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Overview

You have already studied parallel flow instability from the point of view of linear theory. There,

the governing equation is the Orr–Sommerfeld equation, the eigenvalues of which determine

the stability of the parallel flow to small-amplitude disturbances. In general, there are no

closed-form solutions to the Orr–Sommerfeld equation, either for the eigenfunctions or the

eigenvalues. Therefore, the aim in these lectures is to look at a non-trivial but highly relevant

physical system where the linear theory admits analytical expressions. This is the case of

Rayleigh–Bénard instability.

The idea behind the Rayleigh–Bénard instability is to take a uniform homogeneous fluid

sandwiched between two plates, and to heat the bottom plate so that a density gradient

emerges, with a cooler, denser layer lying on top of a hotter, less dense layer, thereby inducing

an unstable stratification. Beyond a threshold values, this configuration becomes unstable,

triggering a convective motion that counteracts the unstable stratification. The mathematics

of this flow instability is introduced in these lectures.

1 Governing equations

We start with the governing Navier–Stokes equations of incompressible flow in an arbitrary

domain:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ µ∇2ui + ρgi,

where all the symbols have their usual meaning and the gravity vector is (g1, g2, g3) =

(0, 0,−g), such that gravity points in the negative z-direction. The Navier–Stokes equation
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is supplemented with the incompressibility condition

∂ρ

∂t
+

∂

∂xi
(ρui) = 0.

To close the Navier–Stokes equations, further conditions (in addition to the incompressibility

relation) are required. In particular, it is necessary to prescribe the behaviour of the density

function. In the present application, we are interested in fluid behaviour in the presence of

a temperature gradient, so it is sensible to focus on a model where the density depends on

temperature (T ), wherein the simplest possible model is a linear relation:

ρ = ρ0 + δρ, δρ = −ρ0α(T − T0),

where ρ0 is the reference density, δρ is a fluctuation which depends linearly on temperature.

Also, T0 is the reference temperature, with T = T0 ⇐⇒ ρ = ρ0. Finally, the quantity α > 0

is the coefficient of volume expansion. We are not done yet: the evolution of temperature field

T (x, t) must be precribed. However, this can be accurately modelled by an advection-diffusion

equation:
∂T

∂t
+ ui

∂T

∂xi
= κ∇2T,

where κ > 0 is the thermal diffusivity. We assemble all our equations into a single mathematical

model:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ µ∇2ui + ρgi, (1a)

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (1b)

ρ = ρ0 + δρ, δρ = −ρ0α(T − T0), (1c)

∂T

∂t
+ ui

∂T

∂xi
= κ∇2T, (1d)

In practice, the density variations are quite small, and an approximation can be made wherein

density variations are considered only in the buoyancy (gravity) term. This is called

the Boussinesq Approximation (for a full justification of this approximation, see pages 16-17

in [1]. Thus, Equations (1a)–(1b) simplify to

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+ ν∇2ui +

(
1 +

δρ

ρ0
gi

)
, ν = µ/ρ0, (2a)

∂ui
∂xi

= 0, (2b)

while the density and temperature laws remain unchanged. This is a great simplification, as

the density in the Navier–Stokes equations is now ‘almost’ a constant.
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2 The base state

We study a time-independent base state involving no flow, with ui = 0 and a static temperature

distribution, such that

∇2T = 0.

We also focus on a two-dimensional geometry for now, in the (x, z) plane, such that the

solution of the Laplace equation for temperature reads

T = T0 + Ax+Bz,

where A and B are constants. However, we specialize without loss of generality to a situation

where the temperature gradient is imposed in the z-direction only, such that A = 0. Also, we

focus on the more interesting case of an adverse temperature gradient, such that B = −β,

with β > 0, and such that

T = T0 − βz.

Thus, compared to a baseline at z = 0 where the temperature is T0, high up where z > 0 it is

relatively colder and low down where z < 0 it is relatively hotter. Next, using ρ = ρ0 + δρ =

ρ0 − αρ0(T − T0) we obtain

ρ = ρ0(1 + αβz).

Again, compared to a baseline at z = 0 where the density is ρ0, high up where z > 0 the fluid

is both relatively cool and relatively more dense while low down where z < 0 it is relatively

hot and less dense. This is the notion of an adverse temperature gradient - the temperature

and density gradients are going in opposite directions. The last part of the characterization of

the base state is the determination of the pressure. We have the w-velocity equation:

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
− ρ0g(1 + αβz) + ν∇2w.

With w = 0 this gives
∂p

∂z
= −ρ0g(1 + αβz). (3)

The analogous u-velocity equation gives ∂p/∂x = 0. Note that Equation (3) is the equation

of hydrostatic balance: the pressure drop and the gravity force are balanced. Solving

Equation (3) gives

p = −ρ0g
(
z + 1

2
αβz2

)
.

We now characterize the base state in full by assembling our results in one place:

ui = 0, p = −ρ0g
(
z + 1

2
αβz2

)
. (4a)

T = T0 − βz, ρ = ρ0(1 + αβz). (4b)
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3 Linear stability analysis

Equations (4) are the time-independent base state of the problem. This solution would

appear to be unstable as the stratification is (apparently) itself unstable: a denser fluid sits

on top of a less dense fluid. The idea of the remainder of this chapter is to investigate this

stability problem. We do so by introducing perturbations:

ui = 0︸︷︷︸
base state

+ ui︸︷︷︸
perturbations

and

T ′ = T0 − βz︸ ︷︷ ︸
base state

+ θ︸︷︷︸
perturbations

.

We assume that the perturbations are small in the sense that the equations of motion for

(ui, T
′) can be linearized without any loss of accuracy in the modeling. The linearized

equations of motion read

∂ui
∂t

= − ∂

∂xi

(
δp

ρ0

)
+δi,zgαθ + ν∇2ui, (5a)

∂ui
∂xi

= 0, (5b)

∂θ

∂t
= wβ + κ∇2θ. (5c)

Here, δp is the perturbation pressure.

Exercise 1. Prove Equation (5) by carrying out the relevant linearization.

In incompressible flow wherein the density is a fixed constant, the pressure is always a ‘bad’

variable because it does not have its own equation (it is determined implicitly via the relation

∂iui = 0). Thus, we always try to eliminate the pressure from the equations of motion. We

do that here by considering again the momentum equations:

∂u

∂t
= − ∂

∂x

(
δp

ρ0

)
+ ν∇2u, (6)

∂w

∂t
= − ∂

∂z

(
δp

ρ0

)
+gαθ + ν∇2w, (7)

and by taking ∂z(6)−∂x(7); the result is

∂

∂t

(
∂u

∂z
− ∂w

∂x

)
= −gα∂θ

∂x
+ ν∇2

(
∂u

∂z
− ∂w

∂x

)
. (8)
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We take ∂x(8) and obtain

∂

∂t

(
∂2u

∂x∂z
− ∂2w

∂x2

)
= −gα∂

2θ

∂x2
+ ν∇2

(
∂2u

∂x∂z
− ∂w

∂x2

)
. (9)

We use the incompressibility condition ∂xu+ ∂zw to write

∂2u

∂x∂z
= −∂

2w

∂z2
.

Hence, Equation (9) becomes

∂

∂t

(
−∂

2w

∂z2
− ∂2w

∂x2

)
= −gα∂

2θ

∂x2
+ ν∇2

(
−∂

2w

∂z2
− ∂w

∂x2

)
. (10)

Finally then, we obtain
∂

∂t
∇2w = +gα

∂2θ

∂x2
+ ν∇4w.

We now assemble here in one place the two closed stability equations for the perturbation

velocity and temperature:
∂

∂t
∇2w = +gα

∂2θ

∂x2
+ ν∇4w, (11a)

∂θ

∂t
= wβ + κ∇2θ (11b)

At this point, it is appropriate to discuss boundary conditions. We assume that the flow

is unbounded in the x-direction, with −∞ < x < ∞, and that the flow is confined in the

z-direction by two parallel plates, located at z = 0 and z = d. The temperature is maintained

at fixed values at the plate walls, such that the temperature perturbations vanish at those

walls:

θ = 0, z = 0, d.

Also, because of the no-flux/no penetration conditions at the walls, we have

w = 0, z = 0, d.

Now, the equation to solve is fourth-order in w, so further boundary conditions are required.

Because of no-slip, we have u = 0 on the walls, hence ∂u/∂x = 0 on the walls. By continuity,

this means that
∂w

∂z
= 0, z = 0, d,

and this gives the required number of boundary conditions necessary to solve Equations (11).

4 Normal-mode solution

Because of the translational invariance of the equations (11) in the x-direction, it makes sense

to introduce a trial solution w ∝ eikx and θ ∝ eikx representing a plane wave, where k is
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the wavenumber. Indeed, it also makes sense to introduce exponential time dependence (in a

standard way) such that the following normal-mode solution is proposed:

w = ept+ikxW (z), (12a)

θ = ept+ikxΘ(z). (12b)

Substitution of Equations (12) into Equations (11) yields

p
(
∂2z − k2

)
W = ν

(
∂2z − k2

)2
W−gαk2Θ,

pΘ = βW + κ
(
∂2z − k2

)
Θ.

Before going any further, we reduce the number of parameters in these equations by rescaling

as follows: (
∂2z − k2 −

p

κ

)
Θ = −β

κ
W, (13a)(

∂2z − k2
) (
∂2z − k2 −

p

ν

)
W = +

gα

ν
k2Θ. (13b)

We introduce a non-dimensional z-coordinate z̃ = z/d, with

d

dz
=
dz̃

dz

d

dz̃
=

1

d

d

dz̃
,

and the equations (13) become(
∂2z̃ − d2k2 −

pd2

ν

ν

κ

)
Θ = −βd

2

κ
W, (14a)

(
∂2z̃ − d2k2

)(
∂2z̃ − d2k2 −

pd2

ν

)
W = +

gαd2

ν
(d2k2)Θ. (14b)

We identify

Pr =
ν

κ
, σ =

pd2

ν
, [σ] = 1,

where Pr = ν/κ is the Prandtl number. Thus, Equations (14) become(
∂2z̃ − k̃2 − σPr

)
Θ = −βd

2

κ
W, (15a)(

∂2z̃ − k̃2
)(

∂2z̃ − k̃2 − σ
)
W = +

gαd2

ν
k̃2Θ, (15b)

where k̃ = dk is a dimensionless wavenumber . We combine the Θ and W -equations by taking

the W -equation and operating on it with (∂2z − k2 − σ Pr). We obtain(
∂2z̃ − k̃2 − σPr

) [(
∂2z̃ − k̃2

)(
∂2z̃ − k̃2 − σ

)
W
]

=
(
∂2z̃ − k̃2 − σPr

)[gαd2
ν

k̃2Θ

]
,

=
gαd2

ν
k̃2
[(
∂2z̃ − k̃2 − σPr

)
Θ
]
,

=
gαd2

ν
k̃2
[
−βd

2

κ
W

]
,

= −gαβd
4

νκ
k̃2W.
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We introduce

Ra =
gαβd4

νκ

as the Rayleigh number and we have the following single stability equation:(
∂2z̃ − k̃2 − σPr

)(
∂2z̃ − k̃2 − σ

)(
∂2z̃ − k̃2

)
W = −Ra k̃2W. (16a)

Exercise 2. Show that the Rayleigh number is dimensionless.

Viewing the eigenvalue problem as an equation in the single variable W , it can be noted

that the ordinary differential equation to solve is sixth order. We already have the boundary

conditions

W = W ′ = 0, z = 0, 1, (16b)

giving four boundary conditions. We need two more boundary conditions to close the problem.

However, since (∂2z −k2)(∂2z −k2−σ)W = (gαd2/ν)k2Θ, and since Θ = 0 on the boundaries,

the remaining two boundary conditions are given by(
∂2z̃ − k̃2 − σ

)(
∂2z̃ − k̃2

)
W = 0, z = 0, 1. (16c)

Thus, we have an ordinary differential equation in the eigenvalue σ. Before attempting various

approaches to solve for σ as a function of k explicitly, we first of all investigate the properties

of this equation using a priori methods. Following standard practice, in the remainder of this

Chapter we omit the tildes over the dimensionless variables.

Remark 1. A normal-mode trial solution is possible when a problem possesses translational

symmetry.

For, consider a generic linear problem

∂φ

∂t
= Lφ,

where φ = φ(x, t) is some scalar field and L is a linear operator depending on ∂x and higher

derivatives, such that L is translation invariant:

L(x) = L(x+ a), for all a ∈ R.

Introduce the translation operator T :

Taφ(x) = φ(x+ a).

Thus, T Lφ = LT φ, since T has no effect on L. In other words, T and L commute as

operators. There is a theorem in Linear Algebra that says that if two operators commute, then
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they share the same eigenvectors (eigenfunctions). And, since eikx is an eigenfunction of T ,

it must also be an eigenfunction of L.

In more detail, eikx is an eigenfunction of T because

T eikx = eik(x+a) = eikaeikx,

hence eikx is the eigenfunction with eigenvalue eika.

5 A priori methods for the stability equation

Remark 2. The proof of the theorem was skipped in class.

We prove the following theorem:

Theorem. Consider the eigenvalue problem given by Equation (16). The eigenvalue σ is

purely real and therefore, the transition from stability to instability is given by σ = 0.

Proof: Introduce

G = (∂2z − k2)W, F = (∂2z − k2)(∂2z − k2 − σ)W,

hence F = (∂2z − k2 − σ)G. The boundary conditions in Equation (16) imply that F = 0 at

z = 0 and z = 1. Also, the eigenvalue equation can be rewritten as

(∂2z − k2 − Prσ)F = −Ra k2W.

We multiply both sides of this equation by F ∗ and integrate from z = 0 to z = 1. Now,∫ 1

0

F ∗∂2zF dz = −
∫ 1

0

|∂zF |2 dz,

in view of the boundary conditions on F at z = 0 and z = 1. Thus, we obtain∫ 1

0

[
|∂zF |2 + (k2 + Prσ)|F |2

]
dz = Ra

∫ 1

0

F ∗W dz.

Now consider ∫ 1

0

F ∗W dz =

∫ 1

0

W (∂2z − k2 − σ∗)G∗ dz,

=

∫ 1

0

W∂2zG
∗ dz − (k2 + σ∗)

∫ 1

0

WG∗ dz,

=

∫ 1

0

G∗∂2zW dz − (k2 + σ∗)

∫ 1

0

WG∗ dz,

=

∫ 1

0

G∗
[
(∂2z − k2)− σ∗

]
W dz,
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where we have used integration by parts repeatedly to show that∫ 1

0

W∂2zG
∗ dz =

∫ 1

0

G∗∂zW dz,

using further the fact that W = ∂zW = 0 on z = 0, 1. Now,∫ 1

0

F ∗W dz =

∫ 1

0

G∗
[
(∂2z − k2)− σ∗

]
W dz,

=

∫ 1

0

G∗ (G− σ∗W ) dz,

=

∫ 1

0

|G|2 dz − σ∗
∫ 1

0

G∗W,

= ‖G‖22 − σ∗
∫ 1

0

[(
∂2z − k2

)
W ∗]W dz,

= ‖G‖22 + σ∗
∫ 1

0

(
|∂zW |2 + k2|W |2

)
dz

Putting it all together, we have

‖∂zF‖22 + (k2 + Prσ)‖F‖22 = Ra
[
‖G‖22 + σ∗

(
‖∂zW‖22 + k2‖W‖22

)]
Take imaginary parts on both sides of this equation:

Pr=(σ)‖F‖22 = −Ra=(σ)
(
‖∂zW‖22 + k2‖W‖22

)
,

where the mysterious minus sign emerges on the right-hand side because it is σ∗ that appears

there, not σ. Hence,

=(σ)
[
Pr‖F‖22 + Ra

(
‖∂zW‖22 + k2‖W‖22

)]
= 0.

Now, the quantity inside the square brackets is positive definite, so we are forced to conclude

that

=(σ) = 0.

For the second part of the theorem, we start with the fact that the system changes from stable

to unstable when

<(σ) = 0.

However, σ is purely real, so this condition for a change in the stability amounts to

σ = 0.

This concludes the proof.

In stability theory it is of interest to construct the neutral curve <(σ) = 0 as a function

of the problem parameters (in this case (Ra,Pr, k)). For the Rayleigh–Benard convection, we

have shown that the neutral curve amounts to σ(Ra,Pr, k) = 0. In the next section we find

semi-explicit solutions for this neutral curve.
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Remark 3. Quite generally, in linear stability theory, the condition

<(σ) = 0

is called the threshold or the point of criticality. This is where the system switches between

stable and unstable states. In the case of Rayleigh–Bénard convection, the imaginary part of

σ is always zero, so for this one instance only, the point of criticality is simply σ = 0. This

simplifies the next piece of analysis.

6 Explicit solution for the neutral curve

From the previous section, it is known that the neutral curve occurs when σ = 0. Therefore,

we set σ = 0 in the eigenvalue problem (16) to obtain the following simplified equations:(
∂2z − k2

)3
W = −Ra k2W.

Instead of placing the plates at z = 0, 1, we instead set up the problem in a more symmetric

manner, such that z ∈ (−1/2, 1/2). Thus, the relevant boundary conditions are imposed as

follows:

W = W ′ = (∂2z − k2)2W = 0 on z = ±1
2
.

We immediately make a trial solution

W = e±qz

such that

(q2 − k2)3 = −Ra k2.

We call

Ra k2 = τ 3k6

hence

(q2 − k2)3 = −τ 3k6,

and

q2 = k2 + (−1)1/3τk2.

Note also:

τ = (Ra/k4)1/3.

The three cube roots of unity are

(−1)1/3 = −1, 1
2

(
1± i
√

3
)
,

10



Rayleigh–Bénard Convection

hence

q2 = −k2(τ − 1), q2 = k2
[
1 + τ 1

2

(
1± i
√

3
)]
.

Taking square roots, we obtain the following six square-root solutions:

±iq0, ±q, ±q∗,

where q0 = k
√
τ − 1 and

<(q) := q1 = k
[
1
2

√
1 + τ + τ 2 + 1

2

(
1 + 1

2
τ
)]1/2

, (17a)

=(q) := q2 = k
[
1
2

√
1 + τ + τ 2 − 1

2

(
1 + 1

2
τ
)]1/2

. (17b)

Exercise 3. Prove Equation (17) (not done in class).

In view of the symmetric nature of the problem (sandwiched between z = −1/2 and

z = 1/2), we can break up the solution into odd and even cases with respect to the centreline

at z = 0. For the even case we have a solution

W = A0 cos(q0z) + A cosh(qz) + A∗ cosh(q∗z),

where we have constructed a manifestly even solution via a linear superposition of component

solutions. There are only three linearly independent complex coefficients in the superposition,

and these can be chosen as A0, A, and A∗, since A and A∗ are linearly independent. Imposing

the boundary conditions at z = ±1/2 yields

A0 cos(q0/2) + A cosh(q/2) + A∗ cosh(q∗/2) = 0, (18a)

−q0A0 sin(q0/2) + qA sinh(q/2) + q∗A∗ sinh(q∗/2) = 0, (18b)

A0 cos(q0/2) + 1
2

(
i
√

3− 1
)
A cosh(q/2)− 1

2

(
i
√

3 + 1
)
A∗ cosh(q∗/2) = 0. (18c)

This immediately leads to a determinant problem∣∣∣∣∣∣∣∣
cos(q0/2) cosh(q/2) cosh(q∗/2)

−q0 sin(q0/2) q sinh(q/2) q∗ sinh(q∗/2)

cos(q0/2) 1
2

(
i
√

3− 1
)

cosh(q/2) −1
2

(
i
√

3 + 1
)

cosh(q∗/2)

∣∣∣∣∣∣∣∣ = 0. (19)

We divide each row of the determinant problem by the first row to obtain∣∣∣∣∣∣∣∣
1 1 1

−q0 tan(q0/2) q tanh(q/2) q∗ tanh(q∗/2)

1 1
2

(
i
√

3− 1
)
−1

2

(
i
√

3 + 1
)
∣∣∣∣∣∣∣∣ = 0. (20)
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Next, we subtract the first row from the third row and divide the result by −
√

3/2 to obtain∣∣∣∣∣∣∣∣
1 1 1

−q0 tan(q0/2) q tanh(q/2) q∗ tanh(q∗/2)

0
√

3− i
√

3 + i

∣∣∣∣∣∣∣∣ = 0. (21)

Expanding this determinant yields

=
[(√

3 + i
)
q tanh(q/2)

]
+ q0 tan(q0/2) = 0. (22)

Exercise 4. Fill in the blanks in the derivations of Equations (18), (21) and (22) (not

done in class).

Since q and q0 are both functions of k and Ra, Equation (22) can be regarded as a condition

of the form

Φ(Ra, k) = 0,

where Φ is a function of two variables. This is the implicit equation of a curve in Ra−k space

– the neutral curve. Note that the neutral curve is independent of the Prandtl number. Thus,

to determine the onset of instability, the Prandtl number is irrelevant - only the wavenumber

and the Rayleigh number matter. The aim of the remainder of this section is to compute the

neutral curve numerically.

Remark 4. Concerning the missing information in Equation (18c) alluded to in class.

There are some missing steps in Equation (18c). Recall, this is the boundary condition

(∂2z − k2)2W = 0, where W = A0 cos(q0z) +A cosh(qz) +A∗ cosh(q∗z). Look at the cosine

component first, and consider

(∂2z − k2)2 cos(q0z) =
(
∂4z − 2k2∂2z + k4

)
cos(q0z),

= (q20 + 2k2q2 + k4) cos(q0z), (note the sign),

= (q20 + k2)2 cos(q0z),

= [(k2τ − k2) + k2]2 cos(q0z), as q0 = k2(τ − 1),

= k4τ 2 cos(q0z).

Similarly, consider the cosh component A cosh(qz):

(∂2z − k2)2 cosh(qz) = (q2 − k2)2 cosh(qz),

=
[(
k2 + 1

2
τk2(1 + i

√
3)
)
− k2

]
cosh(qz),

=
(
k2τω

)2
cosh(qz),
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where ω = (1 + i
√

3)/2 and

ω2 = − 1

ω
= 1

2

(
i
√

3− 1
)
.

From these calculations, it is obvious that(
∂2z − k2

)
W = (k2τ)2A0 cos(q0z) + (k2τ)2

[
1
2

(
i
√

3− 1
)
A cosh(qz) + +c.c.

]
,

from which Equation (18c) follows.
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We write a Matlab code to solve for the neutral curve. First, for a given k-value, the

critical Rayleigh number can be estimated as follows:

1 f u n c t i o n Ra=my r a y l e i g h b ena r d 0 ( k , Ra guess )

2

3 Ra=f z e r o (@myfun , Ra guess ) ;

4

5 f u n c t i o n y=myfun ( x )

6

7 tau=(x/k ˆ4) ˆ(1/3) ;

8 q0=k∗ s q r t ( tau−1) ;
9 temp=s q r t (1+tau+tau ˆ2)+(1+(1/2)∗ tau ) ;

10 q1=k∗ s q r t ( temp /2) ;

11 temp=s q r t (1+tau+tau ˆ2)−(1+(1/2)∗ tau ) ;
12 q2=k∗ s q r t ( temp /2) ;

13

14 q=q1+s q r t (−1)∗q2 ;
15

16 y=imag ( ( s q r t (3 )+s q r t (−1) ) ∗q∗ tanh ( q/2) )+q0∗ tan ( q0 /2) ;
17 end

18

19 end

my rayleigh benard0.m

Next, for a range of k-values, the corresponding set of critical Rayleigh numbers can be found

as follows:

1 f u n c t i o n [ k vec , Ra vec ]=my r a y l e i g h b ena r d 1 ( )

2

3 k vec =0 . 1 : 0 . 0 5 : 1 0 ;

4 Ra vec=0∗k vec ;

5

6 Ra=my r a y l e i g h b ena r d 0 ( k vec (1 ) ,100000) ;

7 Ra vec (1 )=Ra ;

8

9 f o r i =2: l e n g t h ( k vec )

10 Ra guess=Ra vec ( i −1) ;
11 Ra=my r a y l e i g h b ena r d 0 ( k vec ( i ) , Ra guess ) ;

12 Ra vec ( i )=Ra ;

13 end

14

15 end

my rayleigh benard1.m

This code can be used to plot the neutral curve (Figure 6) for the even case.
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Figure 1: Neutral curve for the Rayleigh–Benard problem (even eigensolution)

In a similar way, the neutral curve for the odd mode is found from the root of the following

equation:

q0 cot(q0/2) = =
[(√

3 + i
)
q

sinh(q1)− i sin(q2)

cosh(q1)− cos(q2)

]
. (23)

Exercise 5. Starting with Equation (23), write a Matlab function to construct the neutral

curve of the odd eigensolution. Then, plot the odd and even neutral curves on a single

graph. Show that the critical Rayleigh number for the onset of an even unstable eigenmode

is less than the corresponding critical Rayleigh number for the odd unstable eigenmode.

Argue then that the even eigenmodes are more unstable than the odd ones (not done in

class).

7 Convection patterns

We pass from two-dimensional to three-dimensional disturbances in the coodinates (x, y, z),

where z is the wall-normal direction. It can be seen quite readily that the three-dimensional

linearized equations of motion read

∂

∂t
∇2w = +gα

(
∂2θ

∂x2
+
∂2θ

∂y2

)
+ ν∇4w, (24a)

∂θ

∂t
= wβ + κ∇2θ (24b)

15



Rayleigh–Bénard Convection

where the differential operators are now in the appropriate three-dimensional form. Under a

normal-mode decomposition

w = ei(kxx+kyy)+ptW (z), θ = ei(kxx+kyy)+ptΘ(z),

the eigenvalue equation derived previously still persists, only now the quantity k2 in the

relevant differential equation means k2 = k2x + k2y. Thus, there was no loss of generality in

our previous focus on the two-dimensional case. Interestingly, the theory at this stage is by

no means complete, since at the onset of criticality (i.e. for parameters along the neutral

curve) there are many ways in which the critical wavenumber k2c can be resolved into its x- and

y-components. Thus, the theory so far does not tell us which pair (kx, ky) (with k2x +k2y = k2c )

is selected. Indeed, any pair consistent with this condition is possible and hence, a linear

superposition of all such consistent pairs is the general acceptable solution.

However, we can observe that a particular wavenumber choice corresponds to a periodic

cell, replicated throughout the xy-plane. Because the problem is translationally invariant in

the xy-plane, these cells should fill in the xy plane with no gaps. There is a loose analogy here

with solid-state physics: translational symmetry in a discrete crystal structure implies a lattice

structure, which in turn implies that the only possibility for the unit cell (in two dimensions) is a

square, an equilateral triangle, or a hexagon. Thus, only those wavenumber combinations

that produce a square, equilateral triangle or a hexagon as the periodic cell are

allowed by the translational symmetry of the problem. A real hexagonal convection cell

is shwon in Figure 2.

The complete velocity field

Remark 5. This part was not done in class.

The complete velocity field (u, v, w) can be backed out from these considerations, albeit in a

remarkably roundabout fashion. First, we note that

w = F (x, y)W (z),

where F (x, y) is that combination of complex exponentials that gives the relevant periodic

unit cell, such that (
∂2x + ∂2y

)
F = −k2F.

Because of its ubiquity in the following, we call

∇⊥ =

(
∂

∂x
,
∂

∂y
, 0

)
,

hence ∇2
⊥F = −k2F . Next, we introduce the wall-normal component of the vorticity,

ζ = ẑ · ω = ∂xv − ∂yu.
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Figure 2: A (mostly) hexagonal array of convec-

tion cells in real-life Rayleigh–Bénard convection, from

https://www.esrl.noaa.gov/psd/outreach/education/science/convection/RBCells.html,

visited 02/02/2017.

We have

∂ζ

∂x
=

∂2v

∂x2
− ∂2u

∂x∂y
, (25a)

∂ζ

∂y
=

∂2v

∂x∂y
− ∂2u

∂y2
. (25b)

In view of the incompressibility condition ∂xu+ ∂yv + ∂zw = 0, we also have

∂2u

∂x∂y
= −∂

2v

∂y2
− ∂2w

∂y∂z
, (26a)

∂2v

∂x∂y
= −∂

2u

∂x2
− ∂2w

∂x∂z
. (26b)

We combine Equations (25)–(26) now to obtain

∂ζ

∂x
=
∂2v

∂x2
+
∂2v

∂y2
+

∂2w

∂y∂z
= ∇2

⊥v +
∂2w

∂y∂z
= −k2v +

∂2w

∂y∂z
,

hence

v =
1

k2

(
∂2w

∂y∂z
− ∂ζ

∂x

)
.

Also,
∂ζ

∂y
= −∂

2u

∂x2
− ∂2w

∂x∂z
− ∂2u

∂y2
= −∇2

⊥u−
∂2w

∂y∂z
= k2u− ∂2w

∂y∂z
,

17
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hence

u =
1

k2

(
∂2w

∂x∂z
+
∂ζ

∂y

)
.

However, quite generally, we have the vortex stretching equation, which reads

∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∇2ω,

the linearization of which is
∂ω

∂t
= ν∇2ω,

and projecting on to the z-direction gives

∂ζ

∂t
= ν∇2ζ.

In normal-mode form, this gives

σζ = (∂2z − k2)ζ.

However, we are at criticality, with σ = 0, hence

(∂2z − k2)ζ = 0, ζ = 0 on z = ±1/2,

the only solution of which is ζ = 0. Hence, the wall-normal component of the vorticity vanishes

in this very particular case, and we are left with

u =
1

k2
∂2w

∂y∂z
, v =

1

k2
∂2w

∂x∂z
.

Letting u⊥ = (u, v), we have

u⊥ =
1

k2
∂

∂z

(
∂w

∂x
,
∂w

∂y

)
=

1

k2
W ′∇⊥F.

But w = F (x, y)W (z), hence F = w/W , hence

u⊥ =
1

k2
W ′

W
∇⊥w.

Thus, if the gradient ∇⊥w vanishes, then so does u⊥. We now use these results to investigate

the convection cells. We examine only two-dimensional rolls in depth here: the interested

reader can study Chandrasekhar’s book for an in-depth treatment of the three-dimensional

structures: rectangular, triangular and hexagonal cells. Typical two-dimensional and three-

dimensional convection cells are compared side-by side in Figure 3.

Convection rolls

Remark 6. This part was done only very briefly in class.
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Figure 3: Typical two-dimensional and three-dimensional convection cells are compared side-

by side. Schematic from Scholarpedia article on Rayleigh–Benard convection (accessed

07/01/2015).

The simplest convection pattern is the roll, wherein ky = 0, and the problem reverts to a

two-dimensional one. Let the critical wavenumber be k. Then , the size of the convection cell

is L = 2π/k. The velocity profile is

w = W (z) cos(kx), k = 2π/L

where W (z) is the eigenfunction corresponding to the eigenvalue σ = 0. The corresponding

components of the velocity parallel to the wall are

u = −1

k
W ′ sin(kx), v = 0.

It is clear that an appropriate streamfunction for the flow is

ψ = −1

k
W sin(kx),

with u = ∂zψ and w = −∂xψ. The streamlines can be plotted as isosurfaces of the streamfunc-

tion. For the W -component of the streamfunction, I use the approximation W ≈ z2−2z3+z4,

which satisfies the symmetry condition (even function) and boundary conditions but is other-

wise an approximation of the true eigenfunction. The result of the plot is shown in Figure 4.

The main feature here is two counter-rotating vortices in the cell that act to redistribute the

temperature. This is the essential signature of Rayleigh–Bénard convection.

8 Beyond linear theory – the Nusselt Number

Beyond linear theory, the exponential growth of the convection rolls will either saturate (leading

to steady, laminar flow) or themselves become unstable – in which case a pattern of turbulent

19



Rayleigh–Bénard Convection

Figure 4: Two-dimensional convection roll in Rayleigh–Bénard convection (at criticality)

convection ensues. The eventual outcome of these processes depends on the Rayleigh number

– the higher the Rayleigh number the less laminar the flow eventually is. In both cases, the

vertical velocity represents a highly efficient means of transporting heat from bottom to top –

over and above the heat transfer that can be achieved by diffusion alone. The enhancement

is characterized by the Nusselt number:

Nu =
〈
∫ d

0

(
wT − κ∂T

∂z

)
dz〉

κ(Thot − Tcold)
, (27)

where the angle brackets denote a space-time average (i.e. averaging over both time and the x-

and y-directions), w(x, y, z, t) is the instantaneous fluid velocity in the vertical (z-direction),

and T (x, y, z, t) is the corresponding instantaneous temperature field. Because these fields

arise as solutions to the full (nonlinear) Navier–Stokes equations, there is no simple way to

derive a closed form for the Nusselt number. However, some accepted correlations exist,

which have been derived rigorously from decades of experiments and also, direct numerical

simulations:

Nu =

0.54Ra1/4, 103 ≤ Ra ≤ 107, Pr ≥ 0.7,

0.15Ra1/3, 107 ≤ Ra ≤ 1011, all Pr
(28)

The second of these correlations is the ‘classical’ Rayleigh–Bénard scaling, which applies when

the convection rolls are fully turbulent. The scaling regime beyond Ra = 1011 is the subject

of current research [2].
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