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segregate in back-cross individuals in accordance with genetic expectation.
The results of this and previous investigations show beyond reasonable
doubt that the species-specific qualities of the serum proteins are deter-
mined by gene action and suggest that the total protein complex of the
serum is likewise determined by genes.
The genes that in Pearlneck produce the serum antigens are not the same

as those that produce the cellular antigens, and possibly are not on the
same chromosomes. These findings corroborate the results of parallel
investigations of the sera and cells of back-cross hybrids of other combina-
tions of species of doves and pigeons.
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1. Introduction.-Kirchhoff' was the first to establish the existence of
"a stream function giving the motion of vortices" in an unbounded region.
Later, in 1881, Routh2 enunciated a theorem regarding the transformation
of a function of that nature for the case of a single vortex moving in a
bounded region. No proof was given and the existence of such a stream
function was not established.3 In 1921, Lagally4 established the existence
of this "Routh's stream function" and the more general "Kirchhoff's path
function" for a simply connected bounded region. An independent proof for
the case of a single vortex in such a region was also given by Masotti' in
1931, by using the Green function of the first kind. However, the most
general case of the motion'of a number of vortices in a multiply connected
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region is not covered by their work. The present article establishes the
existence of the "Kirchhoff-Routh function"6 for the general case. The
proof makes use of a generalized Green function and may therefore be re-
garded as a generalization of Masotti's work. Explicit formula of this
function is also given. A mbre detailed treatment of this work will appear
elsewfiere.

2. Statement of the Problem.-Consider a number of isolated free vortices
of strengths Ki (i = 1, 2, ..., n) at the points Pi(xi, yi) (i = 1, 2, ..., n) in an
incompressible fluid moving irrotationally in a region R. This region has a
number of internal boundaries Ck (k = 1, 2, ..., m) and it is (a) bounded
externally by a closed curve Co, or (b) unbounded from the outside, or (c)
limited by curves Co extending to infinity.

If the ordinary stream function of fluid motion

6 = '(x, y; x1, y1; ...; Xn, Yn) (2.1)

is known (which is obviously independent of the time t explicitly), the com-
ponents of velocity of the ith vortex (i = 1, 2, ..., n) are given by

dxi Ui = ()) dy = Vi(x) (2.2)
where

{()= +- !-log ri, ri = A/(x - xi)2 + (y - yi)2, (2.3)

and the suffixes Pi denote that the results of differentiation are to be evalu-
ated at the point Pi. For the case where the region R has no solid bound-
aries and where steady streaming is absent, Kirchhoff' has shown that
there exists a function

W = W(XI, yl; X2, Y2; ...; xnI Y,), (2.4)
such that the motion of the ith vortex is given by

dx, bW dyi (2.5
Ki d-=KiUi =-a Ki d-t = KiVi = (2 .5)

The object of this article is to show that this result of Kirchhoff can be
generalized to the motion of vortices in a region R of the general type de-
scribed above. In another article, we shall derive the law of transformation
of the Kirchhoff-Routh function W under a conformal transformation.
We shall first define a generalized Green function particularly suited to

the study of vortex motion. The essence of tbis paper, like Masotti's work,
lies in the application of the reciprocity property of a properly defined Green
function. (Cf. equations (3.5) and (3.6)).

3. The Green Function.-Let us define a function G(x, y; xo, yo) with
respect to two points P(x, y) and Po(xo, yo) in the region R by the following
three conditions.
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(i) The function

g(x, y; xo, yo) = G(x, y; xo, Yo) - log ro

(ro= (x -Xo)2 + (y - yo)2) (3.1)
is harmonic with respect to (x, y) throughout the region R including the
point Po; thus,

2+ 2g = 0. (3.2)
aX y2

(ii) If ?G/?n is the normal derivative of the function G on a curve (with
x, y as variables), then

G = Akon Ck, J ds=0 (k = 1, 2, ...,m) (3.3)
Con

for each of the inner boundaries Ck; where ds is an element of arc of the
closed analytical curve Ck, which encloses Ck but neither the other bound-
ary curves nor the point PO. The positive normal to Ck, is drawn toward
Ck and the positive direction of Ck is taken so that the main part of R
(including PO) lies to its left. Similar positive directions are used for any
other curve.

(iiia) If the region R has a closed outer boundary Co, then

G(x, y; xo, yo) = 0 over Co. (3.4a)

(iiib) If the region R extends to infinity in all directions, the function
G(r, y; xo, yo) behaves as follows:7

G(x, y; xo, yo) = log rO + 0()2Gr + over a very large circle of radius ro.
bGSG 1 1 (3.4b)

where bG/?.s is the tangential derivative along the circle.
(iiic) If the region R has boundaries Co extending to infinity, the function

G(x, y; X0, yo) behaves as follows :7

G(x, y; xo, yo) = 0 over Co, (3.4c)
G(x, y; xo, yo) = o(l) over a very large circle of radius ro. . c

Koebe8 established the existence and uniqueness of this Green function G
by resolving it into a linear combination of two sets of basic functions:
(a) the Green function of the first kind and (b) the set of harmonic functions
each of which takes the value unity on a particular one of the boundary
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curves and the value zero on all the others. With the help of this resolu-
tion, the present writer finds it possible to prove the symmetry property
of this Green function by using standard methods.9
We summarize the results in the following lemma.
LEMMA I. The function G(x, y; xO, yo) defined by the conditions (3.2)-

(3.4) exists uniquely, and is a generalized Green function satisfying the reci-
procity property

G(x, y; xo, yo) = G(xo, yo; x, y). (3.5)

The reciprocity property immediately leads to the following important
result (cf. (3.1)):

a g(xo, yo; Xo, YO) = 2 plim
ZVO ~~p,Poyg (x,y; xo,yo),

g(xo, yo; xo, yo) = 2 plmp g(x, y; xo,yo). (3

4. Kirchhoff's Equations.-Let us now apply our function G to the
hydrodynamical problem of vortex motion with the stream function (2.1).
The motion given by the stream function

I = KoG(x, y; xo, yo) (4.1)

may be called the motion due to a vortex Ko at the point Po(xo, yo). It is
a possible potential motion in the region R with the required singularity,
and has no circulation around any one of the inner boundaries. Further-
more, if the region R extends to infinity, the flow across an arc of the circle
ro = constant (contributing to outward flux) approaches zero and the flow
along it (contributing to circulation) is finite (or approaches zero), as r3
becomes infinite.

If we subtract the stream functions due to all the vortices from the com-
plete stream function (2.1), the remainder is a stream function giving a
possible potential motion in the region R. Now, this motion is uniquely
defined when the circulation around each of the curves Ck and the fluid
velocity at infinity are given. Since these conditions are the same for the
complete stream function as for this part, this motion is actually inde-
pendent of the (variable) positional coordinates (xi, yj) of the vortices. It
depends on the (constant) strengths Ki, only if the conditions defining it
happen to be so. We may therefore call it the motion "due to outside
agencies."
We summarize our results in the following basic lemma.
LEMMA II. If n vortices of strengths ICj (i = 1, 2, ..., n) are present in an
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incompressiblefluid at the points Pi(xi, yi) (i = 1, 2, ..., n) in a general region
bounded by fixed boundaries, the stream function offluid motion is given by

n

{I(x,Y; x1i Y, ...; X., Y.) = 40o(x, y) + EKiG(x, Y; Xi, yi), (4.2)
i = 1

where the properties of G(x, y; xi, yi) are given in Lemma I, and 4t'O(x, y) is
the stream function of the motion due to outside agencies, independent of
Pi(xi, yi) (and of Ki).
With this result at hand, we can at once establish the existence of the

Kirchhoff-Routh function.
THEOREM I. For the motion of vortices of strengths Kiji = 1, 2, ..., n) in a

general rtgion R bounded by fixed boundaries, there exists a Kirchhoff-Routh
function W(xl, yi; X2, y2; ...; t,, y,n) such that

dxi aw

(4.3)
Ki dy= KiVi = bx

dt x

where Pi(xi, yi) (i = 1, 2, ..., n) are the instantaneous positions of the vortices.
The function W is given by

n n 1 n

W = ico(xj, yi) + Ej Kiic G (xi, yj; xj, yj) +2 9g(xi, y;xi yj).
i=l i,j=1 2 =l

(i > i)
(4.4)

This can be at once verified by comparing the results for ui and vi ob-
tained from (4.3), (4.4) and (3.6) with those obtained from (2.2), (2.3) and
(4.2). We note that the system of Kirchhoff's equations (4.3) is a Hamil-
tonian system of differential equations in the set of variables ViVix, and

vyiY (i = 1, 2, ..., n).
It is not difficult to show that when the vortices are fixed the total force

reacting on all the solid boundaries is given by
n n

X = E p(bW/Iti), Y= E p(OW/ayi),
i=l i=l

p being the density of the fluid. It can also be shown that pW is a measure
of the kinetic energy of fluid motion, so that equation (4.3) leads to the
law of conservation of energy, W = constant.

1 Kirchhoff, G., Vorlesungen liber mathematische Physik, Mechanik, p. 255 ff. See also
Lamb, H., Hydrodynamics, 1932, p. 230.

2 Routh, E. J., Proc. Lond. Math. Soc., 12, 83 (1881).
3 Even in the standard books of recent years, the treatment is far from complete;

cf. Lamb, H., Hydrodynamics, 1932, pp. 219-236; Ramsey, A. S., A Treatise of Hydro-
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mechanics, Pt. II, Hydrodynamics, 1935, pp. 219-232; Milne-Thomson, L. M., Theo-
retical Hydrodynamics, 1938, pp. 323-348.

4Lagally, M., Math. Zeits., 10, 231-239 (1921).
6 Masotti, A., Atti Pontif. Accad. Sci. Nuovi Lincei, 84, 209-216, 235-245, 464-467,

468-473, 623-631 (1931). Also, Seminario Matematico e Fisico di Milano, 6, 3-53
(1932).

6 The function called by Lagally the Kirchhoff's path function shall be called in this
paper the "Kirchhoff-Routh function." The study of the function called by him the
Routh's stream function is not of much importance, because it is merely a special appli-
cation of the other (cf. equation (6.1)).
7For the definition of O( ) and o( ), cf. Titchmarsh, E. C., Theory of Functions, 1932,

p. 1, Oxford.
8 Koebe, P., Acta Math., 41, 306-344 (1918). Note that our function in case (b) is

the function with two singularities, one at P0, the other at infinity.
9 Cf. Kellogg, 0. D., Foundations of Potential Theory, 1929, pp. 238-240, Berlin.

Note that no assumption is made regarding the nature of the boundaries C0, C1, ..., Ck.
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5. Conformal Transformativon.-We shall now investigate the behavior
of the Kirchhoff-Routh function (whose existence we have established in
the preceding article) under a conformal transformation of fluid motion.
THEOREM II (Generalized Routh's theorem).-Under a conformal trans-

formation

z=f(z) (.1

which derives the motion in the '-plane from that in the z-plane, the Kirchhoff-
Routhfunctionfor the new motion is given by

Ki2logdzW = W + iE og|zP (5.2)

Proof. If F(z) is the complex stream function in the z-plane, we have
(cf. (2.3))

lim d Ui
-Ui +ivi = p Pi-j{F(z) - 7 log (z - Zi>) (5.3)

We mark every quantity in the z-plane with a curl. The complex stream
function for the new motion is then
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