rectangular region and F has continuous
partial derivatives. If the Jacobian does not vanish and no diagonal entries of the
Jacobian matrix change signs, then F is univalent.

Proof. (i) Since the entries of the Jacobian matrix are continuous, each
principal minor is everywhere positive or everywhere negative. Multiplying
some or all of the equations by — 1 if necessary we may assume that the
diagonal entries f, and g, are positive. If then the Jacobian is also positive,
the theorem is a special case of Theorem 4. Now suppose that the Jacobian is
negative, whence f,g9,— f,9, < 0. Since f,g,> 0, this implies f,g,> 0, so
that f, and g, never vanish and are of the same sign. Thus, because of continuous
differentiability, they are either everywhere positive or everywhere negative.
Hence, if f, >0, g, > 0, then the new mapping F : Q — K2, where F(x,y)
= (g(@, %), f(z, ¥)), has a P-Jacobian matrix. If f, <0, g, <0, then the
mapping F: Q — R, where F(z, y) = (—g(z, y), — (=, y)) has a P-Jacobian
matrix. Therefore, by Theorem 4, these two mappings are univalent, which
proves the univalence of the original mapping.

(#1) The proof can be worked out in the same way. It is noted, however,
that in (ii) we have the following three cases: («) the Jacobian matrix of the
original mapping is a weak P-matrix. () F has a P-Jacobian matrix. (y)F has
a P-Jacobian matrix. Hence, by Theorem 4w, univalence obtains.

7.2 One-signed Entries in a Row. Instead of the one-signedness of diagonal
entries, that of the entries of some row of the Jacobian suffices to insure
univalence. The results in this line are stated in

Theorem 8. (i) Suppose that Q2 is an open rectangular region and F is
differentiable. Assume further that the Jacobian neither vanishes nor changes sign.
If there are some real numbers p and q, not all of them zero, such that pf, + qg,
and pf, + qg, do not change sign in £2, then F is univalent.

(15) Suppose that 2 is an arbitrary rectangular region in which F has con-
tinuous partial derivatives and the Jacobian never vanishes. If there are some
real numbers p and q such that pf, + q9, and pf, + qg, do not change sign and
one of them does not vanish, then F is univalent.

Proof. (i) By simple transformations on the equations and/or variables,
we may assume that the Jacobian is positive and pf, + ¢g, = 0, pf, + ¢g, = 0
in Q.

In view of the proof of Theorems 4w and 6w in Section 6, it suffices to
show that the equation F(z) = F (@) has only the solution x = @ in any open
bounded rectangular subregion 4 which contains a, but whose boundary I’
contains no solution of the equation. Also, formula (8) is valid. But, this time,
the order w(F (), F(a)) equals the winding number, i.e. the number of times
F(x, y) goes around F (a), when (z, y) moves counter-clockwise once along I".
In what follows ¥ (a) may be assumed to be the origin of E3,
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Next we shall show that the winding number here is just one. To this end,
consider the function H(x, ¥) = pf(x, y) + ¢g(x, y). There are some points of
F(I') on each of the two rays I, and I, issuing from the origin whose union
i8 the straight line pf + ¢g == 0 in the (f, g)-space. For, otherwise, the winding
number would equal zero, contradicting the existence of at least one solution
2z =a to F(x)=0in A. Now, since by assumption H, = 0 and H, = 0 in £,
the value of H never decreases when (z, y) moves rightward and upward
along I'. It also never increases when (x, y) moves leftward and downward
along I'. Further the two open regions, defined by pf + gg > 0 and pf +
+ qg < 0 respectively, in the (f, g)-space intersect F(I"). For, otherweise,
again the winding number would be zero. In the light of the above results
together with the connectedness of I', we can readily trace the movement of
F(z, y) when (z, y) moves counterclockwise once along I, starting and ending
at a suitable point (4,, ), and passing through some (4, yy), (A, ys) and
(A4, it4) In succession. In fact, F(z, y) moves on the ray I, between (4, i) and
(A, us), stays in the open region defined by pf + gg > 0 after leaving (1, )
until reaching (4;, us), moves on the other ray I, between (45, ug) and (A4, py),
and stays in the opposite open region defined by pf + gg < 0 after leaving
(A4 f£4) until returning to (4, y,). This implies that F(x, y) goes around the
origin by 2z, so that the winding number is one. Hence by formula (8),
F (z) = 0 has only the solution « = a in 4, as was to be shown.

(i) We may assume that p £ 0. Then, the original mapping is univalent
if and only if the mapping ¥ :Q - R2 is so, where F(z,y) = (pf(z,y) +
+ qg(x, ¥), g(x, y)). The Jacobian of the latter is that of F multiplied by p.
Hence, by further simple transformations if necessary and in view of continuous
differentiability, we may finally assume that the original mapping has the
following properties: f, > 0 and f, = 0 in Q.

Now suppose that F is not univalent, so that F(a, b) == F{c, d) = {«, )
for some distinct points (a, b), (¢, d) € . Because f, > 0, clearly b = d, so that
we may let b < d. Choose any fixed y satisfying b < y < d. Then, f, = 0 and
b < yimply = f{a, b) = f(a, y). And similarly « = f{c, d) = f(c, y). By the
continuity of f, therefore, f{x, ) = o for some z between a and ¢. Moreover,
for a given y this # is unique, since f, > 0. Thus we obtain an implicit function
x = @(y) such that f(p(y), y) = « globally holds in the closed interval [b, d].
Then, because f(z,y) has continuous derivatives, ¢ is also continuously
differentiable and the derivative is given by ¢’ (y) = —f,(¢ ), ¥)/f(9(¥), ¥)
m [6, d]. Let G(y) = g(¢ (), ¥). Then, G is continuously differentiable and

= |J|/f. evaluated for x = @(y), where |J| denotes the Jacobian. Since |J|
does not vanish and is continuous, G'(y) is either everywhere positive or
everywhere negative, so that G(y) is strictly monotonie in [b, d]. This contra-
dicts G(b) = G{d) = B, and nonunivalence is ruled out.

7.3 Some Remarks. Theorems 7 and 8 include as special cases those in
which the Jacobian matrices have nonnegative entries. In these cases the
diagonal entries of the Jacobian matrices are one-signed, so that Theorem 7,
(ii) can be applied. On the other hand, any pair of nonnegative numbers p, g,
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unless p = ¢ = 0, will serve as the p, ¢ in (i) of Theorem 8. Also, for p = ¢ =1,
the function pf + gg fulfills the conditions pf, + gg, > 0, pf, + gg, > 0in £,
for no columns of the Jacobian matrix equal the zero vector, since they are
linearly independent. Therefore (ii) of Theorem 8 is also applicable to these
cases.

The method of proof for (ii) in Theorem 8 was suggested by SAMUELSON’S
idea [5], which, however, can apparently not be used in the general case.
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