
GAL~, D. and H. Nrr~rD5 
Math. Annalen 159, 81--93 (1965) 

The Jacobian Matrix and Global Univalence of Mappings* 
By 

DArn) GALE and HUKUKANE NIKAIDO in Providence and Osaka 

Contents Page 
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 
2. Preliminary Results on P-matrices . . . . . . . . . . . . . . . . . . . .  82 
3. Differentiable Mappings . . . . . . . . . . . . . . . . . . . . . . . . .  84 
4. Case of the P-Jacobian Matrix . . . . . . . . . . . . . . . . . . . . . .  85 
5. Case of the Quasi-definite Jacobian Matrix . . . . . . . . . . . . . . . . .  87 
6. Weakening of the Jacobian Conditions . . . . . . . . . . . . . . . . . . .  89 
7. Two-dimensional Cases . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

1. Introduction 
As is well known, the classical implicit function theorem assures the local 

univalence of a mapping in a neighborhood of a point at which its Jaeobian 
does not vanish, but it does not necessarily imply global univalence in a region, 
even if the Jacobian is everywhere non-vanishing. The purpose of this note 
is to give some further useful conditions on the Jacobian matrix which are 
sufficient to insure global univalence. 

Our main result asserts that  if all principal submatrices of the Jacobian 
matrix have positive determinants the mapping is univalent in any rectangular 
region. Matrices with this proper~y are termed P-matrices and their algebraic 
properties are derived in Section 2, especially as regards their relation to linear 
inequalities. After establishing notations in Section 3, we extend the linear 
results of Section 2 to the non-linear situation, from which a univalence theorem 
is derived in Section 4. 

Among the P-matrices two subclasses have received special attention, 
Leontief matrices and positive quasi-definite matrices (these are defined in 
Seet4ons 2, 4) and for these one can prove somewhat stronger theorems. Thus, 
if the Jacobian of a mapping is a Leontief matrix, then the inverse mapping is 
monotonic (Section 4), while if the Jaeoblan matrix is quasi-definite, uni- 
valence obtains not only on rectangular but on any convex regions (Section 5). 

In  Section 6, with the aid of the Kroneeker theorem on indices, the principal 
univalence theorems are generalized so that  the conditions on the Jacobian 
matrix are weakened. 

* This paper is based on a joint research done by the both authors at the Institute of 
Social and Economic Research, Osaka University. The first author is supported in part 
by a contract with the Office of Naval Research, USA. The authors benefited from 
valuable correspondence with Professor P. A. S~atVELSO~. 



82 D. GAL]~ and H. NIK/LID5: 

The final section discusses some special two-dimensional cases. 
We remark that  these investigations were stimulated by an assertion by  

P. A. SAMIFELSON [5] tha t  univalence holds if the upper left-hand principal 
minors of the Jacobian do not  vanish in a region. But  this is not true even in 
rectangular regions as shown by the following example: a mapping of R ~ into 
itself is given by  1(x,y) ----- e ~ -  y~ ÷ 3, g(x,y) -- 4 e ~ y - -  ya. Then, ]~ = 2e2~>0, 

]/'g, g,/'t = 2e '®(4e~ + 5y')  > 0  in R 2 . 

However there are two points (0, 2) and (0, - 2) which are mapped into the 
origin. 

Among the numerous questions which are not  settled here are: (1) If  all 
principal minors are non-vanishing, does univalenee obtain ?; (2) I f  the 
Jacobian is not zero and all the entries are non-negative, does univalence 
obtain ? Both (1) and (2) are answered in the affirmative in rectangular regions 
i n / ~ ,  but  even the conjunction of (1) and (2) has not been proved sufficient in 
general, though it  is solved in the affirmative in rectangular regions in R a, as 
shown by a special argument not given here. 

2. Preliminary Results on P.matrices 
2.1 P-~u~trices. A n  n × n real matrix A --- (a,j) is said to be a P-matrix,  if 

all its principal minors are positive. We shall be concerned with some useful 
results on P-matrices, which may also be of independent interest. 

In the sequel frequent use will be made of a semi.order in the real n-spaceR". 
For x -- (x~), y = (y,) E R~, the following notations are defined : 

x_~ y if x~_~ y~ ( i - - -1 ,2  . . . . .  n ) .  

x ~  y if x~_ y and x ~ = y .  

x > y if x, > y~ ( i - - -1 ,2  . . . .  , n ) .  

A vector x is termed nonnegatlve, if x ~_ O. 
T h e o r e m  1. I f  .4 ia a P-matrix,  then the inequalities 

(1) A x  < O, x > O 

have only the trivial solution x = O. 
Proo 1. The  result is immediate for n = 1. Assume it t rue in dimensions lower 

than n and let x = (~) satisfy (1). Since A is a P-matrix,  it  is non-singular, 
and the diagonal entries of its inverse A -1 -~ (b~j) are positive, whence any 
column of A -1, say the first column, b certainly has some positive components. 
Let  0 be the minimum of ~lb~ over all positive components of b and let this 
minimum be attained for i = k .  Then 0 ~ 0 ,  y - ~ x - O b ~ - O ? j ) _ ~  0 and 
~-----0. Note that  A y  = ~ 4 x - O A b  = A x - 0 ( 6 t l ) ~  0, where ~ are the 
Kronecker deltas. Let  /I be the principal submatrix obtained from A by 
deleting its k th  row and column, and let ~ be the ( n -  1)-vector obtained 
from y by  deleting its k th  component. Then, we have ~ g 0, ~ > 0. Since/ /  
is an (n - 1) × (n - 1) P.matr ix,  it  follows, by the induction hypothesis, tha t  
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y = 0. This, combined with 'Y/1c = 0, gives y = 0, so that Ax= O(bil) ~ 0. This 
implies, in view of Ax~ 0, that Ax= 0. Whence, by the non-singularity of A, 
we have x = 0, q. e. d. 

Corollary 1. If A is a P-matrix, there is a number A> 0 such that for all 
nonnegative vectors x ~ 0 of norm 1 (llxll = 1) some component of Ax is as great 
as A.. 

Proof. Let ('Y)i) =Ax and let 'Y)(x) = m~X'YJi· Then 'Y)(x) is continuous and 
• 

attains a minimum A. on the compact set of all nonnegative vectors of norm I. 
But, by Theorem 1, A. must be positive. 

Corollary 2. If A is a P-matrix, the inequalities 

(2) Ax>O, x>O 
have a solution. 

Proof. This follows by standard duality for linear inequalities, say, the 
theorems due to STIEMKE [6] and TucKER [7]. In fact, since A is a P-matrix 
so is its transpose A'. By Theorem 1, therefore, p' A ~ 0, p' ~ 0 imply p' A= 0, 
p' = 0, which is nothing but the Stiemke condition being equivalent to the 
existence of positive vectors x > 0 and u > 0 such that Ax - u = 0. This 
completes the proof. 

2.2 Geometric Characterization of P-matrices. Note that Theorem 1 states 
that a P-matrix can not map any point except zero from the positive into the 
negative orthant. A simple generalization of this property turns out to be both 
necessary and sufficient for A to be a P-matrix. 

Let A be an n X n matrix, x = (~i) be a column vector, and let y = ('Y)i) 
=Ax. Then A is said to reverse the sign of x if ~i'Y/i ~ 0 for all i. 

Theorem 2. A is a P-matrix if and only if A reverses the sign of no vector 
except zero. 

Proof. First, in proving necessity, we note that one has only to consider the 
case where x ~ 0. For, if x = (~i) ~ 0, let L = {i I ~i < 0} and let D be the 
diagonal matrix obtained from the identity matrix by replacing its ith rows 
ei(i EL) by -ei. Then, the matrix A*= DAD is again a P-matrix, since we 
have simply changed the signs of a set of rows and the corresponding set of 
columns of A. Moreover, A* reverses the sign of Dx ~ 0. 

Now suppose that x = (~i) ~ 0 and A reverses the sign of x. Let 
M = {i I ~i > 0}. Assume M =l= 0 and let .A be the principal submatrix of A 
obtained by deleting its ith rows and columns for i ~ M and let x be the 
corresponding vector obtained from x. Then .A is again a P-matrix and reverses 
the sign of x. As every component of x is positive, no component of .Ax can be 
positive, so that .Ax~ 0. Whence, by Theorem 1, x must be zero, contra
dicting x > 0. This proves necessity. 

Conversely, let A*= (aii), (i, j EM) be any principal submatrix of A, 
where M is the corresponding set of numbers of rows and columns. If the 
determinant of A* were non positive, A* would have one real nonpositive 
eigen-value and a corresponding real eigen-vector x* = (~*) =l= 0, since the 
determinant of A* equals the product of all the eigen-values of A* and complex 
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eigen-values occur as pairs of conjugate complex numbers. If  then we let x be 
the vector whose component ~ = ~* for i E M, = 0  for i ~ M, A clearly reverses 
the sign of the nonzero x, arriving at  a contradiction. Therefore, the deter- 
minant is positive. 

2.3 Examples of P-matrices. P-matrices include as special cases two 
classes which occur frequently in economies:namely, (a) matrices with positive 
dominant diagonal, and (fl) positive quasi-definite matrices. The following 
explicit definitions will be helpful to see this situation. 

An n × n matrix A is said to have dominant diagonal, if there are n positive 
numbers d t > 0 such that  

la,[ d, > Z ]a,,l ds (i = 1, 2 . . . . .  n) . 

If  a matrix with dominant diagonal has positive diagonal entries, then it is a 
P-matr ix  (see [3]). An important  subclass of (a) are matriees with dominant 
diagonal and o/the Leontie/type (see 4.4). 

On the other hand, an n × n matrix A is said to he positive quasi-definite, 
1 if its symmetric part, namely -2= (A + A') is positive definite. In  this ease, 

1 A as well as -~ (A + A') is a P.matr ix,  as is well known. 

3. Difterentiable Mappings 
3.1 Regions. A region is an open connected set in R", either without its 

boundary or together with its boundary. If  necessary, we term the former an 
open region and the latter a closed region to distinguish one from the other. An 
open rectangular region, or simply an open interval is the set (x I P~ < x~ < qi 
(i -~ 1, 2 . . . . .  n)}, where p~ and qi are real numbers; we allow some or all of 
them to be -t- ~ .  A closed rectangular region is the set (x I P i ~  xi g q~ (i 
---- 1, 2 . . . . .  n)}, where -- oo < p~ < qf < + ~ .  An arbitrary rectangular region 
is the set obtained from a closed rectangular region by  replacing some or all of 
the defining inequalities by  the corresponding strict inequalities. 

3.2 Di~erentia~le M a ~ n g s .  A set of n real-valued functions ]i (x) defined 
on a region ~ gives rise to a mapping F : ~ -~ R n, by  the formula F (x) ~-- (It (x)). 
The mapping F is said to be di~crcntiable in ~ ,  if every component ],(x) has a 

n 

total  differential ~ ]tj(x) cIx~ at  each point x of Q;  tha t  is, for x, a E Q, we 
~=1 

have the expression 
n 

(a) /,(x) = / , ( a )  + Z / . ( a )  (x~ - a~) + o(l[x - all) (i = I,  ~ . . . . .  n ) ,  
~-1 

where o( l[x-  all) stands for the Landau's o-symbol. 
The Jacobian matrix of the mapping F is denoted by J ,  or J~  if necessary, 

and defined by  J ( x ) =  (]~j(x)). Differentiability clearly implies continuity. 
I t  also implies partial differentiability, and/~j turns out to be O~[Ox~. However, 
i t  should be noted that  in the case of a non.open region partial differentiation, 
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even if one-sided, m a y  not be carried out a t  some boundary  points. Yet  the  
Jacobian can be defined by  means of the coefficients of the to ta l  differential. 
All the results below, except some of the last  section, will be proved on the 
assumption of differentiability, without requiring continuous differentiability. 

4. Case of the P-Jaeobian Matrix 
I n  this section we extend Theorem 1 to the non-linear ease from which we 

will prove a univalence theorem for the case where the Jaeobian matr ix  is a 
P-mat r ix  throughout a rectangular region. 

4.1 Nonlinear Extension o] Theorem 1. Le t  us consider a differentiable 
mapping F : ~ -+ R% where D is a closed rectangular region { x l p  ~ x < q} 
o f R  ~. 

Theorem 3. I]  the Jacobian matrix  J (x) ol the mapping  F is a P-matr ix  
at every x E ff2, then ]or any  a and x in ~ the inequalities 

(4) F(x)  < F(a ) ,  x > a 

have only the solution x = a. 
Proo]. By a simple translation we m a y  assume tha t  F (a) = 0. We proceed 

by  induction on n, the result being obvious for n = 1. Let  X be the set of all 
solutions of (4). We assert first tha t  a is an isolated point of X. In  fact, differen- 
t iabil i ty implies, as was s ta ted in (3), tha t  

(5) l im ( F ( x ) / t i x -  ait - J (a) ( x -  a ) / l i x -  all ) -= O. 
~ - - ~ a  

Since J (a )  is a P -mat r ix  by  Corollary 1 the second te rm above has some 
component  greater than  some positive constant for all x ~ a. Then, (5) implies 
tha t  in some neighborhood of a, F (x) has at  least one positive component for x 
with x ~ a. Hence (4) with F (a) = 0 is satisfied only by  a in this neighborhood. 

Now let ~ = X -- (a}. From the preceding discussion J~ is closed and there- 
fore compact.  I f  J~ were not empty ,  i t  therefore should contain a minimal 
element ~ with the property tha t  no other element x of ~ satisfies x ~ ~. 
We now distinguish two cases. 

Case 1. ~ > a. Since J (~) is a P-matr ix ,  by  Corollary 2 there is a vector  
u < 0 such tha t  J (~) u < 0. Because ~ > a we can choose A positive but  so 
small tha t  x(A) = • + 2u > a. Thus a < x(2) < ~ so x(2) lies in ~ .  Further ,  
since F is differentiable, we have 

F(x (2 ) )  = F(~)  + 2J(x-)u + o(2M) 
so tha t  

~[lul[ J(~)  [l~lt 
can be made as small as we like by  choosing further smaller positive values 4. 
This implies tha t  F(x(2))  < F(~) ~ P(a)  and x(2) ~ T2 for a sufficiently small 
positive 2, contradicting the minimali ty of ~. Hence X = ~. 

Case 2. Some component  of ~ = (~) is equal to the corresponding component  
of a = (~).  By  a simple identical renumbering of the equations and variables 
we m a y  assume tha t  the first component  ~ of ~ equals ~ ,  the corresponding 
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one of a. Then define a new mapping 1~ : ~ ~ Rn-1 by  the formula 

f ,(x~ . . . . .  x~) = 1 , ( ~ .  x2 . . . . .  x . )  (i  = 2 . . . . .  n)  

where ~ = ((x z . . . . .  x,) I Tt ~ x~ g q, (i = 2 . . . . .  n)~. The Jacobian matr ix  
of this new mapping is again a P-matr ix ,  and clearly fi(a~ . . . . .  a , )  = 0 
~ - f~ (~  . . . . .  ~n) ( i - - 2  . . . . .  n). So by  the induction hypothesis ~ =  ~ 
(i = 2 . . . . .  n), and therefore ~ = a, contrary to the assumption a ~ ~ .  This 
completes the proof. 

d.2 P r o o / o / a  Univalence Theorem. We are now ready to prove 
Theorem 4. I /  F : ~ - ~  R '~, where ff2 is a closed rectangular reyion of R n, 

is a di~erentia~le mapping such that the Jacobian matrix J (x) is a P-matrix/or 
all x in Q, then F is univalent in ~ .  

Proo/. Suppose a, b E ~ and F ( a ) = / ~ ( b ) .  We mus t  show tha t  a - - b .  
Letting a = (at), b = (fl~) we m a y  suppose, reordering if necessary, tha t  

(6) a~ ~_ flt(i  ~_ k) ,  a,  > fl~ (i > k) . 
Then, if k -- n, we observe tha t  F (a) = F (b) and a _~ b; tha t  is, the conditions 
of Theorem 3 are met.  Hence, by  the theorem, we have a = b. The case k -- 0 
can be managed likewise. I f  0 </¢  < n, define the mapping D : R ~ - ~ / ~  by  

D(xl . . . . .  x~) = (x 1 . . . . .  x~,--x~+ 1 . . . . .  - -x , )  . 
Then D is univalent on /O and D - X =  D. Fur ther  D(Q) is again a closed 
rectangular region. Let  D(a) = a* and D(b) = b*. Finally let H : D(Q) -~ R ~ 
be the composite mapping given by  H = D o F o D. One verifies tha t  H(a*) 
---- H(b*) and a* g b*. Moreover the Jacobian matr ix  of H is a P -mat r ix  
since it is obtained from tha t  of F by  changing row and column signs in the 
same way as in Theorem 2. Hence by  Theorem 3 we have a* = b*, which 
implies a = b, as was to be shown. 

Theorem 4 will be used to prove univalence on some weaker conditions 
for two-dimensional eases in Section 7. 

4.3 We remark tha t  Theorems 3 and 4, although stated for closed rec- 
tangular  regions, are immediately t rue also in arbi t rary rectangular regions, 
either open or semi-closed, which are obtained from closed rectangular regions 
by  replacing either some or ail of th  e defining inequalities by  strict inequalities. 
For if the assertions fail to  be t rue on some rectangular regions, they  also fail 
to  hold in some suitable closed rectangular subregions. 

d.4 Monotonlcity o] the Inverse o/ a Leontie/ Mapping. A subclass of 
P .matr ices  is formed by  matrices whose off-diagonal entries are nonpositive. 
They are often referred to as "of the Leontief t ype"  on account of their  
prominent  role in studies initiated b y  LEO~TIEF in economics. I t  is very well- 
known (cf. [2, 3]) tha t  for~ a matr ix  of the Leontief type  A the following four 
conditions are equivalent: 

(I) There is a vector x ~ 0 such tha t  A x > 0. 
(II) A is non.slngular and all the entries of A -1 are nonnegative. 
(IH) A is a P-matr ix .  
(IV) All the upper  left .hand corner n principal minors are positive. 
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Thus the following theorem might be regarded as a generalization of this 
Tesult on Leontief matrices to nonlinear mappings. 

Theorem 5. Let F : Y2 ~ R '~, where~ Q is a region of R'*, be a di~erentlable 
mapping whose Jacobian matrix is of the Leontief type. Then we have 

(i)  I f  f2 is rectangular and the Jacobian matrix is a P-matrix, F is univalent 
in Q and F -1 is monotonic increasing, that is, F(a) ~ F(b) for a, b E ~J implies 
a ~ b .  

(i i)  Sutrpose that F is univalent in Q which is an arbitrary open region, not 
necessarily rectangular. I f  the inverse F -1 is di~erentiable and monotonic in. 
creasing, then the Jacoblan matrix of F is a P.matrix. 

Proof. ( i )  Univalence is already proved in Theorem 4 together with the 
preceding remarks. Also, monotonicity is obvious if n = 1. Thus, we proceed by 
induction on n. In  general, if F(a) ~ F(b) for a = (~),  b = (~)  E Q, then 
Theorem 3 implies tha t  for some k we have ~ ~ ~k. Without  loss of generality, 
this k may  be assumed to be 1. As was noted, differentiability implies partial 
differentiability whenever partial differentiation is performable. We may also 
note tha t  it can be carried out throughout a rectangular region, if one has one- 
sided partial differentiation in mind at a boundary point. Then we have for 
i > l  
(7) f~(,8:t, tz~, . . . . .  ~,~) < li(~z,, ~2 . . . . .  ~n) ~ 1~(,81, j82 . . . . .  ,8,~), 
the first inequality holding because Ofi/Ox 1 < 0 (i > 1). We now define/0 : ~ 

R" - I  by the rule 

.tV'(x2 . . . .  , x~) = ( l d , 8 , ,  ~ . . . .  , ~) . . . . .  l , , ( , 8 .  ~ . . . . .  z , , ) ) ,  

where ~ is the image of ~2 under the projection (xl, x~ . . . . .  xn) -+ (x2 . . . . .  xn). 
Now ~ ( ~  . . . . .  ~,) < 1$(fl~, . . . ,  fl~) from (7), and the Jacobian matr ix of 
is again a P-matr ix  of the Leontief type.  Hence by the induction hypothesis 
a~ -~ fli (i = 2 . . . . .  n) and thus a < b, as was to be shown. 

(ii)  This F turns out to be a topological mapping, and, by  the invariance 
of regionality, F (D) is also an open region. Let  a be any point of ~ ,  and let 
a* = 2'(a). Take some positive vector u* > 0. Then, since F ( ~ )  is open, there 
is some e > 0  such that  x * ( 2 ) =  a * +  2u* EF(f2) for ~ with < e. Let  
F-~(x * (~)) = x (2). Then, since F -~ is differentiable and monotonic increasing, 

x(X) is differentiable and d-~x(2) = u(2) > 0 (]X] < e). Hence, again differ- 
entiating x*(X) = F(x(2)) at ~ = 0, we have J(a) u(o) = u* > O, u(o) > O, 
where J(a) is the Jacobian matrix of F.  Since J (a) is of the Leontief type, 
in view of the equivalence of (I) and (III), J(a) must be a P.matr ix .  

5. Case of the Quasi-definite Jacobian Matrix 
5.1 Quasi.definite Jacobians. In  this section the univalenee assertion will 

be examined for a special P-Jacoblan matrix case, namely the quasi-definite 
Jacohian matrix case. I t  was noted in Section 2 that  positive quasi.definite 
matrices are P.matrices. Yet separate consideration will be made of this case 
on account of the weaker condition on the structure of regions than in 
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Theorem 4. We also note tha t  the result can be applied to a Theorem due to 
NosHn~o in the theory of univalent (schlicht) functions. 

Theorem 6. II a di~erentiable mapping F :/2 -+ R", where /2 is a convex 
region (either closed or nonclosed) of R", has the Jacobian matrix which is every. 
where Tositive (negative) quasi.definite in/2,  then F is univalent in Q. 

Proof. Let  a, x E Q  and x=~a.  Let further x ( t ) = a + t h ,  where x - - a  
= h = (h~). By  convexity we have x(t) E/2(0 g t < 1). Define the function 
¢ (t) by 

n 

~(t )  = Z h,(f,(~(t)) - t ,(a)),  (0 < t < 1 ) .  
i = 1  

Then, upon differentiation and appealing to the quasi-definiteness, it  is 
immediate to see that  

n 

~'  (t) = Z f . (x ( t ) )  h,h~ 
i,f=1 

is identically positive or identically negative. Since ~5(o)= 0, ~5(1) cannot 
va~sh  and hence f~ (x) - f~ (a) # 0 for some i. Therefore, multivalenee is ruled 
out. 

8.2 Application to Univalent Functions. The following sufficiency condition 
for the univalence of an analytic function was first given by  NOSHIRO [4]. I t  is 
noted that  his result can easily be deduced from Theorem 6. 

Corollary (NosHI~O [4]). Let f(z) be an analytic (complex) function of 
a complex variable z in a convex region/2. Then, ] (z) is univalent in /2 ,  if the 
range of the derivative f' lie8 in a half.plane not containing the origin in its 
interior. 

Proof. We first show tha t  it suffices to consider the case in which the real 
part  of the derivative is positive in /2 .  In  fact, let ](z) = u + iv. Thus ]'(z) 
= ux + iv~ and, by assumption, there are some real numbers p and q such tha t  
pux + qv~ > 0 in /2 .  Then, h(z) = (p - iq) /(z) is analytic and h' (z) has the 
positive real part  in/2.  

Now, we may assume tha t  Re ( ] ' ( z ) )=  u~ > 0 in /2, and examine the 
Jacobian matr ix J of the mapping F : / 2 - ~  R~, where F(x, y ) =  (u(x, y), 
v (x, y)). I t  is positive quasi-definite in ~ ,  since 

J "~ J" "~" (0 z 2 0 ) u x  ' ux > O 

by virtue of the Cauehy-Riemann equations u z = v~, u~ = --v®. Hence uni- 
valence is assured. 

5.3 2gon-unlvalence in Non.convex Regions. In  Theorem 6 the convexity 
assumption is indispensable. An example is given t~ show that  Theorem 6 
is no longer true in a non-convex region. In  view of the result in 5.2, it  suffices 
to  give a non-univalent analytic function f(z) in a non-convex region, whose 
derivative has positive real part  in /2 .  

Such an example is given by  considering the Joukowski mapping f(z) 
1 = z + z (z # 0) in suitable regions. L e t / 2 *  be the common exterior portion 
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of the two circles of radius 1/2 and having their  centers a t  (1/2, 0) and (-- 1/2, 0). 
1 The  real par t  of the derivative f '  (z) = 1 -- - ~  m a y  be arranged as 

12  1 
2 4 ]  + (Im(z))8 

IzI' 
which is positive in 32*. Yet  f(i) = f ( - i )  = 0 while i, - i  E 32*. Also one can 
easily construct a simply-connected subregion of 32* which contains i and -- i. 

6. Weakening of the Jacobian Conditions 

6.1 Weaker Conditions on Matrices. The purpose of this section is to relax 
the conditions on the Jaeobian in Theorems 4 and 6 to some extent  without 
losing univalence. The proof will be worked out in a straightforward way by  
means of the Kronecker index. I t  should be noted, however, t ha t  the results 
will be stated only for open regions in order to avoid complication which might  
occur on the boundary.  

We begin by  giving some definitions. An n x n matr ix  A is said to be a 
weak P-matrix, if IAt > 0 and all the other principal submatrices, of order less 
than  n, have nonnegative determinants.  Also, A is said to be weakly positive 

1 quasi-definite, if IAI > 0 and ~ (A + A')  is positive semi-definite. A weakly 
negative quasi-definite matr ix  can be defined likewise. 

6.2 Univalence Theorems under Weaker Conditions. We prove 
Theorem 4w. I f  iT : 32 -+ R n, where 32 is an open rectangular region of Rn, 

is a diOerentiable mapping such that the Jacobian matrix J (x) is a weak P.matrix 
for all x in [2, then F is univalent in Q. 

Theorem 6w. I f  a diOerentiable mapping iv : 32 ~ R'*, where 32 is an open 
convex region of R n, has the Jacobian matrix which is a weakly positive quasi- 
definite matrix in [2, then it is univalent in 32. 

Proof. The method of proof is exact ly the same for the both theorems. 
I n  the course of the proof, however, it should be kept  in mind tha t  by  a sub- 
region we mean a rectangular subregion in Theorem 4 w and a convex subregion 
in Theorem 6w. 

Lett ing a be an arbi t rary point of 32, we must  show tha t  x E 32 and F(x)  
= F(a )  imply x --- a. To this end, i t  suffices to prove tha t  there is no other 
solution to F(x)  = iV(a) than  x = a in any  bounded closed subregion zJ* of 32 
containing a in its interior. Now take any  larger bounded, closed subregion z]** 
of 32 such tha t  the interior of A** includes z]*. Since the Jacobian is positive 
in 32, every solution of F(x)  -- iv(a) is isolated, so tha t  there are only a finite 
number  of solutions of iV(x) -- iV(a) in A**. Then we can choose a suitable open 
intermediate region A whose boundary i F contains no so lu t io~  of F (x) = iV (a). 
iF is topologically equivalent to an ( n -  1)-sphere, and m a y  be regarded as a 
basic (orientation-giving) ( n -  1).cycle, bounding A, when suitably triangu- 
lated. We denote this cycle by  _P. Likewise F (/~) stands for the image cycle, 
while iV (iF) denotes the image of iF as a point set. 
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Now since F(P) 9 F(a) ,  the order of F(a)  relative to the cycle F(/~) can be 
defined and is denoted by ¢o(F(i0), F(a)) .  By the Kronecker theorem on 
indices (cf. [1], pp. 457--478), ¢o(F(/~), F(a))  equals the sum of the indices 
of all the solutions to F (x) = F (a) in z]. Moreover, since the Jacobian is assumed 
to be identically positive, the index of every solution of F (x) = F (a) equals one. 
Whence, we have 

(8) m(F (/~), F (a)) = number of solutions of F (x) = F (a) in A . 

Therefore, we have only to show tha t  co(F(/~), F(a))  = 1. 
To this end we first prove that  there is no x E f2 such tha t  x + a, F (x) -- 

- - F ( a )  = - - l ( x - - a )  for some 2 > 0. In  fact, suppose tha t  F ( b ) - - F ( a )  
= -- t (b -- a) for some b E ~2 and some 2 > 0. Then, by rearrangement, we have 

(9) 2a + F(a) = 2b + F(b) . 

Now let F(x)  = 2 x  + F(x )  and consider the mapping F :  ~ - + / ~ .  This is 
clearly differentiablc. Further,  the Jaeobian matrix J~ of this new mapping 
equals h i  + J ,  where I is the identity matrix and J is the Jacobian matrix 
of F. Let  Ka be an arbitrary principal submatrix of J~. Then, Kx = t I ~  + K ,  
where K is a principal submatrix of J and Ik is the identity matr ix of the 
corresponding order k. I t  is readily seen that  

(10) Ig~l = [2I~ + g I = 2 ~ + ~(2) ,  

where ~0 (2) is a polynomial of degree at  most/¢ - 1 and whose coefficients equal 
certain sums of the principal minors of K. Since these determinants are assumed 
to be nonnegative in Theorem 4w, i > 0 implies [K~I > 0 because of (10). 
On the other hand, if J is weakly positive quasi-definite as in Theorem 6w, 
clearly Jx = 41 + J is positive quasi-definite because 2 > 0. Therefore the 
Jacobian of the mapping F is identically either a P .matr ix  or a positive quasi- 
definite matr ix in ~2. But  (9) gives F(a)  = F(b) and hence we have, by either 
Theorem 4 or Theorem 6, a = b. 

Now, since there is no x in ~2 such tha t  x 4: a, F (x )  - F(a)  = - 2 ( x -  a) 
for some ). > 0, the mapping F : P - ~  R" is homotopic to the mapping G (x) 
= F(a)  + x -- a : I1--+ R"  in R"  -- {F(a)} by the homotopy 

(11) H ( x ,  t) -- (1 -- t) F (x )  + tG(x)  (x ~ T', 0 ~_ t ~_ 1). 

%Vhenee co(F(_P), F(a))  = a~(G(1P), F(a)) .  :But, clearly oJ(G(/~), E ( a ) ) =  1 so 
that ,  in (8), we have w(F(/~), F(a))  = 1. Therefore, A* contains, a fortiori, 
no other solution of F (x) = F (a) than x = a, q. e. d. 

7. Two.dimensional Cases 
The results in this section are ra ther  fragmentary, hut  are presented because 

of the directions they suggest for further generalizations of the preceding 
theorems. 

Throughout  this section F : • -~ B 2 is a mapping given by  F (x, y) = (,] (x,y) ,  
g(x, y)), (x, y) 6 ~ ,  where Q is a region of R z. 
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7.1 One.signed Principal Minors. We shall prove 
Theorem 7. (i)  Suppose that ~ is an arbitrary rectangular region either 

closed or nonclosed and F has continuous partial derivatives. I] then no t~rincipal 
minors o/the Jacobian vanish, F is univalent. 

(ii) Suppose that Q is an open rectangular region and iv has continuous 
partial derivatives. I] the Jacobian does not vanish and no diagonal entries o] the 
Jacobian matrix change signs, then F is univalent. 

Proof. (i) Since the entries of the Jacobian matr ix are continuous, each 
principal minor is everywhere positive or everywhere negative. Multiplying 
some or all of the equations by --1 if necessary we may assume that  the 
diagonal entries ]~ and g~ are positive. If  then the Jaeobian is also positive, 
the theorem is a special case of Theorem 4. Now suppose that  the Jacobian is 
negative, whence ]xg~ -- ~gx < 0. Since ]~g~ > 0, this implies ~ug~ > 0, so 
that  ]u and g~ never vanish and are of the same sign. Thus, because of continuous 
differentiability, they are either everywhere positive or everywhere negative. 
Hence, if ]u > 0, g~ > 0, then the new mapping ~ : d g - ~ R  n, where iv(x,y) 
-- (g(x, y), ](x, y)), has a P-Jacobian matrix. If ]u < 0, g~ < 0, then the 
mapping P : ~ -+ R n, where P (x, y) = (-- g (x, y), -- ] (x, y)) has a P.Jacobian 
matrix. Therefore, by Theorem 4, these two mappings are univalent, which 
proves the univalence of the original mapping. 

(il) The proof can be worked out ~n the same way. I t  is noted, however, 
tha t  in (ii) we have the following three cases: (~) the Jacobian matrix of the 
original mapping is a weak P-matrix.  (fl) F has a P-Jacobian matrix. (?) P has 
a P-Jacobian matrix. Hence, by Theorem 4w, univalence obtains. 

7.2 One.signed Entries in a 3~ow. Instead of the one-signedness of diagonal 
entries, tha t  of the entries of some row of the Jacobian suffices to insure 
univalence. The results in this line are stated in 

Theorem 8. (i) Suppose that ~ is an open rectangular region and iv is 
di~erentiable. Assume/urther that the Jacobian neither vanishes nor changes sign. 
I] there are some real numbers p and q, not all o/them zero, such that p]~ + qgx 
and p/~ + qgy do not change sign in ~ ,  then iv is univalent. 

(ii) Suppose that ~ is an arbitrary rectangular region in which iv has con. 
tinuous partial derivatives and the Jacobian never vanishes. I /  there are some 
real numbers p and q such that P/x + qg® and p]~ + qg~ do not change sign and 
one o/them does not vanish, then iv is univalent. 

Proo/. (i) By simple transformations on the equations and/or variables, 
we may assume that  the Jacobian is positive and p~® + qg~ ~_ O, p]~ + qgy :> 0 
i nQ.  

In  view of the proof of Theorems 4w and 6w in Section 6, i t  suffices to 
show that  the equation iv (x) -- iv (a) has only the solution x ---- a in any open 
bounded rectangular subregion A which contains a, but  whose boundary i~ 
contains no solution of the equation. Also, formula (8) is valid. But,  this time, 
the order co(iv(/~), iv(a)) equals the winding number, i.e. the number of times 
iv(x, y) goes around iV(a), when (x, y) moves counter-clockwise once along/~. 
In  what follows iv (a) may  be assumed to be the origin of R a. 
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Next we shall show tha t  the winding number here is just one. To this end, 
consider the function H (x, y) ~- pl(x,  y) + qg(x, y). There are some points of 
F ( F )  on each of the two rays 11 and l~ issuing from the origin whose union 
is the straight line io] + qg = 0 in the (], g)-spaee. For, otherwise, the winding 
number would equal zero, contradicting the existence of at  least one solution 
x = a to F (x) = 0 in A. Now, since by  assumption H~ _~ 0 and H~ ~ 0 in f2, 
the value of H never decreases when (x, y) moves rightward and upward 
along T'. I t  also never increases when (x, y) moves leftward and downward 
along F.  Further  the two open regions, defined by pf  ÷ qg > 0 and p]  ÷ 
÷ qg < 0 respectively, in the (], g)-space intersect F(F).  For, otherweise, 
again the winding number would be zero. In  the light of the above results 
together with the eonneetedness of F, we can readily trace the movement of 
F (x, y) when (x, y) moves counterclockwise once along/~, starting and ending 
at a suitable point (21,/~), and passing through some (2~,/~), (~3,/~3) and 
(24,/~4) in succession. In fact, F (x, y) moves on the ray l 1 between (~1,/~1) and 
(23, #~), stays in the open region defined by  p]  + qg > 0 after leaving (23,/~2) 
until reaching (23,/~3), moves on the other ray 12 between (28,/~3) and (24,/~4), 
and stays in the opposite open region defined by  p~ ÷ qg < 0 after leaving 
(2~,/~4) until returning to (~, #1)- This implies tha t  F (x, y) goes around the 
origin by 2~, so that  the winding number is one. Hence by formula (8), 
F (x) = 0 has only the solution x = a in A, as was to be shown. 

(ii) We may assume that  p =~ 0. Then, the original mapping is univalent 
if and only if the mapping F : f 2 - > R  2 is so, where _~(x,y)= (p] (x , y )+  
÷ qg(x, y), g(x, y)). The Jacobian of the latter is that  of F multiplied by  p. 
Hence, by further simple transformations if necessary and in view of continuous 
differentiability, we may finally assume that  the original mapping has the 
following properties : Ix > 0 and ~ ~ 0 in f2. 

Now suppose that  F is not univalent, so that  F(a, b) = F(c,  d) = (~, r )  
for some distinct points (a, b), (e, d) C ~2. Because Ix > 0, clearly b ~: d, so tha t  
we may  let b < d. Choose any fixed y satisfying b _~ y ~_ d. Then, ]u _~ 0 and 
b _~ y imply ~ = l(a, b) ~ ](a, y). And similarly ~ = ](c, d) ~ t(c, y). By the 
continuity of ], therefore, ] (x, y) = ~ for some x between a and c. Moreover, 
for a given y this x is unique, since ]~ > 0. Thus we obtain an implicit function 
x = 9(y) such that  ](cp(y), y) = ~ globally holds in the closed interval [b, d]. 
Then, because ](x, y) has continuous derivatives, 9 is also continuously 
differentiable and the derivative is given by  ~' ( y ) =  -]u(9(y) ,  y)//~(q~(y), y) 
in [b, d]. Let  G(y)= g(9(y),  y). Then, G is continuously differentiable and 
G' = [J[[]~, evaluated for x = ~(y), where [JI denotes the Jacobian. Since IJ] 
does not vanish and is continuous, G" (y) is either everywhere positive or 
everywhere negative, so tha t  G(y) is strictly monotonic in [b, d]. This contra- 
dicts G(b) = G(d) = r ,  and nonunivalence is ruled out. 

7.3 Some Remarks. Theorems 7 and 8 include as special cases those in 
which the Jacobian matrices have normegative entries. In  these cases the 
diagonal entries of the Jacobian matrices are one-signed, so tha t  Theorem 7, 
(ii) can be applied. On the other hand, any pair of nonnegative numbers ~, q, 
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unless  p = q = 0, will  serve as the  p, q in (i) of Theorem 8. Also, for p = q = 1, 
the  func t ion  p] + qg fulfills the  condi t ions  p]~ + qg~ > 0, p/v+ qgv > 0 in ~,  
for no columns of t he  J a c o b i a n  m a t r i x  equal  t he  zero vector ,  since t h e y  are  
l inear ly  independen t .  Therefore  (ii) of Theorem 8 is also appl icab le  to  these  
cases. 

The  m e t h o d  of proof  for (fi) in Theorem 8 was sugges ted  b y  SAMUELSON'S 
idea  [5], which,  however ,  can  a p p a r e n t l y  no t  be used  in  t he  genera l  case. 
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