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Statistical Hydrodynamics. (*)

L. ONSAGER

New Haven, Conn.

It is a familiar fact of hydrodynamies, than when the « Reynolds number »
exceeds a certain critical value, which depends on the type of flow, no steady
flow is stable. The unsteady flow which occurs under these conditions calls
for statistical analysis; but early attempts in this direction encountered for-
midable difficulties. Within the last few years, however, the most important
remaining questions concerning the stability of laminar flow were settled by
C. C. LiN [1], and a promising start towards a guantitative theory of turbu-
lence was achieved by KoLMOGOROFF [2]. For good measure, KOLMOGOROFF’S
main result was rediscovered at least twice [3], [4]. The theories involved deal
with the mechanism of turbulent dissipation. We shall return to this subject;
it seems logical to disenss first a different, new application of statisties to
hydrodynamics.

Ergodic Motion of Parallel Vortiees.

The formation of large, isolated vortices is an extremely common, yet
spectacular phenomenon in unsteady flow. Its ubiquity suggests an expla-
nation on statistical grounds.

To that end, we consider n parallel vortices of intensities (circulations)
kyy..., k, in an incompressible, frictionless fluid. This essentially two-dimen-
sional system is Hamiltonian and has but a finite number (n) of degrees of
freedom, so that we can apply the standard methods of statistical mechanies.
The equations of motion may be written in the form

‘ k,-d.%‘,'/dt = bH/by, ’

1) { kdy, dt =— 3H/>a,,

where ¢ denotes the time and H is the energy integral; the infinite self-energy

(*) This paper was read on May 20th afternoon. [Editor’s note.]



280 L. ONSAGER

of the individual vortices has been subtracted. In an unbounded fluid, H has
the form [5, 6]:

1
s H=—_— 3 kklogr,;
) ) 21 i
L ”'?; = (r;— @) + (y: —¥,)%.

The equations of motion (1) still apply when the liquid is restrained by boun-
daries, in which case the Hamiltonian (2) is modified so as to allow for image
forees, and may be constructed in terms of the GREEN’s functions of LAPLACE’s
equation [6].

Now let us consider the liquid enclosed by a boundary, so that the vortices
are confined to an area 4. We note that our dynamical system has some
unusual properties. In effect, the » and y coordinates of each vortex are
canonical conjugates, so that the phase-space is identical with the configu-
ration-space of the vortices:

(3) dQ = dx,dy, ... dz,dy, .
Moreover, this phase-space is finite

) /dQ — ( /ﬁmdy)” — An.

The energy can assume all values from -+ oo {when two vortices of the same
sign coincide) to — oo (when two vortices of opposite sign coincide, or when
any one vortex is located on the boundary). The phase-volume which cor-
responds to energies less than a given value,

H(w17 ?/1,4 e wn? ?/n) < E b
is a differentiable function of the energy:

{ E
O(E) — [ aQ — [ O'(E)dE ;

(5) H<E oo
D(— o0) =0 ;
D(+ co0) = A,

Certainly ®@'(E) is positive for all E. Moreover, it must assume its maximum
value for some finite energy F,,:

(6) ' (E,) =0.

The temperature ©® = ®'/®"" will be positive
(7a) 00 >1/0 ="/ >0,
whenever:

(7b) E<FE,,
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but negative *‘temperatures

(8a) 0>1/0>—c0,
can and will occur if

(8b) E>E,.

In the former case, vortices of opposite sign will tend to approach each other.
However, if 1/6 <C 0, then vortices of the same sign will tend to cluster, — pre-
ferably the strongest ones —, 50 as to use up excess energy at the least possible
cost in terms of degrees of freedom. It stands to reason that the large compound
vortices formed in this manner will remain as the only conspicuous features
of the motion; because the weaker vortices, free to roam practically at random,
will yield rather erratic and disorganised contributions to the flow.

‘When we compare our idealised model with reality, we have to admit one
profound difference: the distributions of vorticity which occur in the aetual
flow of normal liquids () are continuous, and in two-dimensional convection
the vorticity of every volume element of the liquid is conserved, so that con-
vective processes can build vortices only in the sense of bringing together
volume elements of great initial vortieity. Thus our considerations would not
apply to COUETTE flow, where the vortex density is constant, nor to POISEUILLE
flow between parallel plates, nor to any other ease of parallel flow in which
the vortex density changes monotonically across the profile, so that no re-
distribution of vorticity is compatible with the conservation laws for energy
and momentum. Ubtil recently, the predicted stability of laminar flow for
infinite REYNOLDS numbers in such eases was counted among the major puzzles
of hydrodynamic theory; because all types studied experimentally become
unstable at sufficiently high REYNoLDS numbers. The problem was solved
when Lin [1] showed that viscosity and convection together lead to instability
even when the vorticity has no extremum in the interior of the liguid.

This digression will make it clear that the present theory for the formation
of large vortices does not apply to all cases of unsteady flow. As a matter
of fact, the phenomenon is common but not universal. It is typically asso-
ciated with separating boundary layers, whereby the initial conditions are
not so very different from those contemplated in the theory: the vorticity is
mostly concentrated in small regions, and the initial energy is relatively high.

From this enrsory examination, it would seem that our highly idealized
model has some heuristic value, although it must obviously be taken with a
grain of salt at least. As a statistical model in two dimensions it is ambiguous:
what set of discrete vortices will best approximate a continuous distribution

(1) Vortices in a suprafluid are presumably quantized; the quantum of circulation
is h/m, where m is the mass of a single molecule.
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of vorticity? Kinetic considerations (or tedious solution of hydrodynamic
equations) may decide this question and one other: how soon will the vortices
discover that there are three dimensions rather than two? The latter question
is important because in three dimensions a mechanism for complete dissipation
of all kinetic energy, even without the aid of viscosity, is available.

Turbulence.

The enhaneed dissipation of energy which takes place in turbulent motion
cannot be explained by any mechanism of two-dimensional convection. Aeccord-
ing to a well-known theorem of hydrodynamies, the total rate of dissipation
is proportional to the ‘“total vorticity ’’:

1 (1
(9) —fﬂf._; prrdV =1 /I curl 3 2d V",

where ¢ stands for the time, 7 for the veloeity, p for density and v, for viscosity,
and the integration is extended over the entire volume of the fluid. Two-
dimensional convection, which merely redistributes vorticity, cannot account
for the rapid dissipation which one observes.

However, as pointed out by G. I. TAYLOR [7], convection in three dimen-
sions will tend to increase the total vorticity. Since the circulation of a vortex
tube i8 conserved, the vorticity will inerease whenever a vortex tube is stretched.
Now it is very reasonable to expect that a vortex line — of any line which is
deformed by the motion of the liquid — will tend to increase in length as a result
of more or less haphazard motion. This process tends to make the texture
of the motion ever finer, and greatly accelerates the viscous dissipation. Expe-
rience indicates that for large REYNOILDS numbers the over-all rate of dissi-
pation is completely determined by the intensity ¢? together with the ¢ macro-
scale ”” L of the motion, and that the viscosity plays no primary role except
through the condition that the REYNOLDS number

(10) & = (v*)"p Ly,

must be sufficiently large. Under the circumstances, dimensional considera-
tions uniquely determine the law of dissipation

d —51\3
(11) Q =— o;v* = (const.) (¥*)L,

and this has been verified by many experiments [8]. The concept of ¢ macro-
scale ”’ is somewhat vaguely defined. It may be described in terms of the
correlation between the fluctuations of velocity at neighbouring points in the
fluids. If we define a correlation-function R(r) thus

(12) (T(7) - (T + 7)) =R0),



STATISTICAL HYDRODYNAMICS 283

then the ‘“macroseale ’” L may be defined as the distance beyond which R(r)
is Jess than some judiciously assigned value. There seems to be a general
feeling that at the present state of our knowledge it would be premature to
seek a much more precise definition.

Such a familiar type of turbulence as exists in a liquid flowing through a
cylindrical tube is neither homogeneous nor isotropic. The mean fluctuations
of the velocity vary over the cross-section of the tube, the local macroscale
is generally comparable to the distance from the wall, and fluctnations as
well as correlations are more or less anisotropic [9]. It is possible, however,
to produce nearly homogeneous and isotropic turbulence by means of a grid
in a streaming gas, and the ‘“macroscale’ is then predetermined by the mesh
of the grid. In the following we shall assume that we are dealing with this
simplest type of turbulence, which has been the object of extensive experi-
mental studies.

According to the equations of motion:

—
P

[ 27/t =— (T - D= W) VP + tafpdT - DT ;

(13) N
| &%) =0,

the change of the correlation-function R(r) with the time depends on the cor-
relations between the velocities and the velocity gradients at two different
points, etc. For reasons which will be more or less apparent in the following,
a direct step-wise analysis of poinf-to-point correlations does not seem promis-
ing, however. An appropriate scheme of computation, quite possibly in terms
of weighted averages, remains to be developed. Before we can arrive at a
completely self-contained theory we shall have to determine somehow, from
the laws of dynamics, a statistical distribution in function-space, and for the
time being we do not know enough about how to desecribe such distributions.

Some important fundamental results concerning the distributions of energy
in turbulent flow were nevertheless obtained by KorMoGorOFF [2]. A fairly
extensive literature is available, and a complete review would be out of place
on this occasion. Rather I shall try to present the main line of reasoning
in the simplest possible terms, along with some observations which may serve
to supplement previous work, either to strepgthen the argument or to bring
out the significance of the results.

So as to give a more precise meaning to the concept of ‘‘scale’’, we describe
the velocity field 4 (7) by its FOURIER series:

A4)  F(F) = SEE) exp @ik -7,
k

(k)) eonjugate,

—> >

(14a) (k- @ (k) =0.

_—
Tf the total volume is V, then there are 4nVk? dk admissible wave-numbers k
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in the range of absolute values k, k¥ 4 dk. As regards any attempt to bring
about equiparation of the energy, each one of the FOURIER coefficients in (14)
represents two degrees of freedom (not three, in view of (13a), viz. its equi-
valent (14a)), and since the total number is infinite, we foresee some kind of
a ‘‘violent catastrophe ’. The kineties of this process is described by the
FouRrIER transform of (13):

15) A Edt = 2mi BT~ F) T ~TE) + (Fr(T ) Bk ) —
-
— (nfp) | 2rck |2 T

In this notation the rate of change of the distribution of energy is described
as follows:
—> - —> —> >
(16) A|@ (k) 2t =—Smx(afo) | K| |7 (B)[* + T QG ),
5
whereby the term:

160) QK ) =ni{ (G +F)- NG (—B) 2 (—F) +
._)

() & (—K)) } + (conjugate)

—

nieasures the net rate of transfer of energy from the wave-numbers 4 k to
9

the wave-numbers + k'. Since,

—

—> —> —
(17) Qk, k') + QK k) =0,

the energy is indeed accounted for on both ends of the transaction.

We note that Z|7(_>k) |* is a measure for the total energy. Moreover,
Ei—k—)]z |7(79>) |? is a measure for the total vorticity and for square of the over-
all rate of deformation (practically the same quantity), and the rate of viscous
dissipation is proportional to this. We realise that the viscous dissipation will
consume the energy ever more readily as it is redistributed over an increasing
range of wave-numbers.

In order to understand the law of dissipation described by (11), which
does not involve the viscosity at all, we have to visualize the redistribution
of energy as an accelerated cascade process. If we write the right member
of (11) in the form of a product:

BRI

then the first factor represents the energy density, and most of this belongs
to wave-numbers of the order 1/L. The second factor is a rate of shear — not
the over-all rate of deformation of the fluid, but only that part of it which
belongs.to motion on the largest scale. Indeed, it is not difficult to see that
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the modification of a smooth current by a fine-grained disturbance will depend
on the total displacements involved, rather than on the rate of shear.
Now we note that according to (16a) the exchange of energy between wave-

— —>
numbers - k and -+ &' depends only on the amplitudes @ which belong to
- -
these wave-numbers and to their differences (4- &k + k). If the latter, as

well as_I‘c)itself, are of the order 1/L, then 7?is at most of the order 2/L. Similar
reasoning may be applied to subsequent steps in the redistribution process,
and we are led to expect a caseade such that the wave-numbers increase typi-
cally in a geometric series, by a factor of the order 2 per step. The energy
is reprocessed through a given range of wave-numbers mainly with the aid
of velocity gradients which belong to wave-numbers of the same order of
magnitude.

The empirical law (11) suggests that the first few steps in the cascade limit
the over-all speed of the process, which means that the subsequent steps must
be accelerated. If so, then we may expect that the density of energy in the
later stages will be determined by the rate at which energy is being handed
down and ultimately dissipated. If we describe the distribution of energy
in isotropic turbulence by the function:

L=
(18) QE) = 47k2V | a (k) |?,
then
(18a) vt =] Qk)dk ,

0

and if Q(k) is to be determined by the rate of dissipation, then the form of
the distribution follows uniquely from dimensional considerations:

(19) Q(k) = RQk"%,

where P is a dimensionless universal constant. Similarly we find a ccale
dependent characteristic time

(20) k) = Qb=
The integral
[o o]
(21) f (k) dk/k < oo,
i

converges, as required by our fundamental hypothesis of an accelerated cas-
cade process. The scale-dependent coefficient of diffusion:

(22) D(k) = (const.) @'k,
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and the corresponding modified law of brownian motion

—

(23) | 7, — 7, |¥/t* = const.,

have been inferred long since from studies of natural turbuvlence, with the aid
-of commonplace indicators such as a rising column of smoke or a pair of small
floating objects on the surface of the sea.

By the theory of Fourlikr transforms, the distribution law (19) for the
energy implies a corresponding form of the correlation-function

(24) v R(r) = vt — (B/3T'(2/3))(Qr)*,

valid for distance r appreciably smaller than the macroscale L yet greater
than a certain ‘‘microscale”’

(25) A~ (nfp) 1@,

where the viscous dissipation becomes dominant. The formulas (19), (20),
(22) and (23) are of course subject to analogous limitations on both ends of
the scale.

It is of some interest to note that in principle, turbulent dissipation as
described could take place just as readily without the final assistance by
viscosity. In the absence of viscosity, the standard proof of the conservation
of energy does not apply, because the velocity field does not remain differen-
tiable ! In fact it is possible to show that the velocity field in such “ideal”’
turbulence cannot obey any LIPSCHITZ condition of the form

(26) |7(F + 7)— F(7) | < (const.) r ,

for any order n greater than 1/3; otherwise the energy is conserved. Of
course, under the ecircumstances, the ordinary formulation of the laws of mo-
tion in terms of differential equations becomes inadequate and must be replaced
by a more general description; for example, the formulation (15) in terms of
FoURIER series will do. The detailed conservation of energy (17) does not
imply conservation of the total energy if the number of steps in the cascade

- >
is infinite, as expected; and the double sum of Q(%k, k') converges only corn-
ditionally.

BIBLIOGRAPHY

{1] C. C. Lax: Proc. Nat. Acad. Sci. U.S.A., 30, 316-324 (1944); Quarterly Appl. Math.,
3, 117-142, 218-234, 277-301 (1945, 1946).

{21 A. N. KoLmoGororr: C. R. Acad. Sei. U.R.S.S., 30, 301-305; ibid., 32, 16-18
(1941).

{3] L. ONSAGER: Phys. Rev., 68, 286 (1945). (Abstract).



DISCUSSIONE E OSSERVAZIONI 287

{4] C. F. v. WEIZSACKER: Zeils. Physik, 124, 614; W. HEISENBERG: Zeits. Physik,
124, 628; Proc. Roy. Soc., A. 195, 402; HEISENBERG also refers to PRANDTL and
WIEGHARDT: Nachr. Akad. Wiss. Géttingen, Math. Phys. Kl., 1945, p. 6.

[5] M. LAGALLY: Math. Zeits., 10, 231-239 (1921).

[6] C. C. LiN: Proc. Nat. Acad. Sci. U.S.A., 27, 570-577 (1941); On the Motion of
Vortices in two Dimensions (University of Toronto Press, 1943).

[71 G. 1. TAYLOR: Journ. Aeronaut Sci., 4, 311 (1937); Proc. Roy. Soc., A 164, 15
(1938); G. I. TAYLOR and A. E. GREEN: Proc. Roy. Soc., A. 158, 499-521 (1937).

[8] H. L. DRYDEN: Quarterly Appl. Math., 1, 7-42 (1943). '

[9]1 R. B. MoNTGOMERY: Paper presented at conference of New York Acad. Sci. in
March, 1942; and part of monograph on Boundary Layer Problems in the
Atmosphere and the Ocean, published in Annals N. ¥. Acad. Seci.

DISCUSSIONE E OSSERVAZIONI

Prof. M. Borx, Edinburgh:
Asks if ONsaGEr’s theory allows to caleulate REYNOLD’s number.

Prof. L. ONSAGER, New Haven, Conn.:
No, the problem of the REYNOLD’s number is more complicated. Consult recent
work of C. C. Lix.



