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Abstract

We establish the existence of a unique global formal power series (in 1/N) so-
lution of a evolution equation corresponding to the renormalization group trans-
formation of a continuum hierarchical N–Vectorial Heisenberg model in the sense
that its Gevrey estimates holds uniformly for all t > 0. We also establish 1-
summability of the unique formal power series for the initial condition which is
related to the Fourrier transform of the uniform measure on the N–dimensional
sphere.

1 Introduction and Motivations

The Set Up

In his joint work with C. Thompson [KT], M. Kac has assigned a uniform measure
σN(xj; r) for each spin xj lying on the N–dimensional sphere of radius r =

√
N , j

running over a finite subset Λ of the d–dimensional lattice Zd, and by taking N to
infinite, has inferred its thermodynamic properties from a well known model exhibiting
phase transition. Kac-Thompson asymptotic analysis will be approached here via an
evolution equation with initial data given by the characteristic function of σN(x;

√
N),

whose orbits will be investigated for large N .
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The law of a spin sample x = (xj)j∈Λ in equilibrium with a reservoir at inverse

temperature β is dictated by the Gibbs measure in RnN (n = card(Λ))

µN,Λ(x) =
1

ZN,Λ
e−βEΛ(x)

∏
j∈Λ

σN(xj;
√
N) (1.1)

with the two-body interacting energy EΛ(x) = − (x, Jx)Λ /2 = −
∑

i,j∈Λ Jijxi · xj/2
depending on the ferromgnetic (Jij ≥ 0) interacting matrix J = [Jij]; ZN,Λ makes
µN,Λ a probability measure. Kac-Thompson[KT] have shown that, for suitable J , every
macroscopic quantity, usually an expected value with respect to (1.1) of a function of

the spin average
1

n

∑
j∈Λ

xj, approaches a limit as n and N goes to infinity (in any order);

these limits is given by the same quantity evaluated in the correponding Berlin–Kac
spherical model[BeK], provided β is not at the critical point βc of this model (see [CM],
for a friendly review).

The Berlin–Kac model is the simplest model displaying phase transition whose ther-
modynamic quantities can be easily evaluated using Laplace asymptotic method. In the
present work we shall deal with the so called free energy function

fΛ(z) =

∫
ei(z,x)ΛdµN,Λ(x) (1.2)

in the presence of a uniform ”imaginary field” h = iz = (izj)j∈Λ, zj = z/nγ/2 ∈ RN

(the Fourier transform of the equilibrium measure) in the thermodynamic limit f(z) =
limΛ↑Zd fΛ(z), for large N . One should note that the macroscopic quantity (1.2) can be
written as

fΛ(z) = E exp

(
iz ·

(
1

nγ/2

∑
j∈Λ

xj

))
,

with E the expectation w.r.t. µN.Λ, and it is related with the spin (abnormally) averaged
(γ = d + 2 if β is at the critical point). Since µN,Λ(x) is invariant with respect to
simultaneous rotations: x′j = Rxj, with R the same N × N orthogonal matrix for all

j ∈ Λ, f(z) actually depends on |z|2 and we shall denote the derivative of f with respect
to the variable ξ = − |z|2 by the same letter f .

Kac pioneering work has sparked investigations in many directions and one may ask
whether the formal series f̂ in 1/N for a macroscopic quantity (and correlation function
as well) is an asymptotic expansion of the analytic function f or, furthermore, whether
f̂ is Borel summable. We refer to Kupiainen’s papers [K1, K2] (and references therein)
for the 1/N asymptotic expansion at β 6= βc and the paper by Fröhlich, Mardin and
Rivasseau [FMR] for Borel summability at sufficiently small β.

The PDE Equation
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The coupling matrix J adopted in the above quoted investigations is the usual finite
difference Laplacean

(−∆diffx)i =
∑

j:|i−j|=1

(xi − xj)

(with certain boundary condition on Λ), under which only spins located at nearest
neighbor vertices are coupled. To give detailed information on the formal series f̂ at the
critical point, we shall consider a hierarchical coupling matrix J of the type introduced by
Dyson[D] (see [CM]). We refer to [GK, Ko] for previous investigation and to Watanabe’s
work [W] for a more recent and closely related to the present one. See also [AHMo] for
investigation on the hierarchical spherical model.

A hierarchical Laplacean −∆hier in Zd, also called self-similar Laplacean, may be
defined as follows (see e.g. [Mo, W, CM]). For a given integer L > 1 we define the block
operator B : RΛK −→ RΛK−1

(Bx)i =
1

Ld/2

∑
j∈{0,1,...,L−1}d

xLi+j

and its adjoint B∗ : RΛK−1 −→ RΛK by (B∗x,y) = (x, By), we have

−∆hier = (L− 1)
∞∑
k=1

L−2k
(
I − (B∗)kBk

)
=

L− 1

L2 − 1
I − J .

The invariance of E(x) = (x, Jx) /2 = (L− 1)
∑∞

k=1

(
Bkx, Bkx

)
/2 under the block op-

eration allows us to study macroscopic quantities by investigating dynamical properties
of a so called renormalization group transformation, defined on the space of measures
in RN :

σk(x) =
1

Ck
e(L−1)|x|2/2σk−1 ∗ · · · ∗ σk−1︸ ︷︷ ︸

Ld- times

(Ld/2+1x) (1.3)

k = 1, 2, . . ., with the initial measure σ0(x) = σN(x,
√
βN) uniform on theN–dimensional

sphere of radius
√
βN .1 Here δ ∗ η stands for the convolution of two measures δ and η

and Ck normalizes the measure.
In the present paper we shall instead consider a continuous version of this transfor-

mation introduced by Felder [F] (see [MCG], for details). If

φk(z) =

∫
RN

exp (ix · z) dσk(x)

denotes the characteristic function (Fourier transform) of the measure σk and

U(t, z) = − log φk(z)

1For convenience, we have changed variables and include the inverse temperature β in the initial
measure.
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is defined in the double limit as k →∞ and L ↓ 1 with t = k lnL kept fixed, we end up
with the folowing initial value problem in R+ × RN

Ut = −1

2

(
∆U − |Uz|2

)
− d+ 2

2
z · Uz + dU +

1

2
∆U(t, 0) (1.4)

with U(0, z) = − lnφ0(z) ≡ U0(z),

φ0(z) =
Γ(N/2)(√

βN |z|/2
)N/2−1

JN/2−1

(√
βN |z|

)
. (1.5)

and Jν the Bessel function of order ν. The last term in the right hand side of (1.4)
ensures that U(t, 0) = 0 for all t ≥ 0 – note that this property is satisfied by the initial

condition since φ
(N)
0 (0) = 1. Note also that UGauss(z) = |z|2 is an stationary solution

of (1.4), corresponding to the Gaussian fixed point of the transformation (1.3), and the
stable manifold associated with UGauss(z) has codimension 1 for d ≥ 4.

This is the starting point of the present investigation. Our aim may be phrased
as follows: find a trajectory {U(t, z); t ≥ 0}, for the initial condition problem with the
inverse temperature β at the critical value βc, so that it lies on the stable manifold and
converges to the Gaussian fixed point UGauss(z).

Since the initial function U0 is far from the stationary solution UGauss, to accomplish
our program we shall, as suggested by Kac, take N large.

Summary of Previous Results

The initial problem (1.4) and (1.5) has been studied in the limit N → ∞ by the
present authors in collaboration with Guidi [MCG]. For simplicity, the equation has
been treated for d = 4, but all the results are valid for d > 4 as well and the analysis can
be extended for any dimension d > 2 (see Remark 2.4 of [MCG]). Solving the critical
trajectory, the following central limit theorem has then established for the hierarchical
spherical model at critical inverse temperature βc(d = 4) = 42

lim
t→∞

lim
N→∞

1

N
U(t,
√
Nz) = |z|2 .

The spherical symmetry is preserved by the equation so, it is enough to consider
only the radial components of the gradient Uz in (1.4). Writing

u(t, x) =
1

N
U(t,
√
Nz), (1.6)

with x = −|z|2, the initial value problem (1.4) and (1.5) reads

ut =
2

N
xuxx + ux − 2x (ux)

2 − (d+ 2)xux + du− ux(t, 0) (1.7)

2The critical temperature may be found by Kac’s asymptotic method (see [CM]). It can also be
determined directly from the analysis in ([MCG]).
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with

u(0, x) =
1

N
U0(
√
Nz)/N ≡ u0(x) . (1.8)

We see that it possesses 1/N in front of a second derivative term, in such way that
the equation with finite N is a singular perturbation of the equation with N = ∞.
This lead us to state our purpose as follows: write the formal series û in ε = 2/N of
the unknown solution u as a singular perturbation about ε = 0 and recover via Borel
summability the actual solution u (if it exists, it is analytic for each t ≥ 0 in some
polydomain).

In [MCG], the initial problem (1.7) and (1.8) at N =∞ has not been solved directly
but its exact critical trajectory {u(t, x), t ≥ 0, β = βc(d)} obtained solving the equation
of its Legendre transform

w(t, p) = max
x

(xp− u(t, x)) . (1.9)

There are certain advantages in pursuing the Legendre transformed solution. First of all,
find the stable manifold of (1.7) is considerable difficult task, even in the neighborhood
of uGauss(x) = −x. Surprisingly, βc can be found for the N = ∞ equation as well as
the critical trajectory of the perturbed formal series for v(t, p) = wp(t, p) (the inverse
of ux(t, x)) in any order of 2/N . Moreover, the interpretation of the N =∞ trajectory
from the point of view of the geometric theory of functions allows to describe precisely
the motion of the singularities of ux(t, x).

Indeed, the derivative of the initial condition (with ε = 2/N)

ux(0, x) =

√
β

4x

i JN/2(i
√
βxN)

JN/2−1(i
√
βxN)

≡ y(ε, x) (1.10)

has simple poles located at the negative real line (the zeros of the Bessel function
JN/2−1) with negative residues. In the limit N →∞, the poles becomes dense over the
real segment (−∞,−1/(4β)], giving rise to a branch cut. For every N (including its
limit), ux(0, ξ) belongs to the class of Pick functions, which means that they are analytic
functions in the upper half-plane H with positive imaginary part (i.e., it maps H into
itself). We mention that the Pick class is preserved by the equation obtained by taking
the derivative of (1.7) with respect to x and ux (t, ζ), t ≥ 0, map the upper half–plane
H conformally into a decreasing family of open convex sets in H (see Theorem 2.2 of
[MCG])

ux (t,H) = Ωt ⊂ Ω0 = ux (0,H)

(Ω0 is the semi-circular domain (<ξ + 2)2 + (=ξ)2 < 4, =ξ > 0 and Ω∞ is the interior
of half-leaf Decartes’ folium).

Figure 1
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As ux (t, ζ) is in the Pick class, it admits an integral representation (see e.g. [Do])

ux (t, ξ) = −1 +

∫ ∞
−∞

(
1

λ− ξ
− 1

λ− 1/2

)
dµ(t, λ)

where dµ = ρ dλ is absolutely continuous Borel measure for N = ∞ and its support
Σ(t) = (−∞,−d(t)) moves entirely to infinity as t → ∞, for β at the critical point βc.
Note that uGauss

x ≡ −1.

Statement of Present Results

The present work is divided into two parts, each of them has its own circle of interests.
In the first we address the initial condition u(0, ε, ξ) of (1.7).3 An ordinary differential
equation (ODE) is deduced for y(ε, ξ) = ux(0, ε, ξ). Such equation depends on the
inverse temperature β and under the following

Hypothesis 1.1 (β–hyp.) There exist positive constants b and m such that β = β(ε)
is a real analytic function in a sectorial domain S(0, α;E), continuous in its closure
S̄(0, α;E), satisfing ∣∣∣∣ 1i! diβ(ε)

dεi

∣∣∣∣ ≤ bKim
i (1.11)

for all i ≥ 0 and ε ∈ S̄(0, α;E), where K0 = K1 = 1 and Ki = A(i − 1)!s/(i − 1) for
i ≥ 2, A > 0 a small number (see Lemma 2.7) and s ≥ 0.4 The derivatives β(i)/i! are,
in addition, continuous when ε→ 0 in S(0, α;E) and we write

βi = lim
S(0,α;E)3ε→0

β(i)(ε)/i!. (1.12)

We show that:

(a) the ODE has an analytic solution y(ε, ξ) in the domain S(0, γ;E)×Dσ(0),5 where
γ, E and σ are suitable constants. In additon, y(ε, ξ) converges, as ε→ 0 in S(0, γ;E),
to the solution y0(ξ) of the ODE when ε = 0, regular at ξ = 0;

(b) the formal power series

ŷ(ε, ξ) =
∞∑
i=0

yi(ξ) ε
i (1.13)

is of Gevrey order s′, for every fixed ξ ∈ D̄σ(0), where s′ := max(1, s);

3We shall frequently denote by u(t, ε, ξ) the solution u(t, x) of equation (1.7) with both <ε = 2/N
and <ξ = x extended to the complex plane.

4We shall observe in Remark 4.2 that s is equal to 1 for the equation (1.14) with F given by (1.15).
5Dσ(z0) denotes the open disc of radius σ centered at z0
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(c) there exist positive constants C and µ such that

∣∣∣∣ 1i! ∂iy(ε, ξ)

∂εi

∣∣∣∣ ≤ Ci!s
′
µi holds for

i = 0, 1, 2, . . . and (ε, ξ) ∈ S(0, γ;E)× D̄σ(0).
The statements (a) –(c) will then be used to conclude, at the end of Section 3, that

the formal solution ŷ(ε, ξ) is s′-summable in θ = 0 direction (Theorem 3.7).
The (a)–(c) statements, together with the s′-summability, hold for more general

ordinary differential equations of the form

εξy′ = F (ε, ξ, y) , (1.14)

with y = (y1, . . . , ym) and F = (F1, . . . , Fm) m–vector functions, Fi holomorphic in
a polydisc, say Dρ(0) × Dρ(0) × Dρ(0), for some ρ > 0. As in ([BK]), the m × m
matrix A0 = Fy(0, 0, 0) is assumed to be invertible, a condition that makes (1.14) to
possess a regular singularity at ξ = 0, and every eigenvalue of A0 has to be away from
a sectorial domain, as well. Balser and Kostov have established (a)–(c) statements for
linear systems of the form (1.14) with F (ε, ξ, y) = A(ε, ξ)y + b(ε, ξ). We have extended
their proof by introducing an extra ingredient (Lemma 2.7) to account for nonlinearity
in the equation. The present work deals only with (1.14) for m = 1 and

F (ε, ξ, y) = −β(ε)

2
− y + 2ξy2 , (1.15)

the equation satisfied by the initial condition (1.10). The extension for m > 1 and any
F will be presented in a separate paper.

Whether the same statements hold for the solution of (1.7) when t > 0 is a question
addressed in the second part. Only items (a) and (b) will be dealt in the present work.
The methods used for the initial condition do not apply for partial differential equations
and other tools are needed to prove the corresponding (a) and (b) statements for the
formal solution ûx(t, ε, ξ). In particular, s′ needs to be larger than 3. Our results are
presented in Section 4.

Outline of this Article

2 Preliminaries

In this section we present some definitions, a basic and important theorem and some
tools which shall be of extreme importance in this work. We basically follow Paragraph
1 of [LMS].

2.1 Some Definitions

Formal Power Series Let O(r) denotes the ring of analytic functions on the closed
disc D̄r(z0), the closure of Dr(z0) := {z ∈ C : |z − z0| < r}. Let O(r)[[ε]] denotes the
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ring of formal power series in ε over the ring O(r), and we define O[[ε]] by

O[[ε]] :=
⋃
r>0

O(r)[[ε]].

An element f̂(ε, z) ∈ O[[ε]] is written as

f̂(ε, z) =
∞∑
i=0

fi(z) εi,

where fi(z) ∈ O(r) for some r > 0.

s-Gevrey Formal Power Series Let s be a nonnegative number. O(r)[[ε]]s, which is
called of class Gevrey s or s-Gevrey for short, is the subring of O(r)[[ε]] whose coefficient
satisfy, for some positive constants C and µ, the inequality

max
z∈D̄r(z0)

|fi(z)| ≤ Ci!sµi

for i = 0, 1, . . .. We also define O[[ε]]s, the set of all power series in ε of Gevrey order s,
by

O[[ε]]s :=
⋃
r>0

O(r)[[ε]]s.

In particular, O[[ε]]0 is the set of all convergent power series in ε.

Gevrey Asymptotic Expansion Let θ ∈ R, α > 0 and 0 < E ≤ ∞. We denote by
S(θ, α;E) a sectorial domain defined by

S(θ, α;E) := {ε ∈ C : | arg ε− θ| < α/2, 0 < |ε| < E} .

If the radius E is not so important to identify, we will suppress it and denote the sector
by S(θ, α). A sectorial domain S ′ is called a proper subsector of S(θ, α;E) if its closure
is contained in S(θ, α;E) ∪ {0}.

Let f(ε, z) be analytic on
⋂
α′<α

S(θ, α′) × Dr(α′)(z0), where r(α′) may tend to 0 as

α′ → α. We define:

Definition 2.1 f̂(ε, z) ∈ O[[ε]]s is called a Gevrey asymptotic expansion of f(ε, z) as
ε → 0 in S(θ, α) if for any proper subsector S ′ ⊂ S(θ, α;E) (with sufficiently small
radius), there exist positive constants C, µ and 0 < r1 < r such that

(i) f̂(ε, z) ∈ O(r1)[[ε]]s,
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(ii)

max
z∈D̄r1 (z0)

∣∣∣∣∣f(ε, z)−
I−1∑
i=0

fi(z) εi

∣∣∣∣∣ ≤ CI!sµI |ε|I , ε ∈ S ′, I = 1, 2, 3, . . . .

Definition 2.2 An analytic function f(ε, z) is said to be Gevrey order s asymptotic
expandable in S(θ, α) if it has a Gevrey asymptotic expansion f̂(ε, z) ∈ O[[ε]]s.

Let us denote by A(s)(S(θ, α)) the set of analytic functions which are Gevrey order
s asymptotic expandable in S(θ, α). We define a mapping

J : A(s)(S(θ, α)) −→ O[[ε]]s, (2.1)

where Jf(ε, z) = f̂(ε, z) is the Gevrey asymptotic expansion f̂(ε, z) of f(ε, z).

Theorem 2.3 1. [sector of narrow opening] The mapping J is surjective but is not
injective for any θ ∈ R and α with α ≤ π/s.

2. [sector of wide opening] For any α with α > π/s, the mapping J is not surjective
but is injective for any θ ∈ R.

s-Summability in a Direction θ

Definition 2.4 Let s > 0, θ ∈ R, and f̂(ε, z) ∈ O[[ε]] be given. We say that f̂(ε, z)
is s-summable in direction θ, if a sector S(θ, α;E), with α > π/s, and a function
f(ε, z) ∈ A(s)(S(θ, α;E)) exist with J(f(ε, z)) = f̂(ε, z). This f(ε, z) is called the s-sum
of f̂(ε, z) in direction θ.

2.2 Important Tools and a Key Ingredient

Nagumo Norms Let Hr denotes the space of analytic functions on Dr(z0) and con-
tinuous in its closure D̄r(z0). For nonnegative integers k we define the Nagumo norm of
order k of a function f ∈ Hr by

‖f‖k := sup
z∈Dr(z0)

(dr(z))k |f(z)|, where dr(z) = r − |z − z0|. (2.2)

For f, g ∈ Hr and nonnegative integers k, l, the following properties hold:

1. ‖f + g‖k ≤ ‖f‖k + ‖g‖k;

2. ‖fg‖k+l ≤ ‖f‖k ‖g‖l;

3. ‖f ′‖k+1 ≤ e(k + 1)‖f‖k;
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4. ‖f‖k ≤ r‖f‖k−1.

Furthermore, we have |f(z)| ≤ (dr(z))−k ‖f‖k and

5. |f(z)| ≤ (r − r′)−k ‖f‖k holds for every z ∈ Dr′(z0) with r′ < r.

Excepting 3., the proof of these properties is elementary. In this work we use another
property that makes Xr,k = (Hr, ‖ · ‖k) a scale of Banach spaces. Note that f ∈ Xr,k
implies that f ∈ Xr,l for every l > k and

‖f‖l ≤ sup
z∈Dr(z0)

(r − |z − z0|)l−k‖f‖k ≤ rl−k‖f‖k ≤ ‖f‖k

provided r ≤ 1. Under this condition Xr,k is a subspace of Xr,l, the injection Xr,k −→ Xr,l
is continuous and has norm ≤ 1.

Modified Nagumo Norms Consider now a function f(ε, z) holomorphic in S(θ, α;E)×
Dr(z0), and its expansion

f(ε, z) =
∞∑
n=0

an(ε) (z − z0)n.

For nonnegative integers k we define a modification of the Nagumo norms

‖f‖k := sup
z∈Dr(z0)

(dr(z))k
∞∑
n=0

sup
ε∈S(θ,α;E)

|an(ε)| |z − z0|n.

With that definition, the properties listed for the Nagumo norms in the previous para-
graph are still valid (see [BK]).

Nagumo Norms for Different Domains In Section 4 we shall need some properties
relating Nagumo norms on different domains, Dr(z0) and DR(z0), with r < R. To state
them, we index the Nagumo norm (2.2) by its order k and domain radius r: ‖·‖k,r.

Lemma 2.5 If 0 < r < R <∞ and f is holomorphic in DR(z0), then we have

‖f‖k,r < ‖f‖k,R (2.3)

‖f ′‖k,R ≤ 1

R− r
‖f‖k,r (2.4)

Proof We observe that

dr(z) = r − |z − z0| < R− |z − z0| = dR(z)
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implies the inequality (2.3):

sup
z∈Dr(z0)

(dr(z))k |f(z)| < sup
z∈Dr(z0)

(dR(z))k |f(z)| ≤ sup
z∈DR(z0)

(dR(z))k |f(z)|

for k ≥ 0. By Cauchy formula, for z ∈ Dr(z0),

|f ′(z)| =

∣∣∣∣ 1

2πi

∫
|z−ζ|=s

f(ζ)

(ζ − z)2dζ

∣∣∣∣
≤ 1

s
max

ζ:|ζ−z|=s
|f(ζ)|

≤ 1

s
‖f‖k,r max

ζ:|ζ−z|=s
dr(ζ)−k (2.5)

holds with 0 < s < R− r. To obtain Property 3. above, we use

dr(ζ) = r − |ζ − z0| ≥ r − |z − z0| − |ζ − z| = r − |z − z0| − s = dr(z)− s

in (2.5) to get an upper bound for dr(ζ)−k, and minimize it over s. We do here something
different:

R− r > s = |z − ζ| ≥ |z − z0| − |ζ − z0|
implies

dR(z) = R− |z − z0| > r − |ζ − z0| = dr(ζ)

which, when substituted into (2.5), yields (2.4) by choosing s = R− r.
�

Remark 2.6 By changing domain in the Nagumo norm, equation (2.4), contrarily to
Property 3., keeps its order unchanged.

Key Ingredient

Lemma 2.7 Let λ ≥ 0 be given and let A be a positive number such that

A ≤ (1 + π2/3)
−1
/2 = 0.1165536 . . .. Consider the sequence (Cl)

∞
l=0 with C0 = A

and

Cl =
Al!λ

l2
, ∀ l ≥ 1 .

Then
m∑
l=0

Cl Cm−l ≤ Cm (2.6)

holds for every m ≥ 0.

Proof Since

(
m

l

)
≥ 1,

1

l
+

1

m− l
=

m

l(m− l)
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and 0 ≤ (a− b)2 = 2(a2 + b2)− (a+ b)2 holds for any real numbers a and b, we have

1

Cm

m∑
l=0

Cl Cm−l ≤ A

(
2 +

m−1∑
l=1

m2

l2(m− l)2

)

≤ 2A

(
1 +

m−1∑
l=1

(
1

l2
+

1

(m− l)2

))

≤ 2A

(
1 +

π2

3

)
≤ 1.

�
It thus follows from (2.6) that∑

l1,...,lk≥1:
l1+···+lk=m

Cl1 · · ·Clk ≤ Cm (2.7)

holds for any 1 ≤ k ≤ m, which will be used in Section .

Scott’s Formula for High Order Chain Rule An alternative to Faà di Bruno
formula for high order chain rule, due to Scott, is as follows (see e.g. [FLy]). For
f : X −→ Y , g : Y −→ Z and n ≥ 1

(f ◦ g)[n] =
n∑
k=1

f [k] ◦ g
∑

i1,...,ik≥1
i1+···+ik=n

g[i1] · · · g[ik] (2.8)

where h[n](w) stands for the n–th derivative of h with respect to w divided by n!:

h[n](w) =
1

n!
h(n)(w).

3 The Initial Condition

We shall prove (a) –(c) statements of the Introduction and conclude by them (Theorem
3.7) that the formal solution ŷ(ε, ξ) is s′-summable in θ = 0 direction. The justification
of Hypothesis 1.1 shall be given in Section 4, when we study the solution of (1.7) for
t > 0.

3.1 ODE Satisfied by u′0(x)

Using the abbreviations ν = 1/ε := N/2, k :=
√
βN , r := i

√
x and s := kr, we write

(1.8) as

u0(x) = − 1

N
ln

[
2ν−1Γ(ν)

sν−1
Jν−1(s)

]
12



where the Bessel function Jν−1(s) of order ν − 1 satisfies

(sJ ′(s))
′
+

(
s− (ν − 1)2

s

)
J(s) = 0 . (3.1)

We set

ϕ(r) =
2ν−1Γ(ν)

(kr)ν−1
J(kr)

and verify that this function satisfies, by (3.1), a second order differential equation

ϕ′′(r) +
2ν − 1

r
ϕ′(r) + k2ϕ(r) = 0.

Finally, u0(x) = − lnϕ(i
√
x)/N satisfies

4Nxu′′0(x) + 4Nνu′0(x)− 4N2x (u′0(x))
2

+ k2 = 0 . (3.2)

This, together with the above abbreviations, leads to the following statement:

Proposition 3.1 With ε := 2/N , the analytic extension y(ε, ξ) of the derivative u′0(x)
of (1.8) satisfies a first order nonlinear equation6

εξy′ + y − 2ξy2 +
β

2
= 0 (3.3)

The equation with ε = 0 has two solutions

y±0 (ξ) =
−β0

1±
√

1 + 4β0ξ
, (3.4)

where the function with plus sign is regular at ξ = 0 and belongs to the Pick class. We
set y0 = y+

0 .

See Subsection 3.2 of [MCG] for the statement about the Pick class.

3.2 Proof of Statement (a): Power Series in ξ

Lemma 3.2 Let (3.3) be considered with β = β(ε) obeying Hypothesis 1.1. There exist
γ, E and σ such that (3.3) has a solution y(ε, ξ) analytic in the domain S(0, γ;E) ×
Dσ(0). The solution y(ε, ξ) converges, as ε → 0 in the sector S(0, γ;E), to the (plus
sign) solution y0(ξ) of (3.3) when ε = 0.

6Here ′ means derivative with respect to x.
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Proof Substituting the power series expansion

y(ε, ξ) =
∞∑
n=0

an(ε) ξn (3.5)

into (3.3), we are lead to a sequence of relations

a0(ε) +
β(ε)

2
= 0 (3.6)

(εn+ 1)an(ε)− 2
n−1∑
m=0

am(ε) an−1−m(ε) = 0 (3.7)

for n ≥ 1, such that for each fixed n, an(ε) is uniquely determined in terms of earlier
coefficients.

We observe that (εn + 1)−1 has poles at {−1/n, n ≥ 1} in the complex ε-plane. In
addition, for all n ≥ 1 and ε ∈ S(0, γ;∞), we have

|εn+ 1| > 1

if 0 < γ < π, and

|εn+ 1| >
√

1− cos2 γ/2 ≡ 1

c
(3.8)

if π ≤ γ < 2π and both inequalities hold for any E > 0. Note that the imposed condition
γ < 2π avoids the poles mentioned above.

Now, let αl and b be the supremum in S(0, γ;E) of |al(ε)| and |β(ε)|, respectively,
and suppose

α0 = αC0

and
αl ≤ αClκ

−l

holds for l ≥ 1, with (Cl)l≥0 the sequence in Lemma 2.7 with λ = 0. Hence, by (3.6)
and Hypothesis 1.1, we have

sup
ε∈S(0,γ;E)

|a0(ε)| = α0 =
b

2
= αA, (3.9)

and, by (3.7), (3.8), (2.6) and Hypothesis 1.1,

αn ≤ 2c
n−1∑
m=0

αm αn−1−m

≤ 2cα2κ−n+1

n−1∑
m=0

CmCn−1−m

≤ 2cα2Cn−1κ
−n+1 ≤ αCnκ

−n,

14



where the last inequality holds provided that (recalling (3.9))

κ ≤ 1

8cα
=

A

4cb
; (3.10)

note Cn/Cn−1 = (1 − 1/n)2 ≥ 1/4 for all n ≥ 2. With α and κ being chosen in that
way, i.e., satisfying (3.9) and (3.10), we conclude

sup
ε∈S(0,γ;E)

|al(ε)| = αl ≤ α
A

l2
κ−l ∀ l ≥ 1. (3.11)

Therefore, the power series solution (3.5) of (3.3) converges uniformly in S(0, γ;E) to
an analytic function of ξ ∈ D̄σ(0), with σ < κ. By (3.6) and (3.7), (an(ε)σn)n≥0 is a
sequence of analytic functions, uniformly bounded in S(0, γ;E),

∞∑
n=0

sup
ε∈S(0,γ;E)

|an(ε)|σn ≤ bκ

2(κ− σ)

and y(ε, ξ) is, consequently, analytic in S(0, γ;E)×Dσ(0).
Moreover, from the uniform convergence of (3.5) we conclude that for fixed ξ ∈

Dσ(0), the solution y(ε, ξ) tends to

y(0, ξ) =
∞∑
n=0

an(0) ξn =
−β0

1 +
√

1 + 4β0ξ
= y0(ξ)

as ε→ 0 in S(0, γ;E), where β0 = limS(0,γ;E)3ε→0. Note that the solution y−0 (ξ) of (3.3)
with ε = 0 is not regular at ξ = 0 and this concludes the proof of Lemma 3.2.

�

3.3 Proof of Statement (b): Power Series in ε

Lemma 3.3 Suppose the formal power series (1.13) satisfies equation (3.3), formally,
with β = β(ε) obeying Hypothesis 1.1. Then, the coefficients (yi(ξ))i≥0 of (1.13) are
analytic functions of ξ in the open disc D1/(4β0)(0) and there exist positive constants C
and µ such that

|yi(ξ)| ≤ Ci!s
′
µi (3.12)

holds for all i ≥ 0 and ξ ∈ D̄σ(0), with s′ := max(1, s) and σ < κ < 1/(4β0). In other
words, the formal power series ŷ(ε, ξ) ∈ O(σ)[[ε]]s′ is of Gevrey order s′.

Proof By hypothesis, the formal series

β̂(ε) =
∞∑
i=0

βi ε
i (3.13)

15



is of Gevrey order s. Substituting the formal power series (1.13) and (3.13) into (3.3),
yield

y0(ξ)− 2ξ(y0(ξ))2 +
β0

2
= 0

and

ξy′i−1(ξ) + yi(ξ)− 2ξ
i∑

j=0

yj(ξ) yi−j(ξ) +
βi
2

= 0 .

for i ≥ 1. Solving the first equation, choosing the function with plus sign (regular at
ξ = 0), we have

y0(ξ) =
−β0

1 +
√

1 + 4β0ξ
.

It follows from the second equation with i = 1

y1(ξ) =
1

1− 4ξy0(ξ)

{
−ξy′0(ξ)− β1

2

}
(3.14)

and with any i ≥ 2

yi(ξ) =
1

1− 4ξy0(ξ)

{
−ξy′i−1(ξ) + 2ξ

i−1∑
j=1

yj(ξ) yi−j(ξ)−
βi
2

}
(3.15)

and this relation determines uniquely yi(ξ) in terms of earlier coefficients.
Note that

1− 4ξy0(ξ) =
√

1 + 4β0ξ

is an analytic and nonvanishing function in D1/(4β0)(0) and, therefore, yi(ξ) is analytic
in the domain D1/(4β0)(0). Since

1

c1

≡
√

1− 4β0κ ≤
∣∣∣√1 + 4β0ξ

∣∣∣ ≤√1 + 4β0κ ≡ c2 (3.16)

holds for every ξ ∈ D̄κ(0) and κ < 1/(4β0), we have

sup
ξ∈D̄κ(0)

|y0(ξ)| = sup
ξ∈D̄κ(0)

∣∣∣∣ −β0

1 +
√

1 + 4β0ξ

∣∣∣∣ =
|β0|

min (1− 1/c1, c2 − 1)
≡ c3. (3.17)

Now, to obtain an estimate on the growth rate of |yi(ξ)|, we use the Nagumo norms
(2.2) with r = κ.

Let us assume that
‖yl‖l−1 ≤ δClν

l (3.18)

holds for l = 1, 2, . . . , i − 1with Cl = Al!λ/l2, for some positive constants λ, δ and ν
to be determined. Then, it follows by (3.15), (3.16), (2.6), the properties of Nagumo
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norms and Hypothesis 1.1 that

‖yi‖i−1 ≤ c1

{
‖ξ‖0 ‖y′i−1‖i−1 + 2‖ξ‖0

i−1∑
j=1

‖yj‖j−1 ‖yi−j‖i−j +
‖βi‖i−1

2

}

≤ c1

{
κe(i− 1)‖yi−1‖i−2 + 2κ2

i−1∑
j=1

‖yj‖j−1 ‖yi−j‖i−1−j +
κi−1|βi|

2

}

≤ c1

{
κe(i− 1)δCi−1ν

i−1 + 2κ2δ2Ciν
i +

κi−1bKim
i

2

}
≤ δCiν

i, (3.19)

where the last inequality holds provided

c1

{
κe

ν

i2

iλ(i− 1)
+ 2κ2δ +

b

2κδ

1

(i− 1)!λ−s
i2

(i− 1)iλ

(κm
ν

)i}
≤ 1 (3.20)

is satisfied for all i ≥ 2.
In order the first and last terms of (3.20) to be bounded, one sees that λ ≥ s′ =

max(1, s); δ has to be sufficiently small in reason of the second term and ν > κm large
enough. So, we fix λ = s′ and choose first δ small and ν so large that (3.20) and
‖y1‖0 ≤ δC1ν hold. By (3.14) and (3.17),

‖y1‖0 = sup
ξ∈Dκ(0)

∣∣∣∣ 1

1− 4ξy0(ξ)

{
−ξy′0(ξ)− β1

2

}∣∣∣∣
≤ c1

{
2κc1c

2
3 +

bm

2

}
≤ δC1ν (3.21)

holds for δ small, by taking ν sufficiently large.
This together with (3.19) complete the induction: with δ and ν fixed so that (3.21)

and (3.20) hold, we thus have

sup
ξ∈Dκ(0)

(dκ(ξ))
l−1 |yl(ξ)| ≡ ‖yl‖l−1 ≤ δ

Al!s
′

l2
νl ∀ l ≥ 1. (3.22)

By the properties 4 and 5 of Nagumo norms,

|yi(ξ)| ≤
κ

(κ− σ)i
‖yi‖i−1 ≤ Ci!s

′
µi

holds for all i ≥ 1 uniformly in D̄σ(0) for some σ < κ, with C = κδA and µ = ν/(κ−σ).
In order to include the i = 0 case, it is enough to choose C = max(c3, κδA), in view of
(3.17), which concludes the proof of Lemma 3.3.

�

17



3.4 Proof of Statement (c): Gevrey Asymptotics

Lemma 3.4 If β = β(ε) obeys Hypothesis 1.1 then, for each sector S(0, γ;E) and closed
disc D̄σ(0), σ < κ/(1+2bcκ), with γ and E as in Lemma 3.2 and b, c and κ are constants
in its proof, there exist positive constants C and µ such that∣∣∣∣ 1i! ∂iy(ε, ξ)

∂εi

∣∣∣∣ ≤ Ci!sµi

holds for all i ≥ 0.

Remark 3.5 A subproduct of the proof of Lemma 3.4 is another representation of the
unique solution y(ε, ξ) of (3.3), analytic in the domain S(0, γ;E) ×Dσ(0), continuous
in its closure, such that limS(0,γ;E)3ε→0y(0, ξ) = y0(ξ).

Proof Set

φi(ε, ξ) =
1

i!

∂iy

∂εi
(ε, ξ)

βi(ε) =
1

i!
β(i)(ε)

φ′i(ε, ξ) =
∂φi
∂ξ

(ε, ξ)

for every (ε, ξ) ∈ S(0, γ;E) × Dκ(0). Differentiating (3.3) i–times with respect to ε,
yields

εξφ′i + ξφ′i−1 + φi − 2ξ
i∑

j=0

φj φi−j +
βi
2

= 0 .

These relations, together with (3.3) itself (φ0(ε, ξ) = y(ε, ξ)), may be written as

εξφ′i + Ai(ε, ξ)φi = gi(ε, ξ), i ≥ 0 (3.23)

where

Ai(ε, ξ) =

{
1− 2ξφ0(ε, ξ) if i = 0
1− 4ξφ0(ε, ξ) if i ≥ 1

, (3.24)

g0(ε, ξ) = −β0(ε)

2
, (3.25)

g1(ε, ξ) = −ξφ′0(ε, ξ)− β1(ε)

2
, (3.26)

and

gi(ε, ξ) = −ξφ′i−1(ε, ξ) + 2ξ
i−1∑
j=1

φj(ε, ξ)φi−j(ε, ξ)−
βi(ε)

2
(3.27)
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for i ≥ 2, depends only on derivatives with respect to ε of order lower than i. (3.23) is
a linear singular perturbation equation with regular singularity which can be dealt with
the following auxiliary result due to Balser-Kostov [BK]. For this, we drop temporarily
all subindices i in (3.23).

Let

A(ε, ξ)− A0(ε) =
∞∑
n=1

An(ε) ξn = −B(ε, ξ) (3.28)

and consider a sequence of solutions (ψk(ε, ξ))k≥0 of the system{
εξψ′0(ε, ξ) + ψ0(ε, ξ) = g(ε, ξ)

εξψ′k(ε, ξ) + ψk(ε, ξ) = B(ε, ξ)ψk−1(ε, ξ) , k = 1, 2, . . .
, (3.29)

Then, the sum over all equations in (3.29) yields, by (3.28) and linearity, an equation of
the form (3.23) for the sum ψ(ε, ξ) of solutions (ψk(ε, ξ))k≥0. Note, by (3.5), (3.6) and
(3.7), that A0(ε) = A(ε, 0) = 1 and

−B(ε, ξ) = 4ξy(ε, ξ) = 4
∞∑
n=1

an−1(ε) ξn, (3.30)

so An(ε) = −4an−1(ε) for n ≥ 1 (when i = 0, we replace the 4’s by 2). We assume that
g(ε, ξ) admits an expansion

g(ε, ξ) =
∞∑
n=0

gn(ε) ξn (3.31)

uniformly convergent in S(0, γ;E) × D̄σ1(0), σ1 < κ. For g given by (3.25)-(3.27) this
will, actually, be proven by induction when we resume the proof of Lemma 3.4. We
write, in addition, f(z)� F (z) if f(z) =

∑∞
k=0 ckz

k is majorized by F (z) =
∑∞

k=0Ckz
k

, i. e., if |ck| ≤ Ck holds for all k.

Lemma 3.6 There exist unique functions (ψk(ε, ξ))k≥0, holomorphic in S(0, γ;E) ×
D̄σ1(0), satisfying (3.29). Each ψk(ε, ξ) has a zero of order k at ξ = 0 and satisfies

∞∑
k=0

ψk(ε, ξ) = ψ(ε, ξ)� cG(ξ)

1− cΩ(ξ)
, (3.32)

where

G(ξ) =
∞∑
n=0

sup
ε∈S(0,γ;E)

|gn(ε)| ξn , (3.33)

Ω(ξ) =
∞∑
n=0

sup
ε∈S(0,γ;E)

|An(ε)| ξn (3.34)
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and |Ω(ξ)| < 1/c provided σ1 < κ/(1+2bcκ), with b, c and κ as in (3.9), (3.8) and (3.10),
respectively. ψ(ε, ξ) is, in addition, the unique analytic solution in S(0, γ;E) ×Dσ1(0)
of

εξψ′(ε, ξ) + A(ε, ξ)ψ(ε, ξ) = g(ε, ξ). (3.35)

Proof Plugging

ψk(ε, ξ) =
∞∑
n=k

$n,k(ε) ξ
n

into (3.29), yields

(εn+ 1)$n,0(ε) = gn(ε) , n ≥ 0

(εn+ 1)$n,k(ε) = −
n−1∑

m=k−1

An−m(ε)$m,k−1(ε) , 1 ≤ k ≤ n .

From the first relation we have

ψ0(ε, ξ) =
∞∑
n=0

1

εn+ 1
hn(ε) ξn,

and from the second one

ψk(ε, ξ) =
∞∑
n=k

−1

εn+ 1

n−1∑
m=k−1

An−m(ε)$m,k−1(ε) ξn

=
n−1∑

m=k−1

$m,k−1(ε) ξm
∞∑
l=1

−1

ε(m+ l) + 1
Al(ε) ξ

l .

Defining

Ψk(ξ) =
∞∑
n=k

sup
ε∈S(0,γ;E)

|$n,k(ε)| ξn,

it follows, by (3.8), (3.33) and (3.34) that

Ψ0(|ξ|) ≤ cG(|ξ|)
Ψk(|ξ|) ≤ cΩ(|ξ|)Ψk−1(|ξ|)

for k ≥ 1. Since ψk(ε, ξ) � Ψk(ξ) for k ≥ 1 and ψ0(ε, ξ) � cG(ξ) for k = 0 hold
for all (ε, ξ) ∈ S(0, γ;E) × D̄σ1(0), we conclude (3.32) provided the geometric series
S(σ1) =

∑
k≥1 c

kΩ(σ1)k converges. By (3.28), (3.30), (3.11), and (3.9),

Ω(σ1) = 4
∞∑
n=1

sup
ε∈S(0,γ;E)

|an−1(ε)|σn1 ≤
2bκσ1

κ− σ1

<
1

c
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if σ1 < κ/(1 + 2bcκ) and thence,
∞∑
k=0

ψk(ε,ξ) = ψ(ε, ξ) is a uniformly convergent series

of analytic functions in S(0, γ;E)×Dσ1(0) which solves (3.35). Since no other solution
of (3.35), regular at ξ = 0, exists, the proof of Lemma 3.6 is concluded.

�
We continue the proof of Lemma 3.4. It remains to show that the gi(ε, ξ), given

by (3.25), (3.26) and (3.27), satisfy the hypothesis of Lemma 3.6. This follows by
induction. Clearly, g0(ε, ξ) is holomorphic in S(0, γ;E)×Dσ1(0). Suppose that φj(ε, ξ)
is holomorphic in S(0, γ;E) × Dσ1(0) for each 1 ≤ j < i. Then, by (3.27), gi(ε, ξ), is
holomorphic in the same domain. By Lemma 3.6, φi(ε, ξ) is holomorphic in S(0, γ;E)×
Dσ1(0) and, by (3.27), we conclude it also holds for gi+1(ε, ξ), justifying its representation
as a convergent series (3.31), uniformly in S(0, γ;E)×Dσ1(0). By induction, φi(ε, ξ) is
holomorphic in S(0, γ;E)×Dσ1(0) for each i ≥ 1 and

φi(ε, ξ)�
cGi(ξ)

1− cΩ(ξ)
� cGi(ξ)

1− cΩ(σ1)
. (3.36)

where Gi depends on the φj(ε, ξ) with j < i. For i = 0, by (3.24), (3.25), (3.33) and
Hypothesis 1.1,

|y0(ε, ξ)| = |φ0(ε, ξ)| ≤ cG0(|ξ|)
1− cΩ(σ1)/2

≤ cb

2(1− cΩ(σ1)/2)
≡ e0 (3.37)

holds for all ε ∈ S(0, γ;E) and ξ ∈ Dσ1(0). For i ≥ 1, we consider the modification of
Nagumo norms:

‖y‖j = sup
ξ∈Dσ1 (0)

(dσ1(ξ))j
∞∑
n=0

sup
ε∈S(0,γ;E)

∣∣∣∣ 1

n!

∂ny

∂ξn
(ε, 0)

∣∣∣∣ |ξ|n,
with dσ1(ξ) = σ1 − |ξ|. It follows from (3.36) that

‖φi‖i−1 ≤
c

1− cΩ(σ1)
‖Gi‖i−1, (3.38)

where, by (3.26), (3.11), (3.9) and Hypothesis 1.1,

‖G1‖0 = sup
ξ∈Dσ1 (0)

∞∑
n=1

n sup
ε∈S(0,γ;E)

|an(ε)| |ξ|n + sup
ε∈S(0,γ;E)

|β1(ε)|
2

<
bσ1

2(κ− σ1)
+
bm

2
,

and by (3.27), together with the properties of Nagumo norms,

‖Gi‖i−1 ≤ ‖ξ‖0 ‖φ′i−1‖i−1 + 2‖ξ‖0

i−1∑
j=1

‖φj‖j−1 ‖φi−j‖i−j +
‖βi‖i−1

2
, i ≥ 2. (3.39)
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From this, together with (3.38), a recursive relation of the same type studied in (b)
may be derived for the ‖φl‖l−1 (see (3.18)-(3.21)) and one may conclude that7

‖φl‖l−1 ≤ ∆
Al!s

′

l2
ωl (3.40)

holds for all l ≥ 1 and some suitable constants ∆ and ω. Picking σ < σ1 in the property
5 of Nagumo norms, yields

|φi(ε, ξ)| ≤
σ1

(σ1 − σ)i
‖φi‖i−1 ≤ Ci!s

′
µi

for all i ≥ 1 uniformly in S(0, γ;E)× D̄σ(0), with C = σ1∆A and µ = ω/(σ1 − σ). We
choose C = max(e0, σ1∆A) in order to include the i = 0 case. This concludes the proof
of Lemma 3.4.

�

3.5 Concluding this Section

Theorem 3.7 Let β = β(ε) obey Hypothesis 1.1 and let (3.3) be considered for (ε, ξ)
in a domain S(0, γ;E) × Dσ(0) with γ > π/s′. Then, there exist a radius σ > 0 such
that for ξ ∈ D̄σ(0) the formal solution ŷ(ε, ξ) is s′-summable in θ = 0 direction.

Proof By Taylor’s Theorem

rI(ε, ξ) = ε−I

(
y(ε, ξ)−

I−1∑
i=0

yi(ξ) ε
i

)
=

I

εI

∫ ε

0

yI(ξ, ξ) (ε− ξ)I−1 dξ,

where the integral is along a path from 0 to ε inside S(0, γ;E). This, together with
Lemma 3.4, implies

|rI(ε, ξ)| ≤ CI!s
′
µI

for every I and (ε, ξ) ∈ S ′ × D̄σ(0), with S ′ any proper subsector of S(0, γ;E). In
addition, Lemma 3.3 states that ŷ(ε, ξ), a formal solution of (3.3), is an element of
O(σ)[[ε]]s; therefore is an element ofO(σ)[[ε]]s for any σ. Take now σ < κ/(1+2bcκ) with
b, c and κ satisfying (3.9), (3.8) and (3.10), respectively. Hence, by Definition 2.1, ŷ(ε, ξ)
is an asymptotic expansion of order s′, as ε→ 0 in the sector S(0, γ;E), of y(ε, ξ), which
by Lemma 3.2 is an analytic solution of (3.3) in the domain S(0, γ;E)× D̄σ(0). Then,
as γ > π/s′, by hypothesis, y(ε, ξ) is the only Gevrey order s′ asymptotic expandable
function in S(0, γ;E) which has ŷ(ε, ξ) as its asymptotic expansion, and ŷ(ε, ξ) is s′-
summable in θ = 0 direction by Definition 2.4.

�
7The details for this estimate are left to the reader.
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4 The Evolution Equation

We derive, at the level of formal manipulations, an equation for the Legendre transform
w(t, p) of u(t, x) (see (1.9), for definition) which is suitable for generating a formal power

series in ε = 2/N , which belongs to
⋂
t≥0

O(r(t))[[ε]], for its derivative v(t, p) = wp(t, p):

v̂(t, ε, p) =
∞∑
i=0

vi(t, p)εi , (4.1)

in the sense that its i–th coefficient vi(t, p) satisfies a solvable first order linear PDE
equation, with an external source fi = fi(v

0, . . . , vi−1) depending on the coefficients
vj(t, p) with j < i.

For i = 0, f0 = −1, the equation for v0(t, p) can be integrated and the solution can
be written in terms of ordinary analytic functions (see (4.12)). For any i > 1 it can be
shown that its solution is a uniquely defined holomophic function of p for every t ≥ 0.
The two results presented in this Section are extensions of the (a) and (b) statements
for t > 0. Theorem 4.3 states that the coefficients (vi(t, p))i≥0 are analytic functions in
a monotone non-increasing domains Di ≡ Dσi(−1), uniformly in t ≥ 0 and Theorem
4.5 finds a majorant solution at the critical point; Theorem 4.6 states that the domains
Di may be chosen in such way that limi→∞ σi = ς > 0 and the formal series (4.1) is of
Gevrey order 2, uniformly in t ∈ R+.

The functions v(t, ε, p) and ux(t, ε, x) are inverse of each other and in a separate
paper [CM, CM] we prove that, in general, (i) if a formal series f̂(ε, z) is in O(r)[[ε]],
then the formal series ĝ(ε, w) for its inverse is in O(ρ)[[ε]] for some ρ > 0; (ii) if
f̂(ε, z) ∈ O(r)[[ε]]s is, in addition, a Gevrey asymptotic expansion of a holomorphic
function f(ε, z), then ĝ(ε, w) ∈ O(ρ)[[ε]]s is a Gevrey asymptotic expansion of the
holomorphic function g(ε, w) = f−1(ε, w). Moreover, f̂(ε, z) is s–summable if, and only
if, ĝ(ε, w) is s–summable. So, we may work in one or another side depending on the
convenience. In this Section, the series (4.1) turns out to be more convenient to work
with than the formal series ûx(t, x). The theorems just mentioned guarantee that any
asymptotic property for the formal series (4.1) in ε is preserved by the inverse operation
in the variable p, uniformly in t > 0.

4.1 Equation for the Legendre Transform

We assume that the Legendre transform (1.9) of u(t, x), the solution of equation (1.7),
is attained at a unique solution x̄ = x̄(t, p) of p = ux(t, x), for every t ≥ 0 and p in a
certain domain depending on ε = 2/N and t, and the function u(t, x) can be recovered
by the inverse Legendre transform:

u(t, x) = max
p

(xp− w(t, p)) = xp̄− w(t, p̄), (4.2)
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where p̄ = p̄(t, x) is the unique solution of x = wp(t, p). Substituting

ut = −wt
x = wp

ux = p

uxx = 1/wpp (4.3)

into (1.7), we have

wt = −ε wp
wpp
− p+ 2p2wp + (d+ 2)pwp − dw + p0(t)

where p0(t) is the solution of wp(t, p) = 0. Taking derivative with respect to x, we arrive
at the following initial value problem for v = wp:

vt − 2p(1 + p)vp = (d+ 2 + 4p)v − 1− ε

(
1− vvpp

(vp)
2

)
(4.4)

with v(0, p) = (u′0)−1 (p) ≡ v0(p) where u0(x) is given by (1.8).
The formal series (4.1) at t = 0 has to agree with

v̂0(ε, p) =
∞∑
i=0

vi0(p)εi . (4.5)

In order to generate a formal series for v0(p), it will be convenient to write an equation for
the initial condition of (4.4) as well. Using (4.3) into (3.3) (y = ux = p, y′ = uxx = 1/v′0
and ξ = x = v0), we have

ε
v0(p)

v′0(p)
+ p− 2p2v0(p) +

β

2
= 0 (4.6)

with β = β(ε) obeying Hypothesis 1.1. Taking ε = 0 in (4.6), yields

v0
0 (p) =

2p+ β0

4p2
. (4.7)

4.1.1 Power Series in the Variable ε

Without loss of generality, we shall restrict ourselves to the case d = 4. The 0–th
coefficient of the expansion (4.1) has been treated in [MCG] with considerable details
for dimension d = 4 and this explain our choice. Similar results can be obtained for any
d > 2.

Substituting the formal power series (4.1) into (4.4) (with d = 4), collecting all terms
of the same order, we obtain the following first order linear partial differential equation
satisfied by the coefficient vi(t, p) with i ≥ 0:

vit − 2p(1 + p)vip = (6 + 4p)vi + fi(v
i, . . . , vi) , (4.8)
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with initial value vi(0, p) = vi0(p), where f0 = −1;

f1(v0) = −1 +
v0v0

pp(
v0
p

)2

= −1 + v0ϕ0
p (4.9)

with ϕ0 = −1/v0
p; and for i ≥ 2,

fi(v
0, . . . , vi−1) =

i−1∑
j=0

vi−1−j ϕjp; (4.10)

where ϕjp is the derivative of ϕj with respect to p and ϕj , j ≥ 1, is obtained by Scott’s
formula (2.8), applied formally to ϕ0:

ϕj =
1

j!

∂j

∂εj
−1

vp

∣∣∣∣
ε=0

=

j∑
k=1

(−1)k+1(
v0
p

)k+1

∑
l1,...,lk≥1:
l1+···+lk=j

vl1p · · · vlkp . (4.11)

The solution for i = 0, reads (see Theorem 2.2 of [MCG])

v0(t, p) =
2 + p

2p2
− 4− β0

4p2
e2t − 1 + p

p3

[
2t+ ln

(
1− (1− e−2t)(1 + p)

)]
, (4.12)

which is a holomorphic function of p in D1(−1) for every t ∈ R+. For β0 = β0
c (d =

4) = 4, the exponentially growing term is cancelled and its derivative v0
p(t, p) vanishes at

p = p∗(t) ∈ R, which is the point with least real coordinate in the domain Ωt = ux (t,H)
referred in the Introduction. So, from what we have explained there and according to
Figure , p∗(t) is a monotone increasing function of t ≥ 0 with p∗(0) = −4 and p∗(∞) =
−3/2. Therefore, 1/v0

p(t, p) is holomorphic for (t, p) ∈ {R+ × C : |1 + p| < |1 + p∗(t)|}
and particularly for (t, p) ∈ R+ ×D1/2(−1).

As a consequence, supposing that each vj(t, p), for j = 0, 1, . . . , i− 1, is holomorphic
in (t, p) ∈ R+ × Dσj(−1), it follows by (4.10) and (4.11) that fi(v

0, . . . , vi−1) is holo-

morphic for t ∈ R+ and p in
⋂i−1
j=0Dσj(−1) ∩D1/2(−1). Without loss of generality, it is

enough to take monotone non-increasing sequences (σi)i≥0:

· · · ≤ σi ≤ σi−1 ≤ · · · ≤ σ1 ≤ σ0 = 1/2 . (4.13)

Holomorphic Domain of the Initial Condition
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Proposition 4.1 The i–th coefficient vi0(p) of the formal series (4.5) is a holomorphic
function in D1(−1) for all i ≥ 0. For each i ≥ 0, the value of vi0(p) at p = −1 depends
on the value of vj0(p), for j = 0, . . . , i − 1, at p = −1 and on an arbitrary real number
βi defined by (1.12) in such way that, if β0, . . . , βi−1 are fixed, vi0(−1) = ai + βi/4 for
some ai ∈ R fixed.

Remark 4.2 It follows by Proposition 4.1 that the formal power series β̂(ε) =
∑
i≥0

βiεi

of the inverse temperature is of Gevrey order of the formal power series (4.5). By Lemma
3.3, the formal series ŷ(ε, ξ) = û′0(ε, ξ) = v̂−1

0 (ε, ξ) for the inverse of v̂0(ε, p) is of Gevrey
order s′ = min(s, 1) where s is the Gevrey order of β̂(ε), by Hypothesis 1.1. Since the
Gevrey order is preserved by the inverse function theorem (see Theorem 3.3 of [CM1])
we conclude that s′ = s = 1 and β̂(ε) is of Gevrey order 1.

Proof. The coefficients of (4.5) can be determined explicitly from the equation (4.6).
Plugging the formal power series (4.5) into (4.6), taking into account (1.12) and collect-
ing all terms of the same order, yields

vi0(p) =
1

4p2

(
gi(v

0
0, . . . , v

i−1
0 ) + βi

)
, (4.14)

where g0 = 2p and for i ≥ 1

gi(v
0
0, . . . , v

i−1
0 ) = −2

i−1∑
j=0

vi−1−j
0 ϕj0 (4.15)

with ϕj0 = ϕj|t=0, ϕj given by (4.11):

ϕ0
0 =

−1

dv0
0/dp

and for j ≥ 1

ϕj0 =

j∑
k=1

(−1)k+1

(dv0
0/dp)

k+1

∑
l1,...,lk≥1:
l1+···+lk=j

dvl10
dp
· · · dv

lk
0

dp
.

Choosing β0 = β0
c (4) = 4 in (4.7), v0

0(p) = (2 + p) /2p2 is a holomorphic function for
p in the disc centered at p = −1 of radius 1 and

dv0
0

dp
(p) = −4 + p

2p3

vanishes only at p = −4. Since the space of a meromorphic functions of p, with poles at
p = −4 and p = 0, are closed by differentiation, multiplication and linear combinations
with constant coefficients, vi0(p) is a meromorphic function of p with poles at p = −4
and p = 0 and, consequently, holomorphic in D1(−1) for all i ≥ 1.
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The statement on vi0(−1) can be read from (4.14). Note that vi0(p) is a real analytic
function by (4.14) and the Hypothesis 1.1. For β0, . . . , βi−1 fixed, gi(v

0
0, . . . , v

i−1
0 )/4p2

at p = −1 is a fixed real number, let say aı́ and vi0(−1) = aı́ + βi/4.
�

Later on, we shall need also a lower bound for dv0
0/dp in Dσ0(−1). Maximum (min-

imum) modulus principle will be used for this purpose in Subsection 4.2.

Holomorphic Domain of the Initial Value Problem We are now ready to stated
the main result of this subsection. From here on, d = 4 and β = β(ε) obeys Hypothesis
1.1. We shall establish that vi(t, p) is holomorphic in Dσi(−1) for t > 0 and i ≥
0. Furthermore, we shall obtain in each of these domains precise upper bounds, with
explicit t dependence, for vi(t, p) and its derivatives with respect to p. This allows us
to find the critical value βic for each initial value (4.8), i ≥ 0, and determine the formal

series β̂c =
∑
i≥0

βicε
i for the critical inverse temperature. We shall fix the coefficients βi

of the formal power series β̂(ε), introduced in the Hypothesis 1.1 and whose dependence
on the initial conditions vi0(p) is given by (4.14), on their critical values. Only β0 needs
to be fixed at its critical value β0

c = 4 for the first part of the following

Theorem 4.3 The initial value problem (4.4), satisfied by each coefficient vi(t, p) of
the formal power series (4.1), has an unique solution given by

vi(t, p) =
1

α(p)

(
(αvi0) ◦ φt(p) +

∫ t

0

(αfi) ◦ φt−s(p) ds
)
, (4.16)

holomorphic in Dσi(−1) with σi satisfying (4.13), uniformly in t > 0. Here,

α(p) =
2p3

1 + p
(4.17)

is related to an integral factor µ = µ(p): α = 2p(1 + p)µ and

φt(p) =
pe2t

1 + p− pe2t
(4.18)

solves the characteristic of equation (4.8).

Proof The proof of Theorem 4.3 has two steps.

First step. Assume that, for each i ≥ 1, fi(v
0, . . . , vi−1) given by (4.10) and (4.11), is

holomorphic in Dσi−1
(−1) for t ∈ R+, so αfi(v

0, . . . , vi−1) has a simple pole at p = −1
and can be written as a Laurent series

αfi(t, p) =
γi−1(t)

1 + p
+
∞∑
n=0

γin(t) (1 + p)n (4.19)
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with the series in the right hand side of (4.19) being convergent for p ∈ Dσi−1
(−1),

uniformly in t > 0. As vi0 is holomorphic in D1(−1), we analogously have

αvi0(p) =
ci0,−1

1 + p
+
∞∑
n=0

ci0,n (1 + p)n (4.20)

for p ∈ D1(−1)\{−1}.
Write

ϑi(t, p) := α(p)vi(t, p) =
ci−1(t)

1 + p
+
∞∑
n=0

cin(t) (1 + p)n. (4.21)

In terms of this new function, the problem (4.4), which reads

ϑit − 2p(1 + p)ϑip = αfi(t, p) (4.22)

with ϑi(0, p) = ϑi0(p) = αvi0(p), can be solved by the methods of characteristics (see e.g.
[E]). ϑi(t, p) on the characteristics p = p(t):

V (t) = ϑi(t, p(t)),

satisfies V̇ = ϑit+ ṗϑ
i
p which, by comparing with (4.22), reduces the inicial value problem

to a system of ordinary differential equations

ṗ = −2p(1 + p)

V̇ = αfi(t, p) , (4.23)

with p(0) = p0 and V (0) = ϑi(0, p(0)) = ϑi0(p0). Integrating the first equation of (4.23)∫ p

p0

dp′

p′(1 + p′)
=

∫ p

p0

(
1

p′
− 1

1 + p′

)
dp′ = −2

∫ t

0

dt′,

we are lead to
p(t) = p(t, p0) = φ−t(p0) (4.24)

where φt(p) is given by (4.18). The second equation of (4.23) may also be integrated:

V (t) = ϑi0(p0)V (0) +

∫ t

0

αfi(s, p(s, p0)) ds . (4.25)

According to the methods of characteristics, the solution ϑ[i](t, p) is recovered by sub-
stituting p0, as a function of t and p, into (4.25). Solving (4.24) for p0, gives

p0(t, p) = φt(p) ;

note that p(s, p0) = φ−1
s (p0) = φ−s(p0) and φ−s ◦ φt(p) = φt−s(p). Plugging this expres-

sion into (4.25), yields

ϑi(t, p) = ϑi0 ◦ φt(p) +

∫ t

0

(αfi) ◦ φt−s(p) ds (4.26)
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which gives (4.16), by the definition (4.21) of ϑ[i](t, p).
It follows from (4.18) that 1 +φt(p) = (1 + p) / (1 + p− pe2t) is an analytic function

of p for (t, p) ∈ R+ ×D1(−1), satisfies 1 + φt(−1) = 0 and

max
p∈Dσ(−1)

|1 + φt(p)| <
σe−2t

1− σ(1− e−2t)
≤ σ (4.27)

for every σ ≤ 1 and all t ≥ 0. This, together with (4.19), (4.20) and (4.21), implies that
vi(t, p) = ϑi(t, p)/α(p) is holomorphic in Dσi(−1) with σi = min(1, σi−1) and concludes
the proof of Theorem 4.3 under the hypothesis (4.19).

Second step. We shall prove that vi(t, p) is holomorphic in Dσi(−1), for i ≥ 0 and
t ≥ 0. We recall that β0 is kept fixed at its critical values β0

c : β0 = 4. We have
seen that, under this condition, for every t ≥ 0, v0(t, p) is holomorphic in D1(−1) and
its derivative v0

p(t, p) does not vanishes in D1/2(−1). By (4.9), f1 is holomorphic in
D1/2(−1) and by (4.26), v1(t, p) = ϑ1(t, p)/α(p) is holomorphic in Dσ1(−1) with σ1 ≤
min(1, 1/2) = 1/2, proving the theorem statement for i = 1. We now assume that each
vj(t, p), for j = 1, . . . , i−1, is holomorphic in (t, p) ∈ R+×Dσj(−1). Since fi(v

0, . . . , vi−1)
is holomorphic in R+ ×Dσi−1

(−1) (a finite sum of products of holomorphic functions)
it follows by (4.26) that vi(t, p) = ϑi(t, p)/α(p) is holomorphic in R+ × Dσi(−1) with
σi ≤ min(1, σi−1) = σi−1. This completes the proof of Theorem 4.3.

�
We are now concerned with the dependence on t of γi−1(t) and γin(t), n ≥ 0. We are

going to show that these quantities remain bounded in t for every i ≥ 1.

Proposition 4.4 ∣∣γi−1(t)
∣∣ ≤ δi∣∣γin(t)
∣∣ ≤ ∆iκ

−n
i , n ≥ 0, (4.28)

hold for some 0 < δi, ∆i <∞, κi < σi and i ≥ 1, uniformly in t ≥ 0.

Proof Proposition 4.4 will be proven by induction. The dependence on t of f1 can be
explicitly evaluated from the solution (4.12). We write

v0(t, p) =
−4t

α(p)
+H0(t, p) (4.29)

and note that H0(t, p) and its first and second derivatives remain bounded uniformly

in R+ × D̄κ1(−1), with κ1 < σ1. Observe that the numerator v0v0
pp −

(
v0
p

)2
and the

denominator
(
v0
p

)2
of (4.9), both increase as t2 and we have∣∣γ1

−1(t)
∣∣ ≤ δ1∣∣γ1

n(t)
∣∣ ≤ ∆1κ

−n
1 , n ≥ 0,
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for some positive and finite constants δ1 and ∆1, uniformly in t ≥ 0. Bounds for n ≥ −1

are obtained by Cauchy formula γ1
n(t) =

1

2π

∫
|z|=κ1

α(z − 1)f1(v0(t, z − 1))/zn+1dz.

Now, assume the inequalities (4.28) hold for i = 1, . . . , k, uniformly in t ≥ 0. We
shall prove that these hold for i = k + 1. We shall first majorize the solution of (4.22),
under the assumption (4.28).

4.1.2 Power Series Expansion Around p = −1

Plugging
1

1 + φt(p)
=

e2t

1 + p
+ 1− e2t

and

(1 + φt(p))
n = e−2t

∞∑
j1=0

(1− e−2t)j1 (1 + p)j1+1 · · · e−2t

∞∑
jn=0

(1− e−2t)jn (1 + p)jn+1

= e−2nt

∞∑
j=0

(
n+ j − 1

j − 1

)
(1− e−2t)j (1 + p)n+j (4.30)

for all n ≥ 1, into (4.26) with αvi0 and αfi given respectively by (4.19) and (4.20), we
have for p ∈ Dσi(−1) \ {−1}

ϑi(t, p) = ci0,−1e
2t 1

1 + p
+ ci0,−1(1− e2t) + ci0,0 +

∞∑
n=1

Ci
n(t) (1 + p)n

+

∫ t

0

(
γi−1(s)e2(t−s) 1

1 + p
+ γi−1(s)

(
1− e2(t−s))

+γi0(s) +
∞∑
n=1

Γin(s, t) (1 + p)n

)
ds , (4.31)

with {
Ci
n(t)

Γin(t, t′)
= (1− e−2t)n

n∑
k=1

{
ci0,k
γik(t

′ − t)

(
n− 1

k − 1

)(
e−2t

1− e−2t

)k
.

Note that, under the hypothesis (4.28), we have

∣∣Γin(t, t′)
∣∣ ≤ ∆i(1− e−2t)n

n∑
k=1

(
n− 1

k − 1

)(
e−2t

σi(1− e−2t)

)k
= ∆i

e−2t(σi + (1− σi)e−2t)n−1

σni
(4.32)

and, similarly
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∣∣Ci
n(t)

∣∣ ≤ ci
e−2t(σ + (1− σ)e−2t)n−1

σn
(4.33)

since, by Cauchy formula, |cin| ≤ ciσ
−n holds for any σ < 1 for some constant 0 < ci <

∞.

The Critical Value We observe that the residue and the constant coefficient of the
Laurent series of ϑi about p = −1 increase exponentially fast with t. Such growth must
be cancelled by setting the j–th coefficient βi of the formal power series β̂(ε) for the
inverse temperature at its critical value. Assuming that we have already fixed βj = βjc
for j = 0, 1, . . . , i− 1, βic is chosen so that

lim
t→∞

e−2tci−1(t) = lim
t→∞

e−2t (1 + p)ϑi(t, p)
∣∣
p=−1

= 0

or, equivalently,

Λi := ci0,−1 +

∫ ∞
0

γi−1(s)e−2s ds = 0 , (4.34)

by (4.31), Note that the exponential growth of the constant coefficient in (4.31) is
eliminated by the very same condition:

lim
t→∞

e−2tci0(t) = lim
t→∞

e−2t

[
ϑi(t, p)− (1 + p)ϑi(t, p)

∣∣
p=−1

1

1 + p

]
p=−1

= 0

if and only if (4.34) holds. By (4.21), (4.17) and (4.14), both ci0,−1 and ci0,0 depend on
βi. All other coefficients depends on the βj with j < i, which we have fixed before (see
Proposition 4.1, for more explicit information). We shall denote by c̄i0,−1 = ci0,−1(βic) and
c̄i0,0 = ci0,0(βic) the former two constants for βi at its critical value βic.

4.1.3 Cauchy Majorant Method

We give an alternative prove of the existence and uniqueness of the solution of (4.8),
holomorphic in Dσi(−1), by Cauchy majorant method (see e.g. [Fo]). A subproduct of
this method is the factorization of a linearly increases in t term from vi(t, p), for i ≥ 1,
similar to equation (4.29) for i = 0:

Theorem 4.5 Assume that βi has been fixed at its critical value, according to (4.34),
for every i ≥ 1 for which (4.28) hold. Then

vi(t, p)� −ηi
α(p)

t+Hi(t, p)

for 0 < ηi = δi + ∆i <∞ and a holomorphic function Hi(t, p) of p in Dσi(−1), bounded
in any closed domain D̄κi(−1) with κi < σi, uniformly in t.
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Proof The collection of terms with exponentially increasing factor in (4.31) can be
written as

e2t

(
ci0,−1 +

∫ t

0

γi−1(s)e−2s ds

)(
1

1 + p
− 1

)
= e2t

(
−Λi +

∫ ∞
t

γi−1(s)e−2s ds

)
p

1 + p

with Λi = 0 at the critical value. We observe that the integral in the complementary
interval [t,∞) = R+\[0, t), remains bounded under the hypothesis (4.28):∣∣∣∣e2t

∫ ∞
t

γi−1(s)e−2s ds

∣∣∣∣ ≤ e2t

∫ ∞
t

∣∣γi−1(s)
∣∣ e−2s ds ≤ δi

2
. (4.35)

The same is true for both sums in (4.31) for (t, p) in compact subsets of R+×Dσi(−1).
For this, the following integration∫ t

0

e−2s(σ + (1− σ)e−2s)n−1ds =
1

2n

1

1− σ
(
1− (σ + (1− σ)e−2t)n

)
results by changing to variable y = e−2s. By (4.33) and (4.32), we have

∞∑
n=1

Ci
n(t) (1 + p)n � cie

−2t

∞∑
n=1

(σ + (1− σ)e−2t)n−1

σn
(1 + p)n

= ciσ
−1e−2t 1 + p

1− (1 + (σ−1 − 1)e−2t) (1 + p)
≡ F i(t, p) (4.36)

and∫ t

0

∞∑
n=1

Γin(s, t) (1 + p)nds � ∆i

1− σi

∞∑
n=1

1

2n

(1 + p)n

σni

(
1− (σi + (1− σi)e−2t)n

)
=

∆i

2(1− σi)
ln

1− (1 + (σ−1
i − 1)e−2t) (1 + p)

1− σ−1
i (1 + p)

≡ Gi(t, p) (4.37)

and these functions are bounded in every closed domain D̄κi(−1) with κi < σi, uniformly
in t ∈ R+.

Only the constant coefficient in (4.31) increases (linearly) with t:∣∣∣∣∫ t

0

(
γi−1(s) + γi0(s)

)
ds

∣∣∣∣ ≤ ∫ t

0

(∣∣γi−1(s)
∣∣+
∣∣γi0(s)

∣∣) ds ≤ (δi + ∆i)t .

Puting all together, yields

(1 + p)ϑi(t, p)� δi
2

(1 + σi) +
(∣∣c̄i0,−1

∣∣+
∣∣c̄i0,0∣∣+ F i(t, p) + (δi + ∆i)t+Gi(t, p)

)
(1 + p)

with ci0,−1 = ci0,−1(βi) and ci0,0 = ci0,0(βi) evaluated at the critical value βic.
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By (4.21),

vi(t, p) =
1

α(p)
ϑi(t, p) =

1 + p

2p3

∞∑
n=−1

cin(t) (1 + p)n =
∞∑
n=0

ain(t) (1 + p)n (4.38)

is majorized (|ain(t)| ≤ Ain(t))

vi(t, p)� −ηi
α(p)

t+H i(t, p) (4.39)

with ηi = δi + ∆i, A
i
n(t) = (n+ 1)(n+ 2)ηi/4 + (1/n!)∂nH i/∂pn(t,−1) and

H i(t, p) =
δi(1 + σi)

4(1− σi)3
− 1

α(p)

(∣∣c̄i0,−1

∣∣+
∣∣c̄i0,0∣∣+ F i(t, p) +Gi(t, p)

)
(4.40)

bounded in any closed domain D̄κi(−1) with κi < σi, uniformly in t. Note that −1/α(p)
has power series in 1 + p with positive coefficients.

�

Proof of Proposition 4.4 – Completion We shall complete the induction step. By
hypothesis, (4.28) holds for each i = 1, . . . , k and vi(t, p) satisfies a majorization relation
(4.39), by Theorem 4.5. This, together with (4.29) and (4.11), imply that ϕj goes to
0 for j = 0, . . . , k, in such way that fk+1(v0, . . . , vk), given by (4.10), remains bounded
in any closed domain D̄κk(−1) with κk < σk, uniformly in t. Since fk+1(v0, . . . , vk) is
holomorphic in Dσk(−1), by Theorem 4.3, Cauchy formula can be used to obtain upper
bounds for its derivatives. By the definition (4.19), this establishes (4.28) for i = k + 1
and completes the proof of this proposition.

�

4.2 Gevrey Estimates

The present subsection is devoted to the Gevrey estimates of {vi(t, p)}, the coefficients
of the formal power series (4.1). The majorant relation (4.39) does not specify how
ηi depends on i and this dependency will be investigate using the system of equations
(4.8).

By Theorems 4.3 and 4.5, vl(t, p) is holomorphic in Dσl(−1) and vl(t, p) + ηl/α(p) is
bounded uniformly in t ∈ R+ for every p ∈ D̄κl(−1) with

· · · < σl+1 ≤ κl < σl ≤ · · · < σ1 ≤ κ0 < σ0 < 1/2 .

To state our results, let (σl)l≥0 and (κl)l≥0 be sequences such that liml→∞ σl = σ∞ > 0
exists (then, liml→∞ κl also exists, let say κ∞ = σ∞) satisfying

σ1 − σ∞ =
∞∑
l=1

[(σl − κl) + (κl − σl+1)] = 2
∞∑
l=1

δ

l∆
, (4.41)
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for some δ > 0 and ∆ > 1. Note that σ1 − σ∞, ∆ and δ are not independent and they
satisfy

δ

2

1

∆− 1
≤ σ1 − σ∞ ≤

δ

2

∆

∆− 1

So, δ goes to 0 if ∆ approaches to 1.

Theorem 4.6 Let
{
vl(t, p)

}
l≥0

be the solution of the system of equations (4.8) with the

initial data
{
vl0(p)

}
l≥0

for
{
βl
}
l≥0

at the critical value
{
βlc
}
l≥0

. Then, there exists a
constant 0 < κ <∞ so that ∣∣vl(t, p)∣∣ ≤ LBlκl (4.42)

holds for every p ∈ D̄κl(−1); the constant B0 depends on σ0 and, for l ≥ 1,

Bl = δA
1

l2+∆
l!s

with s ≥ 1 + 2∆ where ∆ and A is as in (4.41) and Lemma 2.7; for every 0 < σ0 < 1/2,
L = L(t, σ0) > 0 is a linear function of t satisfying

% := max
t≥0

L(t, σ0)

c(t, σ0)
≤ 1

2
(4.43)

where c(t, σ0) = minp∈D̄σ0 (−1) v
0(t, p) is positive and exhibit linear growth in t, by (4.29).

Remark 4.7 Theorem 4.6 implies that the formal power series (4.1) is Gevrey of order
1 + 2∆ where ∆ can be chosen arbitrarily close to 1.

Proof We assume that an estimate similar to (4.42) holds for Nagumo norm of order l
of vl(t, p) (see (2.2), for definition):∥∥vl∥∥

l
:=
∥∥vl∥∥

l,σl
≤ LBlµ

l (4.44)

for l = 0, 1, . . . , i − 1, where µ is a constant related with κ, to be especified later. We
shall establish (4.44) for l = i, assuming, temporarily, that (4.43) holds. To begin with,
we note that Cauchy’s integral formula together with (4.42) and p ∈ D̄κl(−1), yields∣∣vlp(t, p)∣∣ ≤ 1

2π

∮
C

|vl(t, z)|
(|1 + z| − |1 + p|)2 |dz|

≤ L
Bl

σl − κl
µll

for some smooth Jordan curve C over D̄σl(−1) containing p inside. Analogous estimate
has been proven in Lemma 2.5 for Nagumo norm with varying domains:∥∥vlp∥∥l,κj+1

≤ 1

σl − κj+1

∥∥vl∥∥
l
≤ l∆

δ

∥∥vl∥∥
l

(4.45)

holds for l ≤ j. Note that the estimate keeps the order of Nagumo norm unchanged.
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4.2.1 A recursive Relation

We set Cl := l∆Bl/δ = Al!s/l2 for l ≥ 1 and note that such constants satisfy (2.7).
Substituting (4.45) into (4.11), together with property 2. of Nagumo norms and (4.43),
yields

∥∥ϕj∥∥
j,κj+1

≤
j∑

k=1

∥∥∥∥ 1

v0
p

∥∥∥∥k+1

0,κj+1

∑
l1,...,lk≥1:
l1+···+lk=j

∥∥vl1p ∥∥l1,κj+1
· · ·
∥∥vlkp ∥∥lk,κj+1

≤
j∑

k=1

∥∥∥∥ 1

v0
p

∥∥∥∥k+1

0,κ0

∑
l1,...,lk≥1:
l1+···+lk=j

l∆1
δ

∥∥vl1∥∥
l1
· · · l

∆
k

δ

∥∥vlk∥∥
lk

≤ µj

c

j∑
k=1

(
L

c

)k ∑
l1,...,lk≥1:
l1+···+lk=j

Cl1 · · ·Clk

≤ 1

c
Cjµ

j. (4.46)

for every j = 1, 2, . . . , i − 1. By Lemma 2.5 again, it follows analogously for each
j = 1, 2, . . . , i− 1

∥∥ϕjp∥∥j,σj+1
≤ 1

σj+1 − κj+1

∥∥ϕj∥∥
j,κj+1

≤ 1

c

j∆Cj
δ

µj , (4.47)

and (remembering that ϕ0 = −1/v0
p)∥∥ϕ0

p

∥∥
0,σj+1

≤ 1

σ0 − σj+1

∥∥ϕ0
∥∥

0,σ0
≤ 1

c(σ0 − κ1)
. (4.48)

Replacing these bounds in (4.10), yields

∥∥fi(v0, . . . , vi−1)
∥∥
i−1,σi

≤
∥∥vi−1

∥∥
i−1

∥∥ϕ0
p

∥∥
0,σ1

+
i−2∑
j=1

∥∥vi−1−j∥∥
i−1−j

∥∥ϕjp∥∥j,σj+1

+
∥∥v0
∥∥

0,σ0

∥∥ϕi−1
p

∥∥
i−1,σi

≤ 1

c

(
1

(i− 1)∆
+ (i− 2)∆ +

(i− 1)∆B0

δ

)
Ci−1ν

i−1
i−1

≤ 1

c

(
1 +

B0

δ

)
(i− 1)∆Ci−1ν

i−1
i−1 (4.49)

uniformly in t ≥ 0, for every i ≥ 2. In the first inequality we have used property 4. and
(2.3) of Nagumo norms.

To estimate vi(t, p), βi needs to be fixed at its critical value. We have seem that
the exponentially increasing terms in the solution (4.31) of (4.26) are cancelled under
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the condition (4.34) and αvi0 and αfi have expanded in power series around p = −1 to
perform the cancellation. The same cancellation will be exhibited using the first mean
value theorem instead.

By (4.19) and (4.20), we have γi−1(t) = −2fi
∣∣
p=−1

and ci0,−1 = −2vi0(−1) and equation

(4.34) can be conveniently written as

vi0(−1) +

∫ ∞
0

fi(v
0(s,−1), . . . , vi−1(s,−1))e−2s ds = 0 . (4.50)

Moreover, we write the ratio of α ◦ φt and α in both terms of the r.h.s. of (4.16) as

α ◦ φt(p)
α(p)

=
e2t

p2
+R(t, p) (4.51)

where, by (4.17) and (4.18),

R(t, p) = e2t

(
1

(p− e−2t(1 + p))2
− 1

p2

)
=

1 + p

p2

2p− e−2t(1 + p)

(p− e−2t(1 + p))2

is estimates by

‖R‖0,σi
≤ σi + 2σ2

i

(1− σi)4
, (4.52)

uniformly in t ≥ 0. We now apply the first mean value theorem (see e.g. [R]) to vi0 and
fi:

vi0(p) = vi0(−1) + Ai0(1 + p) (4.53)

fi = fi
∣∣
p=−1

+Bi(1 + p)

where

Ai0 =
(
vi0
)′

(−1 + a(1 + p))

Bi =
dfi
dp

∣∣
p=−1+a′(1+p)

for some 0 < a, a′ < 1. Applying property 3. of Nagumo norms together with the fact
that −1 + a(1 + p) ∈ D̄σi(−1) if p ∈ D̄σi(−1), these quantities can be estimated as∥∥Ai0∥∥i ≤ ei

∥∥vi0∥∥i−1,σi∥∥Bi
∥∥
i
≤ ei ‖fi‖i−1,σi

.

In view of (4.50), (4.51) and 4.53), equation (4.16) can be written as

vi(t, p) =
e2t

p2

(
Ai0 (1 + φt(p))−

∫ ∞
t

fi
∣∣
p=−1

e−2s ds+

∫ t

0

Bi (1 + φt−s(p))e
−2s ds

)
+R(t, p)

(
vi0 ◦ φt(p) +

∫ t

0

fi ◦ φt−s(p) ds
)
. (4.54)
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Since, by the first inequality of (4.27), 1 + φt(p) is an O(e−2t) contractive map, it
follows by property 2. of Nagumo norms and an estimation analogous to (4.35) that∥∥∥∥e2t

p2
Ai0 (1 + φt(p))

∥∥∥∥
i

≤
∥∥∥∥e2t

p2
(1 + φt(p))

∥∥∥∥
0,σi

∥∥Ai0∥∥i
≤ eiσi

(1− σi)3

∥∥vi0∥∥i−1,σi
, (4.55)

∥∥∥∥e2t

p2

∫ ∞
t

fi
∣∣
p=−1

e−2s ds

∥∥∥∥
i

≤
∥∥∥∥e2t

p2

∫ ∞
t

e−2s ds

∥∥∥∥
0,σi

‖fi‖i

≤ 1

2(1− σi)2
‖fi‖i−1,σi (4.56)

uniformly in t ∈ R+. Moreover, using∫ t

0

σ

1− σ(1− e−2s)
ds =

σ

1− σ

(
t+

1

2
ln
(
1− σ(1− e−2t)

))
,

we have∥∥∥∥e2t

p2

∫ t

0

Bi (1 + φt−s(p))e
−2s ds

∥∥∥∥
i

≤
∥∥∥∥e2t

p2

∫ t

0

(1 + φt−s(p))e
−2s ds

∥∥∥∥
0,σi

‖Bi‖i

≤ 2t+ ln (1− σi)
2(1− σi)3

eiσi‖fi‖i−1,σi . (4.57)

Lastly, using (4.52), the second line of (4.54) can be estimated as

∥∥∥∥R(t, p)

(
vi0 ◦ φt(p) +

∫ t

0

fi ◦ φt−s(p) ds
)∥∥∥∥

i

≤ ‖R(t, p)‖0,σi

(∥∥vi0 ◦ φt∥∥i +

∫ t

0

‖fi ◦ φt−s‖i ds
)

≤ σi + 2σ2
i

(1− σi)4

(∥∥vi0∥∥i−1,σi
+ t‖fi‖i−1,σi

)
(4.58)

where, by definition (2.2) together with contractivity (4.27),∥∥vi0 ◦ φt∥∥i = sup
p∈Dσi (−1)

di(p)
∣∣vi0 ◦ φt(p)∣∣

≤ sup
p∈Dσi (−1)

di(p)

di(φt(p))

∥∥vi0∥∥i
≤

∥∥vi0∥∥i−1,σi

37



(analogously for ‖fi ◦ φt−s‖i) in view of

sup
p∈Dσi (−1)

di(p)

di(φt(p))
= sup

p∈Dσi (−1)

σi − |1 + p|

σi −
∣∣∣∣ e−2t (1 + p)

1− (1 + p) (1− e−2t)

∣∣∣∣
≤ sup

p∈Dσi (−1)

σi − |1 + p|

σi −
e−2t |1 + p|

1− |1 + p| (1− e−2t)

≤ 1 ,

uniformly in t ∈ R+.
Replacing (4.55)–(4.58) into the nagumo norm of (4.54), we conclude (at criticality)∥∥vi∥∥

i
≤ Di‖vi0‖i−1,σi + Ei‖fi‖i−1,σi (4.59)

where

Di =
eiσi

(1− σi)3 +
σi + 2σ2

i

(1− σi)4

Ei =
1

2(1− σi)2
+
eiσi ln (1− σi)

2(1− σi)3
+

(
eiσi

(1− σi)3
+
σi + 2σ2

i

(1− σi)4

)
t

and the nagumo norms ‖vi0‖i−1,σi and ‖fi‖i−1,σi satisfy, respectively,8

‖vi0‖i−1,σi ≤ L0
Ai!s

′

i2
νi

(see (3.22) and Remark 4.2) and (4.49). Hence

∥∥vi∥∥
i
≤ LBiν

i
i

holds provided

1

Lδ

[
DiL0i

∆−s′
(
ν

µ

)i
i!s
′−s + Ei

(
1 +

B0

2δ

)
i2+∆

(i− 1)2−∆is
1

cµ

]
≤ 1 (4.60)

is satisfied for all t ≥ 0 and i ≥ 2. Condition (4.60) is true if we pick µ > ν large enough
and s ≥ 1 + max(s′, 2∆) (recall that Di and Ei increases with i).

8Since v0 = (u′0)
−1

= y−10 , by Theorem 3.3 of [CM1] all constants in the Gevrey estimate (3.22),
except the holomorphic domain, are preserved by the inverse function theorem. The holomorphic
domain of v0 has been directly estimate from equation (4.6), instead.

38



Remark 4.8 A recursive relation can be set for
∥∥vl∥∥

l
. From equation (4.59), first line

of (4.49), equation (4.47) and second line of (4.46), we have∥∥vi0∥∥i ≤ η0,i∥∥vi∥∥
i
≤ ηi

with

ηi = Diη0,i + Ei

i−1∑
j=0

(j + 1)∆

δ

j∑
k=1

1

ck+1

∑
l1,...,lk≥1:
l1+···+lk=j

l∆1
δ
ηl1 · · ·

l∆k
δ
ηlk .

4.2.2 Setting of Parameters

Verifying (4.44) for l = 0 By Theorem 4.1, v0(t, p) is a holomorphic function in
R+ ×D1(−1). If we consider any σ0 < 1/2, the Maximum Modulus Principle (see e.g.
[H]) tells us that the maximum of |v0(t, p)| , for p ∈ D̄σ0(−1), is attained at some p
at the border of D̄σ0(−1). In the other hand, fixing β0 = 4 in (4.12) and expanding it
around p = −1 (see (4.38), for notation), we see that a0

0(t) = 1/2, a0
1(t) = 3/2 + 2t and

a0
n(t) =

2n+ 1

2
+ (n2 + n)t− 1

2

n−1∑
k=1

k(k + 1)

n− k
(1− e−2t)n−k

for n ≥ 2. So, a
(0)
n (t) > 0 for all n ≥ 0 and t ≥ 0.

From these two facts, it follows that

∥∥v0
∥∥

0
= v0(t, p)

∣∣
1+p=σ0

=
1 + σ0

2(1− σ0)2
+

σ0

(1− σ0)3

[
2t+ ln

(
1− σ0(1− e−2t)

)]
≤ 1 + σ0

2(1− σ0)2
+

σ0

(1− σ0)3
2t := B0L . (4.61)

Estimating c(t, σ0) By the argument after (4.12), v0
p(t, p) 6= 0 in R+ × D̄σ0(−1).

Hence, the Minimum Modulus Principle[H] tells us that the minimum of |v0
p(t, p)|, for

p ∈ D̄σ0(−1), is attained at some p at the border of D̄σ0(−1). Since

v0
p(t, p) =

∞∑
n=0

(n+ 1)a0
n+1(t) (1 + p)n

and a
(0)
n (t) > 0 for all n ≥ 0 and t ≥ 0, we have

min
p∈D̄σ0 (−1)

∣∣v0
p(t, p)

∣∣ = v0
p(t, p)

∣∣
1+p=−σ0
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and

c(t, σ0) =
3− σ0

2(1 + σ0)3
+

1− 2σ0

(1 + σ0)4

{
2t+ ln [1 + σ0(1− e−2t)]

}
+

σ0(1− e−2t)

(1 + σ0)3[1 + σ0(1− e−2t)]

≥ 3− σ0

2(1 + σ0)3
+

1− 2σ0

(1 + σ0)4
2t . (4.62)

Verifying (4.44) for l = 1 By Theorem 4.1, f1(v0) (see expression 3.14) is a holomor-
phic function in R+ × D̄σ0(−1) which, together with (4.48) and property 4. of Nagumo
norms, can be estimate by

‖f1‖1 = σ1

∥∥−1 + v0ϕ0
p

∥∥
0,σ1

≤ σ1 +
σ1B0

c(σ0 − σ1)
.

From this bound, together with (4.59), we conclude that (at criticality)∥∥v1
∥∥

1
≤ D1

∥∥v1
0

∥∥
1

+ E1 ‖f1‖1 ≤ LB1µ

holds provided that

µ ≥ max
t≥0

1

Lδ

[
D1L0ν +

E1

A

(
1 +

σ1B0

σ0 − σ1

)]
. (4.63)

The parameter σ1 is free but we shall fix it after choosing σ0. µ is taken so large that

(4.60), for all i ≥ 2, and 4.63) hold.

Verifying (4.43) Once we have an expression for B0L and have estimated c, it remains
for us to ajust B0 in such way that (4.43) is satisfied. By (4.61) and (4.62), we have

ρ = max
t≥0

L(t, σ0)

c(t, σ0)
≤ 1

B0

max
t≥0

χ(t, σ0)

where

χ =

1 + σ0

2(1− σ0)2
+

2σ0

(1− σ0)3
t

3− σ0

2(1 + σ0)3
+

2(1− 2σ0)

(1 + σ0)4
t

:=
α + βt

γ + δt
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attains its maximum value either at t∗ = 0 (if α/γ > β/δ) or at t∗ =∞ (if α/γ < β/δ).
Hence,

max
t≥0

χ(t, σ0) = max

(
α

γ
,
β

δ

)
≡ χ∗(σ0)

and B0 = B0(σ0) is chosen so that ρ ≤ 1/2 holds for every 0 < σ0 < 1/2:

B0 := 2χ∗(σ0)

Note that β/δ crossover α/γ at σ0 = 0.407252 and χ∗(σ0) is the convex envelop of the
two graphics, shown in the figure below. In this manner, (4.43) is guaranteed and we
set

L(t, σ0) :=
1

2χ∗(σ0)

(
1 + σ0

2(1− σ0)2
+

σ0

(1− σ0)3
2t

)
for every t ∈ R+.

4.2.3 Concluding the Proof

We have established, by induction, the Gevrey estimate:

sup
p∈Dσl (−1)

(dσl(p))
l
∣∣vl(t, p)∣∣ ≡ ‖vl‖l ≤ LBlµ

l , ∀ l ≥ 0 .

Now, we complete the proof applying the same procedure used in the proof of Lemma
3.3. By property 5 of Nagumo norms,∣∣vl(t, p)∣∣ ≤ 1

(σl − ς)l
‖vl‖l ≤ LBlκl

holds for all l ≥ 0 and t ∈ R+, uniformly in D̄ς(0) for some ς < σ∞, with κ = µ/(σ∞−ς),
which concludes the proof of Theorem 4.6.

�
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