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Statistical Hydrodynamics. (*) 
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New Haven, Conn. 

I t  is a fami l i a r  fac t  of hydrodynamics ,  than  when the (( :Reynolds n u m b e r ,  
exceeds a cer ta in  crit ical value, which depends on the  type  of flow, no s t eady  
flow is stable.  The uns t eady  flow which occurs under  these conditions calls 
for s ta t is t ical  ana lys is ;  bu t  ear ly  a t t e m p t s  in this direct ion encountered  for- 
midable  difficulties. Within  the las t  few years,  however ,  the  mos t  i m p o r t a n t  
remain ing  questions concerning the  s tab i l i ty  of l amina r  flow were set t led b y  
C. C. LI~  [1], and  a promis ing  s t a r t  towards  a quan t i t a t ive  theory  of tu rbu-  
lence was achieved b y  KOL:MOGOROFF [2]. :For good measure ,  KOLMOGO~OFF'S 
main result  was rediscovered at  least  twice [3], [4]. The theories  involved deal 
wi th  the  mechan i sm of tu rbu len t  dissipation.  We shall r e tu rn  to this subjec t ;  
i t  seems logical to discuss first a different,  new appl ica t ion  of s tat is t ics  to 
hydrodynamics .  

Ergodic Motion of Parallel Vortices. 

The fo rma t ion  of large,  isolated vort ices is an e x t r e m e l y  common,  ye t  
spectacular  phenomenon  in uns t eady  flow. I t s  ub iqu i ty  suggests an expla~- 
na t ion  on s ta t i s t ica l  grounds.  

To tha t  end,  we consider n paral le l  vort ices of intensi t ies  (circulations) 
k l ,  . . . ,  k ,  in an incompressible,  frictionless fluid. This essent ial ly  two-d imen-  
sional sys tem is Hami l ton i an  and  has bu t  a finite n u m b e r  (n) of degrees of  
freedom~ so t h a t  we can app ly  the  s t anda rd  methods  of s tat is t ieM mechanics .  
The equat ions of mot ion  m a y  be wr i t t en  in the fo rm 

k idx i / d t  =- ~H/~y t  , 
(1) 

t k, dy,/dt = - -  ~H/~x,, 

where t denotes  the  t i m e  and H is the  energy  in tegra l ;  the  infinite self-energy 

(*) This paper was read on May 20th afternoon. [Editor's note.] 
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of the individual  vortices has been subtracted.  

the  form [57 6]: 
In an unbounded  fluid, H has 

i 1 
H - -  Y, k ik j  log rii ; 

(2) 2~ ;>~ 

I (x~ xi) 2 + ( y ~ -  yj)~ ~ r ~ j =  - -  

The equations of motion (1) still app ly  when the liquid is restrained by boun- 

daries, in which case the Hamil tonian (2) is modified so as to allow for image 

forces, and m a y  be constructed in terms of the GREEN'S functions of :LAPLACE~S 
equation [6]. 

Now let us consider the liquid enclosed by  a boundary ,  so tha t  the vortices 
are confined to an area A. W'e note tha t  our dynamica l  system has some 

unusual  properties. In  effect, the x and y coordinates of each vortex are 

canonical conjugates,  so that  the phase-space is identical wi th  the configu- 
ration-space of the vortices:  

(3) d ~  = d x l d y l  ... d x ,  dy~ . 

Moreover, this phase-space is finite 

/ ( i )  (4) d~  = d x d y  = A ~.  

The energy can assume all values from + oo (when two vortices of the same 
sign coincide) to - - o o  (when two vortices of opposite sign coincide, or when 

any  one vor tex is located on the boundary) .  The phase-volume which cor- 
responds to energies less than a given value, 

H ( x l ,  Yl, . . . , x . , y , ) <  E , 

is a differentiable function of the  energy:  

E 

�9 ~ 

(5)  H < E  - - c o  

O ( - -  ~ )  = O ; 

O ( +  c~) = A " .  

Certainly (I)'(E) is positive for all E. Moreover, it must  assume its max imum 
value for some finite energy E~: 

(6) O"(E~) = 0 .  

The tempera ture  O ---- (I)'/O" will be positive 

(7a) ~ > 1 / 0  --  O " / O '  > O, 

whenever:  

(7b) E < E , . ,  
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but  negat ive  " temperatures  " 

(8a) 0 > 1 / (9  > - -  ~ ,  

can and will occur if 

(Sb) E > E,~ . 

In  the former case, vortices of opposite sign will tend to approach each other. 

However,  if 1 / 0  < O, then vortices of the same sign will tend to cluster, - -  pre- 

ferably the strongest  ones - - ,  so as to use up excess energy at the least possible 

cost in terms of degrees of freedom. I t  stands to reason tha t  the  large compound 

vortices formed in this manner  will remain as the only conspicuous features 
of the motion ; because the weaker vortices, free to roam pract ical ly  at  random,  

will yield ra ther  erratic and disorganised contributions to the flow. 
When we compare our idealised model with reality,  we have to admit  one 

profound difference: the distributions of vor t ic i ty  which occur in the actual 
flow of normal  liquids (1) are continuous, and in two-dimensional  convection 

the vor t ic i ty  of every  volume element of the liquid is conserved, so tha t  con- 
vective processes can build vortices only in the sense of bringing together  

volume elements of great initial vort ici ty.  Thus our considerations would not 

apply to COUETTE flOW~ where the vor tex  densi ty  is constant ,  nor  to :PoIsEUILL]B 
flow between parallel plates, nor to any  other  case of parallel flow in which 

the  vor tex densi ty  changes monotonical ly  across the profile, so tha t  no re- 
distribution of vor t ic i ty  is compatible with the conservation laws for energy 

and inonientuni.  Until recently, the predicted s tabi l i ty  of laminar  flow for 

infinite REYNOLDS numbers in such cases was counted among the major  puzzles 

of hyd rodynamic  theory ;  because all types  studied exper imental ly  become 
unstable at  sufficiently high ]~:EY~OLDS numbers.  The problem was solved 
when LI~ [1] showed tha t  viscosity and convection together  lead to instabil i ty 

even when the  vor t ic i ty  has no ex t remum in the interior of the liquid. 

This digression will make it clear tha t  the present theory  for the formation 

of large vortices does not  apply to all cases of uns teady flow. As a mat te r  
of fact, the phenomenon is eomnion but  not  universal. I t  is typical ly  asso- 

ciated with separating boundary  layers, whereby the initial conditions are 
not so very different f rom those contempla ted  in the theory :  the vort ic i ty  is 

mostly concentrated in small regions, and the initial energy is relatively high. 
F rom this cursory examination,  it would seem tha t  our highly idealized 

niodel has some heuristic value, a l though it must  obviously be taken with a 
grain of salt at  least. As a statistical model in two dimensions it is ambiguous : 

what  set of discrete vortices will best  approximate  a continuous distribution 

(x) Vortices in a suprafluid are presumably quantized; the quantum of circulation 
is h/m, where m is the mass of a single molecule. 
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of vor t ic i ty?  Kinet ic  considerations (or tedious solution of hydrodynamic  

equations)  m a y  decide this question and  one o ther :  how soon will the vortices 
discover  t h a t  there  are three  dimensions r a t h e r  than  two? The la t te r  question 
is impor tun t  because in three dimensions a mechanism for comple te  dissipation 
of all kinet ic  energy,  even wi thout  the aid of viscosity,  is available.  

Turbulence. 

The enhanced dissipation of energy  which takes place in tu rbu len t  mot ion 
cannot  be exp la ined  b y  any  mechan i sm of two-dimensional  convection.  Accord- 
ing to a wel l -known theorem of hydrodynamics ,  the to ta l  ra te  of dissipation 
is p ropor t iona l  to the  " t o t a l  vor t i e i ty  ": 

[ d f l  l curl v I d V ,  (9) tit J 2  pv2dV= ~ 

where t s tands  for  the  t ime,  -~" for the velocity,  p for dens i ty  and  -f, for viscosity,  
and  the  in tegra t ion  is ex tended  over  the entire vo lume of the  fluid. Two- 
dimensional  convect ion,  which mere ly  redis t r ibuteg vor t ic i ty ,  cannot  account  
for  the  rapid  dissipat ion which one observes.  

However ,  as po in ted  out  by  G. I .  TAYLOR [7], convect ion in three dimen-  
sions will t end  to increase the to ta l  vor t ic i ty .  Since the circulat ion of a vor tex  
t ube  is conserved,  the  vor t ic i ty  will increase whenever  a vor t ex  tube  is s t retched.  
:Now it  is ve ry  reasonable  to expect  t ha t  a vor tex  line - -  of a n y  line which is 
de formed  by  the  mot ion  of the liquid - -  will tend  to increase in length as a result  
of  more  or less haphaza rd  mot ion.  This process tends  to m a k e  the tex ture  
of  the mot ion  ever  finer, and g rea t ly  accelerates  the viscous dissipation. Expe-  
rience indicates  t h a t  for large REY~'OI.DS numbers  the over-a]l  rate  of dissi- 
pa t ion  is comple te ly  de te rmined  b y  the  in tens i ty  72 together  with the " m a c r o -  
scale " L of the  mot ion,  and  t ha t  the  viscosi ty  p lays  no p r i m a r y  role except  
t h rough  the  condit ion t ha t  the ]~EY~'OLDS number  

mus t  be sufficiently large. Under  the c i rcumstances ,  d imensional  considera- 
t ions  un ique ly  de te rmine  the law of dissipat ion 

d _  
(11) Q = - - ~  v 2 = (const.) (v~)~/,/L , 

and  this has been verified b y  m a n y  exper imen t s  [8]. The concept  of " macro-  
s c a l e "  is somewha t  vague ly  defined. I t  m a y  b e  described in t e rms  of the  
corre la t ion be tween  the  f luctuat ions of ve loc i ty  a t  ne ighbour ing  points  in the 
fluids. I f  we define a correlat ion-funct ion R(r) thus 

(12) (~,  (-~')  �9 -~" (~:>" ' + -~)) ~-- ~R(r) ,  
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~hen the " m a e r o s e a l e  " /~ m a y  be defined as the dis tance beyond  which R(r) 
is less t han  some judiciously assigned value.  There seems to be a general 
feeling t h a t  a t  the  present  s tate  of our  knowledge i t  would be p rema tu re  to 
seek a m u c h  more  precise definition. 

Such a fami l i a r  type  of turbulence  as exists  in a l iquid flowing th rough  a 
cyl indrical  tube  is nei ther  homogeneous  nor  isotropic.  The mean  fluctuations 
of  the  ve loc i ty  v a r y  over  the  cross-section of the tube,  the  local macroscale  
is genera l ly  comparab le  to the dis tance f rom the wall, and  fluctuations as 
well as correlat ions are more or less anisotropic  [9]. I t  is possible, however,  
t o  produce  nea r ly  homogeneous and  isotropic  turbulence b y  means  of a grid 
in a s t r eaming  gas, and  the  "macroscale" is then p rede te rmined  b y  the mesh 
~)f the  grid. In  the  following we shall assume tha t  we are dealing with  this 
s implest  t ype  of turbulence ,  which has been the object  of extensive experi-  
men t a l  studies.  

According to the equations of mo t ion :  

I ?-~/St = - - ( ' - ~ .  ~ ) - ~ - -  ( 1 / p ) ~ P  + (~q/p)(~" -~) -~  ; 

(13) t = 0 ,  

the  change of the  correla t ion-funct ion R(r) wi th  the  t ime  depends on the  cor- 
relat ions be tween  the  velocities and  the  veloci ty  gradients  a t  two differeni 
points,  etc. Fo r  reasons which will be more  or less a p p a r e n t  in the  following, 
a direct s tep-wise analysis  of po in t - to -poin t  correl,ations does not  seem promis-  
ing, however .  An appropr ia te  scheme of compulation~ quite poss ibly  in t e rms  
of weighted averages,  remains  to be deve loped .  Before we can arr ive  at  u 
comple te ly  self-contained theory  we shall  have  to de te rmine  somehow, f rom 
the laws of dynamics ,  a s tat is t ical  dis t r ibut ion in funct ion-space,  and  for the  
t ime  being we do not  know enough abou t  how to describe such distr ibutions.  

Some i m p o r t a n t  f undamen ta l  resul ts  concerning the dis t r ibut ions of energy 
in tu rbu len t  flow were nevertheless  ob ta ined  by  KO~0GO~OFF [2]. A fa i r ly  

e x t e n s i v e  l i t e ra tu re  is available,  and  a comple te  review would be out  of place 
on this  occasion, l~ather I shall  t r y  to present  the  main  line of reasoning 
in the  s implest  possible terms,  a long wi th  some observa t ions  which l~ay serve 
to supp lemen t  previous work, e i ther  to s t rengthen the  a r g u m e n t  or to br ing 
out  the  significance of the results.  

So as to give a more  precise mean ing  to the  concept  of " sca l e" ,  we describe 
the  ve loc i ty  field ~ ( ~ )  b y  its F o v a m a  series: 

(14) -~(-~)  = Z -~(-~) exp -~ --> --~ --> (27dk. r ) ,  a ( - -  k) = ( - ~ ) )  con juga te ,  
k 

(14a) (k .  -~(k)) ~-- 0 .  

I f  the  to ta l  vo lume  is V, then  there  are 4r:Vk 2 dk admissible  wave-numbers  k 
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in the  range of absolute  values k, k ~- dk. As regards any  a t t e m p t  to br ing  
abou t  equipara t ion  of the  energy,  each one of the _ F o ~ I E ~  coefficients in (14) 
represents  two degrees of f reedom (not three ,  in view of (13a), viz. its equi- 

va len t  (14a)), and  since the  to ta l  n u m b e r  is infinite, we foresee some kind of 
a "v io l en t  ca t a s t rophe  ". The kinet ics  of this process is described by  the 
FOVlCIER t r ans fo rm of (13): 

(15) d - ~ ) / d t ~ - 2 7 : i ~ , ( K ( k - - k ' ) . k ' ) { - - - ~ ' ) ~ - ( ~ ] ~ ) - l ( - ~ ' ) . ~ ) - ~ } - -  
k" 

In  this no ta t ion  the ra te  of change of the  dis t r ibut ion of energy  is described 
as fol lows: 

d I-2(k)  I /dt = - -  ] [2 + Z Q(k, 
.--> 
k" 

whereby the t e r m :  

(16a) Q(k, k') : ~i  { ( a (k ~- k') �9 k')( a ( - -  k) . -~( - -  k')) § 

k') �9 a ( - -  k')) } § (conjugate) 
.--). 

measures  the  net  ra te  of t ransfer  of energy f rom the  wave-numbers  -b k to  

the  wave-numbers  • k'. Since, 

---~ --). .-..~ .--~ 

(17) Q(k, k') -~ Q(k', k) = O, 

the  energy is indeed accounted for on bo th  ends of the  t ransac t ion .  

We note  t h a t  ~ t  a (k)12 is a measure  for the to ta l  energy.  Moreover,  

~lk>]2 I-~( ~ [2 is a measure  for the  to ta l  vor t i c i ty  and for square  of the over-  
all  r a t e  of de fo rmat ion  (pract ical ly  the  same quant i ty) ,  and the  ra te  of viscous 
dissipat ion is p ropor t iona l  to this.  We realise t h a t  the  viscous dissipation will 
consume the  energy  ever  more  readi ly  as i t  is red is t r ibu ted  over  an increasing 
range  of wave -number s .  

In  order to unde r s t and  the  law of dissipation described b y  (11), which 
does not  involve  the  viscosi ty  a t  all, we have  to visualize the  redis t r ibut ion 
of ene rgy  as an accelera ted cascade process. I f  we wri te  the  r ight  m e m b e r  
of  (11) in the  fo rm of a p roduc t :  

then  the  first f ac tor  represents  the  energy  densi ty,  and mos t  of this belongs 
to wave-numbers  of the  order 1/L.  The second factor  is a ra te  of shear ~ not  
the  over-al l  r a t e  of deformat ion  of the  fluid, bu t  only  t h a t  p~r t  of i t  which 
be longs  to mot ion  on the  largest  scale. Indeed,  it  is not  difficult to see t h a t  
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the  modificat ion of a smooth  current  b y  a fine-grained d is turbance  will depend 
on the  to ta l  d i sp lacements  involved,  r a the r  t h a n  on the  ra te  of shear. 

Now we note  t h a t  according to (16a) the  exchange of energy  between wave-  

numbers  • k and  • k' depends on ly  on the  a m p l i t u d e s - ~  which belong to 

these wave-numbers  and  to thei r  differences ( •  k • k'). I f  the  la t ter ,  as 

well as k itself, are of the order 1/L, then  k'  is a t  most  of the  order  2/L. Similar  
reasoning m a y  be appl ied to subsequent  steps in the redis t r ibut ion process, 
and  we are led to expect  a cascade such t h a t  the  wave-numbers  increase typ i -  
cal ly  in a geomet r ic  series, by  a fac tor  of the  order 2 per  step.  The energy 
is reproeessed th rough  a given range of wave-numbers  ma in ly  wi th  the aid 
of veloci ty  gradients  which belong to wave-numbers  of the  same order of 

magn i tude .  
The empir ica l  law (11) suggests t h a t  the  first few steps in the  cascade l imi t  

the  over-~ll speed of the  process, which means  t ha t  the  subsequent  steps nms t  
be accelerated.  I f  so, then  we m a y  expect  t h a t  the densi ty  of energy in the  
la ter  stages will be de te rmined  by  the  ra te  a t  which energy is being handed  
down and u l t i m a t e l y  dissipated. I f  we describe the dis t r ibut ion of energy 
in isotropic tu rbu lence  by  the func t ion :  

I Os) 

l~hen 

/ 

(lSa) 
. /  

0 

and if ~(k) is to be deter lnined by  the  ra te  of dissipation, then the form of 
the  dis t r ibut ion follows uniquely  f rom dimensional  considerat ions:  

(19) t ) ( k )  = ~Q%k-% , 

where ~ is a dimensionless universal  constant .  S imi lar ly  "~'e liJ~d a ~cale 

dependent  character is t ic  t ime  

(20) 

The in tegra l  

(21) 

t ( k )  = Q-",k . 

f t(k) dk/k ~ ~ ,  
1/L 

converges,  as requi red  b y  our f u n d a m e n t a l  hypothesis  of an accelera ted cas-  

cade process. The scale-dependent  coefficient of diffusion: 

(22) D(k) = (const.) Y"l:'a .... /,, 
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and the corresponding modified law of brownian motion 

(23) [-+ r~ - -  r 1 ]2/t3 = const. , 

have been inferred long since f rom studies of natural  turbvlence,  with the aid 

of commonplace indicators such as a rising colunm of smoke or a pair of small 

floating objects on the surface of the sea. 

By  the theory  of FOURIER transforms,  the distr ibution law (19) for the 
energy implies a corresponding form of the correlation-function 

(24) ~ R ( r )  = ~ - -  (~ /3F(2  /3) )( Qr)"t, , 

valid for distance r appreciably smaller than the macroscale L yet greater 
than  a cer tain "microscale  '~ 

(25) x ~..(~lp)"/,q'~,, 

where the viscous dissipation becomes dominant .  The formulas (19), (20), 
(22) and (23) are of course subject to analogous l imitat ions on both  ends of 

Che scale. 
I t  is of some interest to note tha t  in principle, turbulent  dissipation as 

described could take place just as readily without  the final assistance b y  
viscosity. In  the absence of viscosity, the s tandard  proof of the conservation 

of energy does not  apply, because the veloci ty fe ld  does not  remain differen- 
t iable!  In  fact  it is possible to show tha t  the velocity field in such " idea l"  

turbulence cannot  obey any  LIPSCHITZ condit ion of the form 

i ~, (r ,  + - ? ) _  ~ ' - + "  (26) --> --> v ~ r '  ) ] < (const.) r" , 

for any  order  n greater than 1/3; otherwise the energy is conserved. Of 

course, under  the circumstances,  the ordinary  fornmlat ion of the laws of mo- 
t ion in terms of differential equations becomes inadequate  and must  be replaced 

by  a more general description; for example, the fornmlat ion (15) in terms of 

FOV~IER series will do. The detailed conservation of energy (17) does not 
imply  conservation of the tota l  energy if the number  of steps in the cascade 

is infinite, as expectedi and the double sum of Q ( k ,  k ' )  converges only con- 

di t ionally.  
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DISCUSSIONE E OSSERVAZIO~'I 

Prof. M. BORX, Edinburgh: 
Asks if O~SAGER'S theory allows to calculate REYI~OLD'S number. 

Prof. L. ONSAGER, -~ew Have~, Conn.: 
No, the problem of the REYNOLD'S number is more complicated. 

work of C. C. LI~-. 
Consult recent 


