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3 The Ising Model

In this chapter, we study the Ising model on Zd , which was introduced informally
in Section 1.4.2. We provide both precise definitions of the concepts involved and
a detailed analysis of the conditions ensuring the existence or absence of a phase
transition in this model, therefore providing full rigorous justification to the discus-
sion in Section 1.4.3. Namely,

• In Section 3.1, the Ising model on Zd is defined, together with various types
of boundary conditions.

• In Section 3.2, several concepts of fundamental importance are introduced,
including: the thermodynamic limit, the pressure and the magnetization.
The latter two quantities are then computed explicitly in the case of the one-
dimensional model (Section 3.3).

• The notion of infinite-volume Gibbs state is given a precise meaning in Sec-
tion 3.4. In Section 3.6, we discuss correlation inequalities, which play a cen-
tral role in the analysis of ferromagnetic systems like the Ising model.

• In Section 3.7, the phase diagram of the model is analyzed in detail. In par-
ticular, several criteria for the presence of first-order phase transitions, based
on the magnetization and the pressure of the model, are introduced in Sec-
tion 3.7.1. The latter are used to prove the existence of a phase transition
when h = 0 (Sections 3.7.2 and 3.7.3) and the absence of a phase transition
when h 6= 0 (Section 3.7.4). A summary with a link to the discussion in the
Introduction is given in Section 3.7.5.

• Finally, in Section 3.10, the reader can find a series of complements to this
chapter, in which a number of interesting topics, related to the core of the
chapter but usually more advanced or specific, are discussed in a somewhat
less precise manner.

We emphasize that some of the ideas and concepts introduced in this chapter
are not only useful for the Ising model, but are also of central importance for sta-
tistical mechanics in general. They are thus fundamental for the understanding of
other parts of the book.

79



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

80 Chapter 3. The Ising Model

3.1 Finite-volume Gibbs distributions

In this section, the Ising model on Zd is defined precisely and some of its basic
properties are established. As a careful reader might notice, some of the definitions
in this chapter differ slightly from those of Chapter 1. This is done for later conve-
nience.

I Finite volumes with free boundary condition. The configurations of the Ising
model in a finite volume ΛbZd with free boundary condition are the elements of
the set

ΩΛ
def= {−1,1}Λ .

A configuration ω ∈ΩΛ is thus of the form ω= (ωi )i∈Λ. The basic random variable
associated to the model is the spin at a vertex i ∈Zd , which is the random variable

σi :ΩΛ→ {−1,1} defined by σi (ω)
def= ωi .

We will often identify a finite setΛwith the graph that contains all edges formed
by nearest-neighbor pairs of vertices ofΛ. We denote the latter set of edges by

EΛ
def= {

{i , j } ⊂Λ : i ∼ j
}

.

To each configuration ω ∈ΩΛ, we associate its energy, given by the Hamiltonian

H ∅
Λ;β,h(ω)

def= −β
∑

{i , j }∈EΛ
σi (ω)σ j (ω)−h

∑
i∈Λ

σi (ω) ,

where β ∈ R≥0 is the inverse temperature and h ∈ R is the magnetic field. The su-
perscript ∅ indicates that this model has free boundary condition: spins in Λ do
not interact with other spins located outside ofΛ.

Definition 3.1. The Gibbs distribution of the Ising model in Λ with free boundary
condition, at parameters β and h, is the distribution onΩΛ defined by

µ∅
Λ;β,h(ω)

def= 1

Z∅
Λ;β,h

exp
(−H ∅

Λ;β,h(ω)
)

.

The normalization constant

Z∅
Λ;β,h

def=
∑

ω∈ΩΛ
exp

(−H ∅
Λ;β,h(ω)

)

is called the partition function in Λwith free boundary condition.

I Finite volumes with periodic boundary condition. We now consider the Ising
model on the torus Tn , defined as follows. Its set of vertices is given by

Vn
def= {0, . . . ,n −1}d ,

and there is an edge between each pair of vertices i = (i1, . . . , id ), j = ( j1, . . . , jd ) such
that

∑d
r=1|(ir − jr ) mod n| = 1; see Figure 3.1 for illustrations in dimensions 1 and

2. We denote by E per

Vn
the set of edges of Tn .

Configurations of the model are now the elements of {−1,1}Vn and have an en-
ergy given by

H per

Vn ;β,h(ω)
def= −β

∑

{i , j }∈E per
Vn

σi (ω)σ j (ω)−h
∑

i∈Vn

σi (ω) .
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3.1. Finite-volume Gibbs distributions 81

Figure 3.1: Left: the one-dimensional torus T12. Right: the two-dimensional
torus T16.

Definition 3.2. The Gibbs distribution of the Ising model in Vn with periodic
boundary condition, at parameters β and h, is the probability distribution on
{−1,1}Vn defined by

µ
per

Vn ;β,h(ω)
def= 1

Zper

Vn ;β,h

exp
(−H per

Vn ;β,h(ω)
)

.

The normalization constant

Zper

Vn ;β,h
def=

∑
ω∈ΩVn

exp
(
−H per

Vn ;β,h(ω)
)

is called the partition function in Vn with periodic boundary condition.

I Finite volumes with configurations as boundary condition. It will turn out to
be useful to consider the Ising model on the full lattice Zd , but with configurations
which are frozen outside a finite set.

Let us thus consider configurations of the Ising model on the infinite lattice Zd ,
that is, elements of

Ω
def= {−1,1}Z

d
.

Fixing a finite set Λb Zd and a configuration η ∈Ω, we define a configuration of
the Ising model inΛwith boundary condition η as an element of the finite set

Ω
η

Λ

def= {
ω ∈Ω : ωi = ηi , ∀i 6∈Λ}

.

The energy of a configuration ω ∈Ωη

Λ
is defined by

HΛ;β,h(ω)
def= −β

∑

{i , j }∈E b
Λ

σi (ω)σ j (ω)−h
∑
i∈Λ

σi (ω) , (3.1)

where we have introduced

E b
Λ

def= {
{i , j } ⊂Zd : {i , j }∩Λ 6=∅, i ∼ j

}
. (3.2)

Note that E b
Λ differs from EΛ by the addition of all the edges connecting vertices

insideΛ to their neighbors outsideΛ.
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82 Chapter 3. The Ising Model

Figure 3.2: The model in a boxΛ (shaded) with + boundary condition.

Definition 3.3. The Gibbs distribution of the Ising model in Λ with boundary con-
dition η, at parameters β and h, is the probability distribution onΩη

Λ
defined by

µ
η

Λ;β,h(ω)
def= 1

Zη
Λ;β,h

exp
(−HΛ;β,h(ω)

)
.

The normalization constant

Zη
Λ;β,h

def=
∑

ω∈Ωη
Λ

exp
(−HΛ;β,h(ω)

)

is called the partition function with η-boundary condition.

It will be seen later (in particular in Chapter 6) why defining µη
Λ;β,h on configura-

tions in infinite volume is convenient (here, we could as well have defined it onΩΛ
and included the effect of the boundary condition in the Hamiltonian).

Two boundary conditions play a particularly important role in the analysis of

the Ising model: the + boundary condition η+, for which η+i
def= +1 for all i (see

Figure 3.2), and the − boundary condition η−, similarly defined by η−i
def= −1 for

all i . The corresponding Gibbs distributions will be simply denoted by µ+
Λ;β,h and

µ−
Λ;β,h ; similarly, we will writeΩ+

Λ,Ω−
Λ for the corresponding sets of configurations.

On the notations used below. In the following, we will use the symbol # to denote
a generic type of boundary condition. For instance, Z#

Λ;β,h can denote Z∅
Λ;β,h , Zper

Λ;β,h

or Zη
Λ;β,h . In the case of periodic boundary condition, Λ will always implicitly be

assumed to be a cube (see below).

Following the custom in statistical physics, expectation of a function f with re-
spect to a probability distribution µ will be denoted by a bracket: 〈 f 〉µ. When the
distribution is identified by indices, we will apply the same indices to the bracket.
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3.2. Thermodynamic limit, pressure and magnetization 83

For example, expectation of a function f under µ#
Λ;β,h will be denoted by

〈 f 〉#
Λ;β,h

def=
∑

ω∈Ω#
Λ

f (ω)µ#
Λ;β,h(ω) .

We will often use 〈·〉#
Λ;β,h and µ#

Λ;β,h(·) interchangeably.

3.2 Thermodynamic limit, pressure and magnetization

3.2.1 Convergence of subsets

It is well known that various statements in probability theory, such as the strong
law of large numbers or the ergodic theorem, take on a much cleaner form when
considering infinite samples. For the same reason, it is convenient to have some
notion of Gibbs distribution for the Ising model on the whole of Zd . The theory
describing Gibbs measures of infinite lattice systems will be discussed in detail in
Chapter 6.

In this chapter, we adopt a more elementary point of view, using a procedure
which consists in approaching an infinite system by a sequence of growing sets.
This procedure, crucial for a proper description of thermodynamics and phase
transitions, is called the thermodynamic limit.

To define the Ising model on the whole lattice Zd (one often says “in infinite
volume”), the thermodynamic limit will be considered along sequences of finite
subsetsΛn bZd which converge toZd , denoted byΛn ↑Zd , in the sense that

1. Λn is increasing: Λn ⊂Λn+1,

2. Λn invades Zd :
⋃

n≥1Λn =Zd .

Sometimes, in order to control the influence of the boundary condition and of the
shape of the box on thermodynamic quantities, it will be necessary to impose a
further regularity property on the sequenceΛn . We will say that a sequenceΛn ↑Zd

converges toZd in the sense of van Hove, which we denote byΛn ⇑Zd , if and only
if

lim
n→∞

|∂inΛn |
|Λn |

= 0, (3.3)

where ∂inΛ
def= {

i ∈Λ : ∃ j 6∈Λ, j ∼ i
}
. The simplest sequence to satisfy this condition

is the sequence

B(n)
def= {−n, . . . ,n}d .

Exercise 3.1. Show that B(n) ⇑Zd . Give an example of a sequenceΛn that converges
to Zd , but not in the sense of van Hove.

3.2.2 Pressure

The partition functions introduced above play a very important role in the theory,
in particular because they give rise to the pressure of the model.

Definition 3.4. The pressure in Λb Zd , with boundary condition of the type #, is
defined by

ψ#
Λ(β,h)

def= 1

|Λ| logZ#
Λ;β,h .
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84 Chapter 3. The Ising Model

Exercise 3.2. Show that, for all ΛbZd , all β≥ 0 and all h ∈R,

ψ∅
Λ

(β,h) =ψ∅
Λ

(β,−h) , ψ
per

Λ
(β,h) =ψper

Λ
(β,−h) , ψ+

Λ(β,h) =ψ−
Λ(β,−h) .

The following simple observation will play an important role in the sequel.

Lemma 3.5. For each type of boundary condition #, (β,h) 7→ψ#
Λ(β,h) is convex.

Proof. We consider ψ
η

Λ
(β,h), but the other cases are similar. Let α ∈ [0,1].

Since HΛ;β,h is an affine function of the pair (β,h), Hölder’s inequality (see Ap-
pendix B.1.1) yields

Zη
Λ;αβ1+(1−α)β2,αh1+(1−α)h2

=
∑

ω∈Ωη
Λ

e−αHΛ;β1,h1 (ω)−(1−α)HΛ;β2,h2 (ω)

≤
( ∑

ω∈Ωη
Λ

e−HΛ;β1,h1 (ω)
)α( ∑

ω∈Ωη
Λ

e−HΛ;β2,h2 (ω)
)(1−α)

.

Therefore, ψη

Λ
is convex:

ψ
η

Λ

(
αβ1 + (1−α)β2,αh1 + (1−α)h2

)≤αψη

Λ
(β1,h1)+ (1−α)ψη

Λ
(β2,h2) .

Of course, the finite-volume pressure ψ#
Λ depends on Λ and on the boundary con-

dition used. However, as the following theorem shows, when Λ is so large that
|Λ|À |∂Λ|, the boundary condition and the shape ofΛ only provide negligible cor-
rections: there exists a function ψ(β,h) such that

ψ#
Λ(β,h) =ψ(β,h)+O(|∂Λ|/|Λ|) .

ψ(β,h) then provides a better candidate for the corresponding thermodynamic po-
tential, since the latter does not depend on the “details” of the observed system,
such as its shape.

Theorem 3.6. In the thermodynamic limit, the pressure

ψ(β,h)
def= lim

Λ⇑Zd
ψ#
Λ(β,h)

is well defined and independent of the sequence Λ ⇑Zd and of the type of boundary
condition. Moreover, ψ is convex (as a function on R≥0 ×R) and is even as a function
of h.

Proof. I Existence of the limit. We start by proving convergence in the case of free
boundary condition. The proof is done in two steps. We will first show existence of
the limit

lim
n→∞ψ

∅
Dn

(β,h) ,

where Dn
def= {1,2, . . . ,2n}d . After that, we extend the convergence to any sequence

Λn ⇑Zd . Since the pair (β,h) is fixed, we will omit it from the notations most of the
time, until the end of the proof.

The pressure associated to the box Dn+1 will be shown to be close to the one
associated to the box Dn . Indeed, let us decompose Dn+1 into 2d disjoint translates

of Dn , denoted by D (1)
n , . . . ,D (2d )

n :
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Figure 3.3: A cube Dn+1 and its partition into 2d translates of Dn . The inter-
action between different sub-boxes is denoted by Rn (ω).

The energy of ω in Dn+1 can be written as

H ∅
Dn+1

=
2d∑

i=1
H ∅

D(i )
n
+Rn ,

where Rn represents the energy of interaction between pairs of spins that belong
to different sub-boxes. Since each face of Dn+1 contains (2n+1)d−1 points, we have
|Rn(ω)| ≤βd (2n+1)d−1. To obtain an upper bound on the partition function, we can

write H ∅
Dn+1

≥−βd (2n+1)d−1 +∑2d

i=1 H ∅
D(i )

n
, which yields

Z∅
Dn+1

≤ eβd2(n+1)(d−1) ∑
ω∈ΩDn+1

2d∏
i=1

exp
(−H ∅

D(i )
n

(ω)
)

.

Splitting the sum over ω ∈ Dn+1 into 2d sums over ω(i ) ∈ D (i )
n ,

∑
ω∈ΩDn+1

2d∏
i=1

exp
(−H ∅

D(i )
n

(ω)
)=

2d∏
i=1

∑
ω(i )∈Ω

D(i )
n

exp
(−H ∅

D(i )
n

(ω(i ))
)=

(
Z∅

Dn

)2d

,

where we have used the fact that Z∅
D(i )

n
= Z∅

Dn
for all i . A lower bound can be obtained

in a similar fashion, leading to

e−βd2(n+1)(d−1)
(
Z∅

Dn

)2d

≤ Z∅
Dn+1

≤ eβd2(n+1)(d−1)
(
Z∅

Dn

)2d

.

After taking the logarithm, dividing by |Dn+1| = 2d(n+1) and taking n large enough,

|ψ∅
Dn+1

−ψ∅
Dn

| ≤βd 2−(n+1) .

This implies that ψDn is a Cauchy sequence: for all n ≤ m,

|ψ∅
Dm

−ψ∅
Dn

| ≤βd
m∑

k=n+1
2−k =βd(2−n −2−m) .

Therefore, limn→∞ψ∅
Dn

exists; we denote it by ψ.
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86 Chapter 3. The Ising Model

Let us now consider an arbitrary sequence Λn ⇑ Zd . We fix some integer k
and consider a partition of Zd into adjacent disjoint translates of Dk . For each

n, consider a minimal covering of Λn by elements D ( j )
k of the partition, and let

[Λn]
def= ⋃

j D ( j )
k :

Λn

2k

[Λn]

We use the estimate

|ψ∅
Λn

−ψ| ≤ |ψ∅
Λn

−ψ∅
[Λn ]|+ |ψ∅

[Λn ] −ψ
∅
Dk

|+ |ψ∅
Dk

−ψ| . (3.4)

Fix ε> 0. Since ψ∅
Dk

→ψ when k →∞, there exists k0, depending on β and ε, such

that |ψ∅
Dk

−ψ| ≤ ε/3 for all k ≥ k0. We then compute ψ∅
[Λn ] by writing

H ∅
[Λn ] =

∑
j

H ∅
D

( j )
k

+Wn ,

where |Wn | ≤ β |[Λn ]|
|Dk | d(2k )d−1 = βd 2−k |[Λn]|. Therefore, there exists k1 (also de-

pending on β and ε) such that

|ψ∅
[Λn ] −ψ

∅
Dk

| ≤βd2−k < ε/3,

for all k ≥ k1. Let us then fix k ≥ max{k0,k1}. Let us write∆n
def= [Λn]\Λn . We observe

that ∣∣H ∅
Λn

−H ∅
[Λn ]

∣∣≤ (2dβ+|h|) |∆n | .
Therefore,

Z∅
[Λn ] =

∑
ω∈Ω[Λn ]

e−H ∅
[Λn ](ω) ≤

∑
ω∈ΩΛn

e−H ∅
Λn

(ω) ∑
ω′∈Ω∆n

e(2dβ+|h|) |∆n |

= e(2dβ+|h|+log2) |∆n | Z∅
Λn

.

Proceeding similarly to get a lower bound and observing that ∆n contains at most
|∂inΛn ||Dk | vertices, this yields

∣∣logZ∅
Λn

− logZ∅
[Λn ]

∣∣≤ |∂inΛn ||Dk |
(
2dβ+|h|+ log2

)
. (3.5)

Since

1 ≤ |[Λn]|
|Λn |

≤ 1+ |∂inΛn ||Dk |
|Λn |
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and since ψ∅
Λ

is uniformly bounded (for example, by 2dβ+ |h| + log2), it follows
from (3.3) and (3.5) that

|ψ∅
Λn

−ψ∅
[Λn ]| ≤ ε/3,

for all n large enough. Combining all these estimates, we conclude from (3.4) that,
when n is sufficiently large,

|ψ∅
Λn

−ψ| ≤ ε .

(An alternative proof of convergence, using a subadditivity argument, is proposed
in Exercise 3.3.)

I Independence of boundary condition. Let Λb Zd , η ∈Ω and ω ∈ΩΛ. Denote by
ω′ the configuration in Ωη

Λ
coinciding with ω inside Λ. Then, |HΛ(ω′)−H ∅

Λ
(ω)| ≤

2dβ|∂inΛ|. This observation implies that

e−β2d |∂inΛ| Z∅
Λ
≤ Zη

Λ
≤ eβ2d |∂inΛ| Z∅

Λ
.

Applying this to each Λn and using (3.3) shows that limΛn⇑Zd ψ
η

Λn
exists and coin-

cides with ψ. A completely similar argument, comparing Z∅
Vn

and Zper

Vn
, shows that

limn→∞ψ
per

Vn
=ψ.

I Convexity. Since (β,h) 7→ψ#
Λ(β,h) is convex (Lemma 3.5), its limit Λ ⇑Zd is also

convex (Exercise B.3).

I Symmetry. The fact that h 7→ψ(β,h) is even is a direct consequence of the above
and Exercise 3.2.

The following exercise provides an alternative proof for the existence of the
pressure (along a specific sequence of boxes), using a subadditivity argument. [1]

Exercise 3.3. Let R be the set of all parallelepipeds of Zd , that is sets of the form
Λ= [a1,b1]× [a2,b2]×·· ·× [ad ,bd ]∩Zd .

1. By writing σiσ j = (σiσ j − 1)+ 1, express the Hamiltonian as H ∅
Λ

= H̃ ∅
Λ

−
β|EΛ|, and observe that, for any disjoint sets Λ1,Λ2 bZd ,

H̃ ∅
Λ1∪Λ2

≥ H̃ ∅
Λ1

+H̃ ∅
Λ2

.

Conclude that
Z̃∅
Λ1∪Λ2

≤ Z̃∅
Λ1

Z̃∅
Λ2

. (3.6)

2. Use (3.6) and Lemma B.6 to show existence of limn→∞ 1
|Λn | log Z̃∅

Λn
along any

sequence Λn ↑Zd withΛn ∈R for all n.

3.2.3 Magnetization

As we already emphasized in the previous chapters, another quantity of central im-
portance is the magnetization density inΛbZd , which is the random variable

mΛ
def= 1

|Λ|MΛ ,

where MΛ
def= ∑

i∈Λσi is the total magnetization. We also define, for anyΛbZd ,

m#
Λ(β,h)

def= 〈mΛ〉#
Λ;β,h .



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

88 Chapter 3. The Ising Model

As can be easily checked,

m#
Λ(β,h) =

∂ψ#
Λ

∂h
(β,h) . (3.7)

Exercise 3.4. Check that, more generally, the cumulant generating function asso-
ciated to MΛ (see Appendix B.8.3) can be expressed as

log〈e t MΛ〉#
Λ;β,h = |Λ|(ψ#

Λ(β,h + t )−ψ#
Λ(β,h)

)
.

Deduce that the r th cumulant of MΛ is given by

cr (MΛ) = |Λ|
∂rψ#

Λ

∂hr (β,h) .

The observation made in the previous exercise explains the important role
played by the pressure, a fact that might surprise a reader with little familiarity with
physics; after all, the partition function is just a normalizing factor. Indeed, we ex-
plain in Appendix B.8.3 that the cumulant generating function of a random variable
encodes all the information about its distribution. In view of the central importance
of the magnetization in characterizing the phase transition, as explained in Chap-
ters 1 and 2, the pressure should hold precious information about the occurrence of
a phase transition in the model. ¦

It will turn out to be important to determine whether (3.7) still holds in the ther-
modynamic limit. There are really two issues here: on the one hand, one has to

address the existence of limΛ⇑Zd
∂ψ#

Λ
∂h (β,h) and whether the limit depends on the

chosen boundary condition; on the other hand, there is also the problem of inter-
changing the thermodynamic limit and the differentiation with respect to h, that
is, to verify whether it is true that

lim
Λ⇑Zd

∂ψ#
Λ

∂h
?= ∂

∂h
lim
Λ⇑Zd

ψ#
Λ = ∂ψ

∂h
.

These issues are intimately related to the differentiability of the pressure as a func-
tion of h. This is a delicate matter, which will be investigated in Section 3.7. Nev-
ertheless, partial answers can already be deduced from the convexity properties of
the pressure.

For instance, the one-sided derivatives of h 7→ψ(β,h),

∂ψ

∂h− (β,h)
def= lim

h′↑h

ψ(β,h′)−ψ(β,h)

h′−h
,

∂ψ

∂h+ (β,h)
def= lim

h′↓h

ψ(β,h′)−ψ(β,h)

h′−h
,

exist everywhere (by item 1 of Theorem B.12) and are respectively left- and right-
continuous (by item 5). Of course, the pressure will be differentiable with respect
to h if and only if these two one-sided derivatives coincide. It is thus natural to
introduce, for each β, the set

Bβ
def= {

h ∈R : ψ(β, ·) is not differentiable at h
}

= {
h ∈R : ∂ψ

∂h− (β,h) 6= ∂ψ
∂h+ (β,h)

}
.

It follows from item 6 of Theorem B.12 that, for each β, the set Bβ is at most count-
able. On the complement of this set, one can answer the question raised above.
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Corollary 3.7. For all h 6∈Bβ, the average magnetization density

m(β,h)
def= lim

Λ⇑Zd
m#
Λ(β,h)

is well defined, independent of the sequence Λ ⇑ Zd and of the boundary condition
and satisfies

m(β,h) = ∂ψ

∂h
(β,h) . (3.8)

Moreover, the function h 7→ m(β,h) is non-decreasing on R\Bβ and is continuous at
every h 6∈Bβ. It is however discontinuous at each h ∈Bβ: for any h ∈Bβ,

lim
h′↓h

m(β,h′) = ∂ψ
∂h+ (β,h) , lim

h′↑h
m(β,h′) = ∂ψ

∂h− (β,h) . (3.9)

In particular, the spontaneous magnetization

m∗(β)
def= lim

h↓0
m(β,h)

is always well defined.

Proof. When h 6∈Bβ,

∂ψ

∂h
(β,h) = ∂

∂h
lim
Λ⇑Zd

ψ#
Λ(β,h) = lim

Λ⇑Zd

∂

∂h
ψ#
Λ(β,h) = lim

Λ⇑Zd
m#
Λ(β,h) ,

which proves (3.8), the existence of the thermodynamic limit of the magnetiza-
tion density and the fact that it depends neither on the boundary condition nor
on the sequence of volumes. Above, the second equality follows from item 7 of
Theorem B.12 and the third one from (3.7).

The monotonicity and continuity of h 7→ m(β,h) onR\Bβ follow from (3.8) and
items 4 and 5 of Theorem B.12.

Suppose now that h ∈ Bβ and let (hk )k≥1 be an arbitrary sequence in R \Bβ

such that hk ↓ h (there are always such sequences, since Bβ is at most countable).

By (3.8), ∂ψ
∂h+ (β,hk ) = m(β,hk ) for all k. The claim (3.9) thus follows from (3.8) and

item 5 of Theorem B.12.

3.2.4 A first definition of phase transition

The above discussion shows that the average magnetization density is discontinu-
ous precisely when the pressure is not differentiable in h. This leads to the following

Definition 3.8. The pressure ψ exhibits a first-order phase transition at (β,h) if
h 7→ψ(β,h) fails to be differentiable at that point.

Later, we will introduce another notion of first-order phase transition, of a more
probabilistic nature. Determining whether phase transitions occur or not, and at
which values of the parameters, is one of the main objectives of this chapter.
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3.3 The one-dimensional Ising model

Before pursuing with the general case, we briefly discuss the one-dimensional Ising
model, for which explicit computations are possible.

Theorem 3.9. (d = 1) For all β ≥ 0 and all h ∈ R, the pressure ψ(β,h) of the one-
dimensional Ising model is given by

ψ(β,h) = log
{

eβ cosh(h)+
√

e2β cosh2(h)−2sinh(2β)
}

. (3.10)

The explicit expression (3.10) shows that h 7→ψ(β,h) is differentiable (real-analytic
in fact) everywhere, for all β≥ 0, thus showing that Bβ =∅ when d = 1.

h h

Figure 3.4: The pressure h 7→ ψ(β,h) of the one-dimensional Ising model,
analytic in h at all temperature (β= 0.8 on the left, β= 2 on the right).

Consequently, as seen in Corollary 3.7, the average magnetization density m(β,h)
is given by

m(β,h) = ∂ψ

∂h
(β,h) , ∀h ∈R .

h

+1

−1

h

+1

−1

Figure 3.5: The average magnetization density m(β,h) of the one-
dimensional Ising model (for the same values of β as in Figure 3.4).

Since h 7→ψ(β,h) is analytic, its derivative h 7→ m(β,h) is also analytic, in particu-
lar continuous. Therefore, m∗(β) = limh↓0 m(β,h) = m(β,0). But, since (see Exer-

cise 3.2) ψ(β,h) = ψ(β,−h), we get ∂ψ
∂h (β,0) = 0. This shows that the spontaneous

magnetization of the one-dimensional Ising model is zero at all temperatures:

m∗(β) = 0, ∀β> 0.

In particular, the model exhibits paramagnetic behavior at all non-zero tempera-
tures (remember the discussion in Section 1.4.3). We will provide an alternative
proof of this fact in Section 3.7.3.



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

3.3. The one-dimensional Ising model 91

Only in the limit β → ∞ does ψ(β,h) become non-differentiable at h = 0, as
seen in the following exercise.

Exercise 3.5. Using (3.10), compute m(β,h). Check that

lim
h→±∞

m(β,h) =±1, ∀β≥ 0,

lim
β→∞

m(β,h) =





+1 if h > 0,

0 if h = 0,

−1 if h < 0.

Proof of Theorem 3.9: As seen in Theorem 3.6, the pressure is independent of the
choice of boundary condition and of the sequence of volumes Λ ⇑ Z. The most
convenient choice is to work on the torus Tn , that is, to use Vn = {0, . . . ,n −1} with
periodic boundary conditions; see Figure 3.1 (left). The advantage of this particular
choice is that Zper

Vn ;β,h can be written as the trace of a 2×2 matrix. Indeed, writing
ωn ≡ω0,

Zper

Vn ;β,h =
∑

ω∈ΩVn

e
−H per

Vn ;β,h (ω)

=
∑

ω0=±1
· · ·

∑
ωn−1=±1

n−1∏
i=0

eβωiωi+1+hωi

=
∑

ω0=±1
· · ·

∑
ωn−1=±1

n−1∏
i=0

Aωi ,ωi+1 ,

where the numbers A+,+ = eβ+h , A+,− = e−β+h , A−,+ = e−β−h and A−,− = eβ−h can
be arranged in the form of a matrix, called the transfer matrix:

A
def=

(
eβ+h e−β+h

e−β−h eβ−h

)
. (3.11)

The useful observation is that Zper

Vn ;β,h can now be interpreted as the trace of the nth

power of A:
Zper

Vn ;β,h =
∑

ω0=±1
(An)ω0,ω0 = Tr(An) .

A straightforward computation shows that the eigenvaluesλ+ andλ− of A are given
by

λ± = eβ cosh(h)±
√

e2β cosh2(h)−2sinh(2β) .

Writing A = BDB−1, with D = (λ+ 0
0 λ−

)
, and using the fact that Tr(G H) = Tr(HG), we

get
Zper

Vn ;β,h = Tr(An) = Tr(BDnB−1) = Tr(Dn) =λn
++λn

− .

Since λ+ >λ−, this givesψ(β,h) = logλ+ and (3.10) is proved. (An interested reader
with some familiarity with discrete-time, finite-state Markov chains can find some
additional information on this topic in Section 3.10.4.)

When h = 0, there exist several simple ways of computing the pressure of the
one-dimensional Ising model: two are proposed in the following exercise and an-
other one will be proposed in Exercise 3.26.
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Exercise 3.6. (Assuming h = 0.)

1. Configurations can be characterized by the collection of edges {i , i + 1} such
that ωi 6=ωi+1. What is the contribution of a configuration with k such edges?
Use that to compute the pressure.

2. Express the partition function in terms of the variables (ω1,τ1, . . . ,τn−1), where
τi =ωi−1ωi . Use this to compute the pressure.

Hint: since this does not affect the end result, one should choose a boundary condi-
tion that simplifies the analysis. We recommend using free boundary condition.

With an explicit analytic expression for the pressure, we can extract information
on the typical values of the magnetization density in large finite boxes. We will only
consider the case h = 0; the extension to an arbitrary magnetic field is left as an
exercise.

A consequence of the next theorem is that mΛn concentrates on 0 underµ#
Λn ;β,0,

as n →∞, for any type of boundary condition.

Theorem 3.10. (d = 1) Let 0 < β < ∞ and consider any sequence Λn ⇑ Z, with an
arbitrary boundary condition #. For all ε> 0, there exists c = c(β,ε) > 0 such that, for
large enough n,

µ#
Λn ;β,0

(
mΛn 6∈ (−ε,ε)

)≤ e−c|Λn | . (3.12)

Proof of Theorem 3.10: We start by writing

µ#
Λn ;β,0

(
mΛn 6∈ (−ε,ε)

)=µ#
Λn ;β,0(mΛn ≥ ε)+µ#

Λn ;β,0(mΛn ≤−ε) ,

These two terms can be studied in the same way. The starting point is to use Cher-
nov’s Inequality (B.19): for all h ≥ 0,

µ#
Λn ;β,0(mΛn ≥ ε) ≤ e−hε|Λn |〈ehmΛn |Λn |〉#

Λn ;β,0 .

Since 〈ehmΛn |Λn |〉#
Λn ;β,0 = Z#

Λn ;β,h/Z#
Λn ;β,0, we have

limsup
n→∞

1

|Λn |
logµ#

Λn ;β,0(mΛn ≥ ε) ≤ lim
n→∞

(
ψ#
Λn

(β,h)−ψ#
Λn

(β,0)
)−hε

= Iβ(h)−hε ,

where Iβ(h)
def= ψ(β,h)−ψ(β,0). Since h ≥ 0 was arbitrary, we can minimize over the

latter:

limsup
n→∞

1

|Λn |
logµ#

Λn ;β,0(mΛn ≥ ε) ≤−sup
h≥0

{hε− Iβ(h)} . (3.13)

In order to prove that µ#
Λn ;β(mΛn ≥ ε) decays exponentially fast in n, one must es-

tablish that suph≥0{hε− Iβ(h)} > 0. Remember that the explicit expression for ψ

provided by Theorem 3.9 is real-analytic in h. Moreover, Iβ(0) = 0 and, if I ′
β
= ∂

∂h Iβ,

then I ′
β

(0) = 0 and I ′
β

(h) → 1 as h → ∞, as was seen in Exercise 3.5. Therefore,

for each 0 < ε < 1, there exists some h∗ > 0, depending on ε and β, such that
suph≥0{hε− Iβ(h)} = h∗ε− Iβ(h∗) > 0 (see Figure 3.6). This proves (3.12).
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h

Iβ(h)

hε

p
h∗

Figure 3.6: A picture showing the graphs of h 7→ Iβ(h) =ψ(β,h)−ψ(β,0) and
h 7→ hε, on which it is clear that suph≥0{hε− Iβ(h)} > 0 as soon as ε> 0.

Exercise 3.7. Proceeding as above, show that, under µ#
Λn ;β,h with h 6= 0, mΛn con-

verges to m(β,h) as n →∞ (in the same sense as in (3.12)), for any boundary condi-
tion.

As explained above, the pressure contains a lot of information on the magneti-
zation density. We will see in the following sections that smoothness of the pressure
also guarantees uniqueness of the infinite-volume Gibbs state.

As we have seen in this section, explicitly computing the pressure yields useful
information on the system. Unfortunately, computing the pressure becomes much
more difficult, if at all possible, in higher dimensions. In fact, in spite of much
effort, the only known results are for the two-dimensional Ising model with h = 0.
In the latter case, Onsager determined, in a celebrated work, the explicit expression
for the pressure:

ψ(β,0) = log2+ 1

8π2

∫ 2π

0

∫ 2π

0
log

{
(cosh(2β))2 − sinh(2β)(cosθ1 +cosθ2)

}
dθ1dθ2 .

(3.14)
If we want to gain some understanding of the behavior of the Ising model on Zd ,
d ≥ 2, other approaches are therefore required. This will be our main focus in the
remainder of this chapter.

3.4 Infinite-volume Gibbs states

The pressure only provides information about the thermodynamical behavior of
the system in large volumes. If one is interested in the statistical properties of gen-
eral observables, such as the fluctuations of the magnetization density in a finite
region or the correlations between far apart spins, one needs to understand the
behavior of the Gibbs distribution µ#

Λ;β,h in large volumes.

One way of doing is to define infinite-volume Gibbs measures by taking some
sequenceΛn ↑Zd and by considering the accumulation points (if any) of sequences
of the type (µηn

Λn ;β,h)n≥1. This is possible and will be done in detail in Chapter 6,

by introducing a suitable notion of convergence for sequences of probability mea-
sures. Such an approach necessitates, however, rather abstract topological and
measure-theoretic notions. In the present chapter, we avoid this, by following a
more hands-on approach: a state (in infinite volume) will be identified with an
assignment of an average value to each local function, that is, to each observable
whose value only depends on finitely many spins.
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Definition 3.11. A function f : Ω → R is local if there exists ∆ b Zd such that
f (ω) = f (ω′) as soon asω and ω′ coincide on∆. The smallest 1such set ∆ is called the
support of f and denoted by supp( f ).

For example, the value taken by the spin at the origin, σ0, or the magnetization
density in a set Λb Zd , mΛ = 1

|Λ|
∑

i∈Λσi , are local functions with supports given
respectively by {0} andΛ.

Remark 3.12. In the sequel, we will occasionally make the following mild abuse of
notation: if f : Ω→ R is a local function and ∆ ⊃ supp( f ), then, for any ω′ ∈ Ω∆,
f (ω′) is defined as the value of f evaluated at any configuration ω ∈ Ω such that
ωi =ω′

i for all i ∈∆. (Clearly, that value does not depend on the choice of ω.) ¦

Definition 3.13. An infinite-volume state (or simply a state) is a mapping associ-
ating to each local function f a real number 〈 f 〉 and satisfying:

Normalization: 〈1〉 = 1.

Positivity: If f ≥ 0, then 〈 f 〉 ≥ 0.

Linearity: For any λ ∈R, 〈 f +λg 〉 = 〈 f 〉+λ〈g 〉.

The number 〈 f 〉 is called the average of f in the state 〈·〉.

Definition 3.14. Let Λn ↑Zd and (#n)n≥1 be a sequence of boundary conditions. The
sequence of Gibbs distributions (µ#n

Λn ;β,h)n≥1 is said to converge to the state 〈·〉 if and

only if
lim

n→∞〈 f 〉#n
Λn ;β,h = 〈 f 〉 ,

for every local function f . The state 〈·〉 is then called a Gibbs state (at (β, h)).

We simply write, as a shorthand,

〈·〉 = lim
n→∞〈·〉#n

Λn ;β,h

to indicate that 〈·〉#n
Λn ;β,h converges to 〈·〉.

The above notion of convergence is natural. Indeed, from a thermodynamical
perspective, it is expected that the properties of large systems at equilibrium should
be well approximated by those of the corresponding infinite systems. In particular,
finite-size effects, such as those resulting from the macroscopic shape of the system,
should not affect local observations made far from the boundary of the system. The
notion of convergence stated above corresponds precisely to a formalization of this
principle, by saying that the measurement of a local quantity in a large system, corre-
sponding to 〈 f 〉#n

Λn ;β,h , is well approximated by the corresponding measurement 〈 f 〉
in the infinite system. This is discussed in a more precise manner in Section 3.10.8. ¦

Remark 3.15. The reader familiar with functional analysis will probably have no-
ticed that, using the Riesz–Markov–Kakutani representation theorem, the average

1The reason one can speak about the smallest such set is the following observation: if a function f is
characterized by (ωi )i∈∆1 and is also characterized by (ωi )i∈∆2 , then it is characterized by (ωi )i∈∆1∩∆2 .
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〈 f 〉 of a local function f in a state 〈·〉 can always be seen as the expectation of f

under some probability measure µ (on {+1,−1}Z
d

):

〈 f 〉 =
∫

f dµ .

We are mostly interested in states 〈·〉 that can be constructed as limits of finite-
volume Gibbs distributions: 〈·〉 = limn→∞〈·〉ηn

Λn ;β,h . We will see that, in this case, the

corresponding measureµ coincides with the weak limit of the probability measures
µ
ηn

Λn ;β,h :

µ
ηn

Λn ;β,h ⇒µ .

This will be explained in Chapter 6, where the necessary framework for weak con-

vergence of probability measures on {+1,−1}Z
d

will be introduced. ¦
Since states are defined on the infinite lattice, it is natural to distinguish those

that are translation invariant. The translation by j ∈ Zd , θ j : Zd → Zd is defined
by

θ j i
def= i + j .

Translations can naturally be made to act on configurations: if ω ∈Ω, then θ jω is
defined by

(θ jω)i
def= ωi− j . (3.15)

Definition 3.16. A state 〈·〉 is translation invariant if 〈 f ◦θ j 〉 = 〈 f 〉 for every local
function f and for all j ∈Zd .

The first important question is: can Gibbs states be constructed for the Ising
model with parameters (β,h)? The following theorem shows that the constant-spin
boundary conditions η+ and η− can be used to construct two states which will play
a central role in the sequel.

Theorem 3.17. Let β≥ 0 and h ∈ R. Along any sequence Λn ↑Zd , the finite-volume
Gibbs distributions with +- or − boundary condition converge to infinite-volume
Gibbs states:

〈·〉+β,h = lim
n→∞〈·〉+Λn ;β,h , 〈·〉−β,h = lim

n→∞〈·〉−Λn ;β,h . (3.16)

The states 〈·〉+
β,h , 〈·〉−

β,h do not depend on the sequence (Λn)n≥1 and are both transla-
tion invariant.

The proof will be given later (on page 102), after introducing some important tools.

Remark 3.18. The previous theorem does not claim that 〈·〉+
β,h and 〈·〉−

β,h are distinct

Gibbs states. Determining the set of values of the parametersβ and h for which this
is the case will be one of our main tasks in the remainder of this chapter. ¦

More generally, one can prove, albeit in a non-constructive way, that any se-
quence of finite-volume Gibbs distributions admits converging subsequences.

Exercise 3.8. Let (ηn)n≥1 be a sequence of boundary conditions and Λn ↑Zd . Prove
that there exists an increasing sequence (nk )k≥1 of integers and a Gibbs state 〈·〉 such
that

〈·〉 = lim
k→∞

〈·〉ηnk
Λnk

;β,h

is well defined.
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Another explicit example using the free boundary condition will be considered in
Exercise 3.16.

3.5 Two families of local functions.

The construction of Gibbs states consists in proving the existence of the limit

lim
n→∞〈 f 〉ηn

Λn ;β,h

for each local function f . Ideally, one would like to test convergence only on a re-
stricted family of functions. The following lemma provides two particularly conve-
nient such families, which will be especially well suited for the use of the correlation
inequalities introduced in the next section. Define, for all A bZd ,

σA
def=

∏
j∈A

σ j , nA
def=

∏
j∈A

n j ,

where n j
def= 1

2 (1+σ j ) is the occupation variable at j .

Lemma 3.19. Let f be local. There exist real coefficients ( f̂ A)A⊂supp( f ) and
( f̃ A)A⊂supp( f ) such that both of the following representations hold:

f =
∑

A⊂supp( f )
f̂ AσA , f =

∑
A⊂supp( f )

f̃ AnA .

Proof. The following orthogonality relation will be proved below: for all B bZd and
all configurations ω,ω̃,

2−|B | ∑
A⊂B

σA(ω̃)σA(ω) = 1{ωi=ω̃i ,∀i∈B} . (3.17)

Applying (3.17) with B = supp( f ),

f (ω) =
∑

ω′∈Ωsupp( f )

f (ω′)1{ωi=ω′
i ∀i∈supp( f )}

=
∑

ω′∈Ωsupp( f )

f (ω′)2−|supp( f )| ∑
A⊂supp( f )

σA(ω)σA(ω′)

=
∑

A⊂supp( f )

{
2−|supp( f )| ∑

ω′∈Ωsupp( f )

f (ω′)σA(ω′)
}
σA(ω) .

This shows that the first identity holds with

f̂ A = 2−|supp( f )| ∑
ω′∈Ωsupp( f )

f (ω′)σA(ω′).

Since σA =∏
i∈A(2ni −1), the second identity follows from the first one.

We now prove (3.17). Let us first assume that ωi = ω̃i , for all i ∈ B . In that
case, σA(ω̃)σA(ω) = ∏

i∈A ω̃iωi = 1, since ω̃iωi = ω2
i = 1 for all i ∈ A ⊂ B . This
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implies (3.17). Assume then that there exists i ∈ B such that ωi 6= ω̃i (and thus
ωi ω̃i =−1). Then,

∑
A⊂B

σA(ω̃)σA(ω) =
∑

A⊂B\{i }

(
σA(ω̃)σA(ω)+σA∪{i }(ω̃)σA∪{i }(ω)

)

=
∑

A⊂B\{i }
(σA(ω̃)σA(ω)+ωi ω̃iσA(ω̃)σA(ω))

=
∑

A⊂B\{i }
σA(ω̃)σA(ω) (1+ωi ω̃i ) = 0.

Thanks to the above lemma and to linearity, checking convergence of
(〈 f 〉ηn

Λn ;β,h)n≥1 for all local functions can now be reduced to showing convergence

of (〈σA〉ηn

Λn ;β,h)n≥1 or (〈nA〉ηn

Λn ;β,h)n≥1 for all finite A b Zd . This task will be greatly

simplified once we will have described some of the so-called correlation inequali-
ties that hold for the Ising model.

3.6 Correlation inequalities

Correlation inequalities are one of the major tools in the mathematical analysis of
the Ising model. We will use them to construct 〈·〉+

β,h and 〈·〉−
β,h , and to study many

other properties.
The Ising model enjoys many such inequalities, but we will restrict our atten-

tion to the two most prominent ones: the GKS and FKG inequalities. Since the
proofs are not particularly enlightening, they are postponed to the end of the chap-
ter, in Section 3.8.

3.6.1 The GKS inequalities.

As a motivation, consider the Ising model in a volume Λ, with + boundary condi-
tion. First, the ferromagnetic nature of the model makes it likely that the + bound-
ary condition will favor a nonnegative magnetization inside the box, at least when
h ≥ 0. Therefore, if i is any point of Λ, it seems reasonable to expect that h ≥ 0
implies

〈σi 〉+Λ;β,h ≥ 0. (3.18)

Similarly, knowing that the spin at some vertex j takes the value +1 should not
decrease the probability of observing a + spin at another given vertex i , that is, one
would expect that

µ+
Λ;β,h(σi = 1 |σ j = 1) ≥µ+

Λ;β,h(σi = 1) ,

which can equivalently be written

µ+
Λ;β,h(σi = 1,σ j = 1) ≥µ+

Λ;β,h(σi = 1)µ+
Λ;β,h(σ j = 1) .

Since 1{σi=1} = 1
2 (σi +1), this can also be expressed as

〈σiσ j 〉+Λ;β,h ≥ 〈σi 〉+Λ;β,h〈σ j 〉+Λ;β,h . (3.19)

This is equivalent to asking whether σi and σ j are positively correlated under
µ+
Λ;β,h .
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Inequalities (3.18) and (3.19) are actually true, and will be particular instances
of the GKS inequalities (named after Griffiths, Kelly and Sherman) which hold in a
more general setting.

Namely, let J = (Ji j ) be a collection of nonnegative real numbers Ji j indexed by
pairs {i , j } ∈ E b

Λ. Let also h = (hi ) be a collection of real numbers indexed by vertices

ofΛ. We write h ≥ 0 as a shortcut for hi ≥ 0 for all i ∈Λ. We then write, for ω ∈Ωη

Λ
,

HΛ;J,h(ω)
def= −

∑

{i , j }∈E b
Λ

Ji jσi (ω)σ j (ω)−
∑
i∈Λ

hiσi (ω) . (3.20)

We denote the corresponding finite-volume Gibbs distribution by µη
Λ;J,h. Of course,

we recover HΛ;β,h and µ
η

Λ;β,h by setting Ji j = β for all {i , j } ∈ E b
Λ and hi = h for all

i ∈Λ.
The GKS inequalities are mostly restricted to +, free and periodic boundary

conditions and to nonnegative magnetic fields. They deal with expectations and
covariances of random variables of the type σA , which is precisely what is needed
for the study of the thermodynamic limit.

Theorem 3.20 (GKS inequalities). Let J,h be as above and Λ b Zd . Assume that
h ≥ 0. Then, for all A,B ⊂Λ,

〈σA〉+Λ;J,h ≥ 0, (3.21)

〈σAσB 〉+Λ;J,h ≥ 〈σA〉+Λ;J,h〈σB 〉+Λ;J,h . (3.22)

These inequalities remain valid for 〈·〉∅
Λ;J,h and 〈·〉per

Λ;J,h.

Exercise 3.9. Let A ⊂ Λb Zd . Under the assumptions of Theorem 3.20, prove that
〈σA〉+Λ;J,h is nondecreasing in both J and h.

3.6.2 The FKG inequality.

The FKG Inequality (named after Fortuin, Kasteleyn and Ginibre) states that in-
creasing events are positively correlated.

The total order on the set {−1,1} induces a partial order onΩ : ω≤ω′ if and only
if ωi ≤ ω′

i for all i ∈ Zd . An event E ⊂ Ω is increasing if ω ∈ E and ω ≤ ω′ implies
ω′ ∈ E . If E and F are both increasing events depending on the spins inside Λ,
then again, due to the ferromagnetic nature of the model, one can expect that the
occurrence of an increasing event enhances the probability of another increasing
event. That is, assuming that F has positive probability:

µ+
Λ;β,h(E |F ) ≥µ+

Λ;β,h(E) .

Multiplying by the probability of F , this inequality can be written as:

µ+
Λ;β,h(E ∩F ) ≥µ+

Λ;β,h(E)µ+
Λ;β,h(F ) . (3.23)

The precise result will be stated and proved in a more general setting, involving
the expectation of nondecreasing local functions, of which 1E and 1F are particular
instances.

A function f :Ω→R is nondecreasing if and only if f (ω) ≤ f (ω′) for all ω≤ω′.
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Exercise 3.10. Prove that the following functions are nondecreasing: σi , ni , nA ,∑
i∈A ni −nA , for any i ∈Zd , A bZd .

A particularly useful feature of the FKG inequality is its applicability for all pos-
sible boundary conditions and arbitrary (that is, not necessarily nonnegative) val-
ues of the magnetic field. They are also valid in the general setting presented in the
last section, in which β and h are replaced by J and h:

Theorem 3.21 (FKG inequality). Let J = (Ji j )i , j∈Zd be a collection of nonnegative
real numbers and let h = (hi )i∈Zd be a collection of arbitrary real numbers. Let Λb
Zd and # be some arbitrary boundary condition. Then, for any pair of nondecreasing
functions f and g ,

〈 f g 〉#
Λ;J,h ≥ 〈 f 〉#

Λ;J,h〈g 〉#
Λ;J,h . (3.24)

Inequality (3.23) follows by taking Ji j =β and hi = h, and f = 1E , g = 1F . Note also
that 〈 f g 〉η

Λ;J,h ≤ 〈 f 〉η
Λ;J,h〈g 〉η

Λ;J,h whenever f is nondecreasing and g is nonincreasing
(simply apply (3.24) to f and −g ).

Actually, (3.24) can be seen as a natural extension of the following elementary
result: if f and g are two nondecreasing functions from R to R and µ is a probability
measure on R, then

〈 f g 〉µ ≥ 〈 f 〉µ〈g 〉µ .

Namely, it suffices to write

〈 f g 〉µ−〈 f 〉µ〈g 〉µ = 1
2

∫
( f (x)− f (y))(g (x)− g (y))µ(dx)µ(dy) ,

and to observe that f (x)− f (y) and g (x)−g (y) have the same sign, since f and g are
both nondecreasing. ¦

3.6.3 Consequences

Many useful properties of finite-volume Gibbs distributions can be derived from
the correlation inequalities of the previous section. The first is exactly the ingredi-
ent that will be needed for the study of the thermodynamic limit:

Lemma 3.22. Let f be a nondecreasing function and Λ1 ⊂Λ2 b Zd . Then, for any
β≥ 0 and h ∈R,

〈 f 〉+Λ1;β,h ≥ 〈 f 〉+Λ2;β,h . (3.25)

The same statement holds for the − boundary condition and a nonincreasing func-
tion f .

Before turning to the proof, we need a spatial Markov property satisfied by
µ
η

Λ;β,h .

Exercise 3.11. Prove that, for all ∆⊂Λb Zd and all configurations η ∈Ω and ω′ ∈
Ω
η

Λ
,

µ
η

Λ;β,h

( ·
∣∣ σi =ω′

i , ∀i ∈Λ\∆
)=µω′

∆;β,h( · ) . (3.26)
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The probability in the right-hand side of (3.26) really only depends on ω′
i for

i ∈ ∂ex∆, where ∂ex∆ is the exterior boundary of ∆, defined by

∂ex∆
def= {

i 6∈∆ : ∃ j ∈∆, j ∼ i
}

.

This implies that

µ
η

Λ;β,h

(
A

∣∣ σi =ω′
i , ∀i ∈Λ\∆

)=µη
Λ;β,h

(
A

∣∣ σi =ω′
i , ∀i ∈ ∂ex∆

)
,

for all events A depending only on the spins located inside ∆. In this sense, (3.26) is
indeed a spatial Markov property. ¦

Proof of Lemma 3.22: It follows from (3.26) that

〈 f 〉+Λ1;β,h = 〈
f

∣∣ σi = 1, ∀i ∈Λ2 \Λ1
〉+
Λ2;β,h .

The indicator 1{σi=1,∀i∈Λ2\Λ1} being a nondecreasing function, the FKG inequality
implies that

〈 f 〉+Λ1;β,h =
〈

f 1{σi=1,∀i∈Λ2\Λ1}
〉+
Λ2;β,h〈

1{σi=1,∀i∈Λ2\Λ1}
〉+
Λ2;β,h

≥
〈 f 〉+

Λ2;β,h

〈
1{σi=1,∀i∈Λ2\Λ1}

〉+
Λ2;β,h〈

1{σi=1,∀i∈Λ2\Λ1}
〉+
Λ2;β,h

= 〈 f 〉+Λ2;β,h .

Actually, some form of monotonicity with respect to the volume can also be
established for the Gibbs distributions with free boundary condition:

Exercise 3.12. Using the GKS inequalities, prove that, for all β,h ≥ 0,

〈σA〉+Λ1;β,h ≥ 〈σA〉+Λ2;β,h , 〈σA〉∅Λ1;β,h ≤ 〈σA〉∅Λ2;β,h ,

for all A ⊂Λ1 ⊂Λ2 bZd .

The next lemma shows that the Gibbs distributions with+ and−boundary con-
dition play an extremal role, in the sense that they maximally favor +, respectively
−, spins.

Lemma 3.23. Let f be an arbitrary nondecreasing function. Then, for any β≥ 0 and
h ∈R,

〈 f 〉−Λ;β,h ≤ 〈 f 〉η
Λ;β,h ≤ 〈 f 〉+Λ;β,h ,

for any boundary condition η ∈Ω and any ΛbZd . Similarly, if f is a local function
with supp( f ) ⊂Λ, resp. supp( f ) ⊂VN , then

〈 f 〉−Λ;β,h ≤ 〈 f 〉∅
Λ;β,h ≤ 〈 f 〉+Λ;β,h ,

〈 f 〉−VN−1;β,h ≤ 〈 f 〉per

VN ;β,h ≤ 〈 f 〉+VN−1;β,h .

Proof. Let I (ω) = exp
{
β

∑
i∈Λ, j 6∈Λ

i∼ j
ωi (1−η j )

}
. First, observe that

∑
ω∈Ω+

Λ

e−HΛ;β,h (ω) =
∑

ω∈Ωη
Λ

e−HΛ;β,h (ω)I (ω) ,
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Figure 3.7: Left: The two-dimensional torus T16 with all spins along Σ16
forced to take the value +1. Right: opening the torus along the first “circle” of
+1 yields an equivalent Ising model on a cylinder with + boundary condition
and all spins forced to take the value +1 along a line. Further opening the
cylinder along the line of frozen + spins yields an equivalent Ising model in
the square {1, . . . ,15}2 with + boundary condition.

and, for any nondecreasing f ,
∑

ω∈Ω+
Λ

e−HΛ;β,h (ω) f (ω) ≥
∑

ω∈Ωη
Λ

e−HΛ;β,h (ω)I (ω) f (ω) .

(The inequality is a consequence of our not assuming that supp( f ) ⊂Λ.) This im-
plies that

〈 f 〉+Λ;β,h =
∑
ω∈Ω+

Λ
e−HΛ(ω) f (ω)

∑
ω∈Ω+

Λ
e−HΛ(ω)

≥
∑
ω∈Ωη

Λ
e−HΛ(ω)I (ω) f (ω)

∑
ω∈Ωη

Λ
e−HΛ(ω)I (ω)

=
〈I f 〉η

Λ;β,h

〈I 〉η
Λ;β,h

≥ 〈 f 〉η
Λ;β,h ,

where we applied the FKG inequality in the last step, making use of the fact that the
function I is nondecreasing.

The proof for the free boundary condition is identical, using the nondecreasing
function I (ω) = exp

{
β

∑
i∈Λ, j 6∈Λ

i∼ j
ωi

}
.

Let us finally consider the Gibbs distribution with periodic boundary condition.
In that case, we can argue as in the proof of Lemma 3.22, since, for any ω ∈Ω+

VN−1

(considering VN = {0, . . . , N }d as a subset of Zd ),

µ
per

VN ;β,h

(
ω|VN

∣∣ σi = 1 ∀i ∈ΣN
)=µ+

VN−1;β,h(ω) ,

where ΣN
def= {

i = (i1, . . . , id ) ∈ VN : ∃1 ≤ k ≤ d such that ik = 0
}

(see Figure 3.7) and
the restriction of a configuration ω ∈Ω to a subset S ⊂Zd is defined by

ω|S def= (ωi )i∈S .

Exercise 3.13. Let η,ω ∈Ω be such that η ≤ ω. Let f be a nondecreasing function.
Show that, for any β≥ 0 and h ∈R,

〈 f 〉η
Λ;β,h ≤ 〈 f 〉ωΛ;β,h ,

for any ΛbZd . Hint: adapt the argument in the proof of Lemma 3.23.
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We can now prove existence and translation invariance of 〈·〉+
β,h and 〈·〉−

β,h .

Proof of Theorem 3.17: We consider the + boundary condition. Let f be a local
function. By Lemma 3.19 and linearity,

〈 f 〉+Λn ;β,h =
∑

A⊂supp( f )
f̃ A〈nA〉+Λn ;β,h .

Since the functions nA are nondecreasing, (3.25) implies that, for all A,

〈nA〉+Λn ;β,h ≥ 〈nA〉+Λn+1;β,h , ∀n ≥ 1.

Being nonnegative, 〈nA〉+Λn ;β,h thus converges as n → ∞. It follows that 〈 f 〉+
Λn ;β,h

also has a limit, which we denote by

〈 f 〉+β,h
def= lim

n→∞〈 f 〉+Λn ;β,h .

Since it is obviously linear, positive and normalized, 〈·〉+
β,h is a Gibbs state. We check

now that it does not depend on the sequence Λn ↑Zd . Let Λ1
n ↑Zd and Λ2

n ↑Zd be
two such sequences, and let us denote by 〈·〉+,1

β,h and 〈·〉+,2
β,h the corresponding limits.

SinceΛ1
n ↑Zd andΛ2

n ↑Zd , we can always find a sequence (∆n)n≥1 such that, for all
k ≥ 1,

∆2k−1 ∈
{
Λ1

n : n ≥ 1
}

, ∆2k ∈ {
Λ2

n : n ≥ 1
}

, ∆k (∆k+1 .

Of course, ∆n ↑ Zd . Our previous considerations thus imply that limk→∞〈 f 〉+
∆k ;β,h

exists, for every local function f . Moreover, since (〈 f 〉+
∆2k−1;β,h)k≥1 is a subsequence

of (〈 f 〉+
Λ1

n ;β,h
)n≥1 and (〈 f 〉+

∆2k ;β,h)k≥1 is a subsequence of (〈 f 〉+
Λ2

n ;β,h
)n≥1, we conclude

that
lim

n→∞〈 f 〉+
Λ1

n ;β,h
= lim

k→∞
〈 f 〉+∆k ;β,h = lim

n→∞〈 f 〉+
Λ2

n ;β,h
,

for all local functions f . This shows that the state 〈·〉+
β,h does not depend on the

choice of the sequence (Λn)n≥1.
We still have to prove translation invariance. Let again f be a local function. For

all j ∈Zd , f ◦θ j is also a local function and θ− jΛn ↑Zd (θiΛ
def= Λ+ i ). We thus have

〈 f 〉+Λn ;β,h →〈 f 〉+β,h and 〈 f ◦θ j 〉+θ− jΛn ;β,h →〈 f ◦θ j 〉+β,h .

The conclusion follows, since 〈 f ◦θ j 〉+θ− jΛn ;β,h = 〈 f 〉+
Λn ;β,h (see Figure 3.8).

j

Λn

θ− jΛn

supp( f )

supp( f ◦θ j )

Figure 3.8: Proof of invariance under translations.
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Exercise 3.14. Prove that 〈·〉+
β,h and 〈·〉−

β,h are also invariant under lattice rotations

and reflections of Zd .

Exercise 3.15. Let β ≥ 0 and h ∈ R. Show that 〈·〉+
β,h has short-range correlations,

in the sense that, for all local functions f and g ,

lim
‖i‖1→∞

〈 f · (g ◦θi )〉+β,h = 〈 f 〉+β,h〈g 〉+β,h .

Hint: Use the FKG inequality to prove first the result with f = nA and g = nB for
arbitrary A,B bZd .

With similar arguments, one can also construct Gibbs states using the free
boundary condition:

Exercise 3.16. Prove that, for all β≥ 0, h ∈R and any sequenceΛn ↑Zd , the sequence
(〈·〉∅

Λn ;β,h)n≥1 converges to a Gibbs state 〈·〉∅
β,h , independent of the sequence (Λn)n≥1

chosen. Show that 〈·〉∅
β,h is translation invariant.

3.7 Phase Diagram

Now that we have seen that infinite-volume Gibbs states for a pair (β,h) can be
constructed rigorously in various ways (for example, using + or − boundary condi-
tions), the next problem is to determine whether these are the same Gibbs states,
or whether there exist some values of the temperature and magnetic field for which
the influence of the boundary condition survives in the thermodynamic limit, lead-
ing to multiple Gibbs states.

The answer to this question will be given in the next sections: it will depend
on the dimension d and on the values of β and h. Contrarily to what often hap-
pens in mathematics, the lack of uniqueness is not a defect of this approach, but is
actually one of its main features: lack of uniqueness means that providing a com-
plete microscopic description of the system (that is, the set of configurations and
the Hamiltonian) as well as fixing all the relevant thermodynamic parameters (β
and h) is not sufficient to completely determine the macroscopic behavior of the
system.

Definition 3.24. If at least two distinct Gibbs states can be constructed for a pair
(β,h), we say that there is a first-order phase transition at (β, h).

Later in this chapter (see Theorem 3.34), we will relate this probabilistic definition
of a first-order phase transition to the analytic one associated to the pressure (Def-
inition 3.8).

We can now turn to the main result of this chapter, which establishes the phase
diagram of the Ising model, that is, the determination for each pair (β,h) of whether
there is a unique or multiple Gibbs states. We gather the corresponding claims in
the form of a theorem, the proof of which will be given in the remainder of the
chapter (see Figure 3.9).
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Theorem 3.25. 1. In any d ≥ 1, when h 6= 0, there is a unique Gibbs state for all
values of β ∈R≥0.

2. In d = 1, there is a unique Gibbs state at each (β,h) ∈R≥0 ×R.

3. When h = 0 and d ≥ 2, there exists βc =βc(d) ∈ (0,∞) such that:

• when β<βc, the Gibbs state at (β,0) is unique,

• when β>βc, a first-order phase transition occurs at (β,0):

〈·〉+β,0 6= 〈·〉−β,0 .

h

0
βc

β

uniqueness

uniqueness

non-uniqueness

Figure 3.9: The phase diagram of the Ising model in d ≥ 2. The line {(β,0) :
β > βc} is called the coexistence line. This diagram should be compared
with the simulations of Figure 1.9.

The proof of Theorem 3.25 is quite long and is spread over several sections. The
first item will be proved in Section 3.7.4. The second item was already proved in
Section 3.3 (once the results there are combined with Theorem 3.34) and will be
given an alternative proof in Section 3.7.3. The proof of the third item has two parts:
the proof that βc <∞ is done in Section 3.7.2, while the proof that βc > 0 is done in
Section 3.7.3.

Remark 3.26. It can be proved that uniqueness holds also at (βc,0), when d ≥ 2, but
the argument is beyond the scope of this book. [2] The phase transition occurring
as β crosses βc (at h = 0) is thus continuous. ¦
Remark 3.27. Although the above theorem claims the existence of at least two dis-
tinct Gibbs states when d ≥ 2, h = 0 and β > βc, it does not describe the structure
of the set of Gibbs states associated to those values of (β,h). This is a much more
difficult problem, to which we will return in Section 3.10.8. ¦

3.7.1 Two criteria for (non)-uniqueness

In this subsection, we establish a link between uniqueness of the Gibbs state, the
average magnetization density and differentiability of the pressure. We use these
quantities to formulate several equivalent characterizations of uniqueness of the
Gibbs state, which play a crucial role in our determination of the phase diagram.
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Moreover, the second criterion provides the rigorous link between the analytic and
probabilistic definitions of first-order phase transition introduced earlier.

A first characterization of uniqueness

The major role played by the states 〈·〉+
β,h and 〈·〉−

β,h is made clear by the following

result.

Theorem 3.28. Let (β,h) ∈R≥0 ×R. The following statements are equivalent:

1. There is a unique Gibbs state at (β,h).

2. 〈·〉+
β,h = 〈·〉−

β,h .

3. 〈σ0〉+β,h = 〈σ0〉−β,h .

Proof. The implications 1⇒2⇒3 are trivial. Let us prove that 3⇒2. Take Λn ↑ Zd

and A b Zd . Since
∑

i∈A ni −nA is nondecreasing (Exercise 3.10), Lemma 3.23 im-
plies that, for all k,

〈∑
i∈A

ni −nA

〉−
Λk ;β,h

≤
〈∑

i∈A
ni −nA

〉+
Λk ;β,h

.

Using linearity, letting k →∞ and rearranging, we get

∑
i∈A

(〈ni 〉+β,h −〈ni 〉−β,h

)≥ 〈nA〉+β,h −〈nA〉−β,h .

If 3 holds, the left-hand side vanishes, since translation invariance then implies that

〈ni 〉+β,h −〈ni 〉−β,h = 〈n0〉+β,h −〈n0〉−β,h = 1
2

(〈σ0〉+β,h −〈σ0〉−β,h

)= 0.

But 〈nA〉+β,h ≥ 〈nA〉−β,h (again by Lemma 3.23), and so 〈nA〉+β,h = 〈nA〉−β,h . Together

with Lemma 3.19, this implies that 〈 f 〉+
β,h = 〈 f 〉−

β,h for every local function f . There-

fore, 2 holds.

It only remains to prove that 2⇒1. Lemma 3.23 implies that any Gibbs state at
(β,h), say 〈·〉β,h , is such that 〈nA〉−β,h ≤ 〈nA〉β,h ≤ 〈nA〉+β,h . If 2 holds, this implies

〈nA〉−β,h = 〈nA〉β,h = 〈nA〉+β,h . By Lemma 3.19, this extends to all local functions and,

therefore, 〈·〉−
β,h = 〈·〉β,h = 〈·〉+

β,h . We conclude that 1 holds.

Some properties of the magnetization density

Remember that the average magnetization density in Λ b Zd with an arbitrary

boundary condition # was defined by m#
Λ(β,h)

def= 〈mΛ〉#
Λ;β,h . The uniqueness cri-

terion developed in Theorem 3.28 is expressed in terms of the averages 〈σ0〉+β,h and

〈σ0〉−β,h . It is natural to wonder whether these quantities are related to m+
Λ(β,h) and

m−
Λ(β,h). The following result shows that they in fact coincide in the thermody-

namic limit.
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Proposition 3.29. For any sequence Λ ⇑Zd , the limits

m+(β,h)
def= lim

Λ⇑Zd
m+
Λ(β,h) , m−(β,h)

def= lim
Λ⇑Zd

m−
Λ(β,h)

exist and
m+(β,h) = 〈σ0〉+β,h , m−(β,h) = 〈σ0〉−β,h .

Moreover, h 7→ m+(β,h) is right-continuous, while h 7→ m−(β,h) is left-continuous.

Remark 3.30. By Corollary 3.7, m+(β,h) and m(β,h) are equal when h 6∈Bβ. There-
fore, considering a sequence h ↓ 0 in Bc

β
,

m∗(β) = lim
h↓0

m(β,h) = lim
h↓0

m+(β,h) = m+(β,0) = 〈σ0〉+β,0 .

Note also that, by Exercise 3.15,

lim
‖i‖1→∞

〈σ0σi 〉+β,0 =
(〈σ0〉+β,0

)2 = m∗(β)2 , ∀β≥ 0.

This observation provides a convenient approach for its explicit computation in
d = 2, which avoids having to work with a nonzero magnetic field. ¦

Proof. Let Λn ⇑Zd . By the translation invariance of 〈·〉+
β,h and by the monotonicity

property (3.25),
〈σ0〉+β,h = 〈mΛn 〉+β,h ≤ 〈mΛn 〉+Λn ;β,h .

This gives 〈σ0〉+β,h ≤ liminfn〈mΛn 〉+Λn ;β,h . For the other bound, fix k ≥ 1 and let i ∈
Λn . On the one hand, if i +B(k) ⊂Λn , (3.25) again gives

〈σi 〉+Λn ;β,h ≤ 〈σi 〉+i+B(k);β,h = 〈σ0〉+B(k);β,h .

On the other hand, if i +B(k) 6⊂ Λn , then the box i +B(k) intersects ∂inΛn . As a
consequence,

〈mΛn 〉+Λn ;β,h = 1

|Λn |
∑

i∈Λn :
i+B(k)⊂Λn

〈σi 〉+Λn ;β,h + 1

|Λn |
∑

i∈Λn :
i+B(k)6⊂Λn

〈σi 〉+Λn ;β,h

≤ 〈σ0〉+B(k);β,h +2
|B(k)||∂inΛn |

|Λn |
,

since |〈σi 〉+Λn ;β,h | ≤ 1. (Note that 〈σ0〉+B(k);β,h
can be negative; this is the reason for

the factor 2 in the last term). This implies that, for all k ≥ 1, limsupn〈mΛn 〉+Λn ;β,h ≤
〈σ0〉+B(k);β,h

. Since limk→∞〈σ0〉+B(k);β,h
= 〈σ0〉+β,h , the desired result follows. The one-

sided continuity of m+(β,h) and m−(β,h) will follow from Lemma 3.31 below.

Lemma 3.31. 1. For all β ≥ 0, h 7→ 〈σ0〉+β,h is nondecreasing and right-

continuous and h 7→ 〈σ0〉−β,h is nondecreasing and left-continuous.

2. For all h ≥ 0, β 7→ 〈σ0〉+β,h is nondecreasing and, for all h ≤ 0, β 7→ 〈σ0〉−β,h is
nonincreasing.
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Proof of Lemma 3.31: We prove the properties for 〈σ0〉+β,h (symmetry then allows us

to deduce the corresponding properties for 〈σ0〉−β,h).

1. LetΛbZd . It follows from the FKG inequality that

∂

∂h
〈σ0〉+Λ;β,h =

∑
i∈Λ

(〈σ0σi 〉+Λ;β,h −〈σ0〉+Λ;β,h〈σi 〉+Λ;β,h

)≥ 0.

So, at fixedΛ, h 7→ 〈σ0〉+Λ;β,h is nondecreasing. This monotonicity clearly persists in

the thermodynamic limit. Let then (hm)m≥1 be a sequence of real numbers such
that hm ↓ h and (Λn)n≥1 be a sequence such that Λn ↑ Zd . Lemma 3.22 implies
that the double sequence (〈σ0〉+Λn ;β,hm

)m,n≥1 is nonincreasing and bounded. Con-

sequently, it follows from Lemma B.4 that

lim
m→∞〈σ0〉+β,hm

= lim
m→∞ lim

n→∞〈σ0〉+Λn ;β,hm

= lim
n→∞ lim

m→∞〈σ0〉+Λn ;β,hm
= lim

n→∞〈σ0〉+Λn ;β,h = 〈σ0〉+β,h .

The third identity relies on the fact that the finite-volume expectation 〈σ0〉+Λn ;β,h is

continuous in h.
2. Proceeding as before and using (3.22) with A = {0} and B = {i , j },

∂

∂β
〈σ0〉+Λ;β,h =

∑

{i , j }∈E b
Λ

(〈σ0σiσ j 〉+Λ;β,h −〈σ0〉+Λ;β,h〈σiσ j 〉+Λ;β,h

)≥ 0.

This monotonicity also clearly persists in the thermodynamic limit.

Exercise 3.17. Let A bZd and h ≥ 0. Show that β 7→ 〈σA〉∅β,h is left-continuous and

β 7→ 〈σA〉+β,h is right-continuous.

Defining the critical inverse temperature

Since 〈σ0〉−β,0 = −〈σ0〉+β,0 by symmetry, Theorem 3.28 and Remark 3.30 imply that,

when h = 0, uniqueness is equivalent to m∗(β) = 0. Since Lemma 3.31 implies that
m∗(β) = 〈σ0〉+β,0 is monotone in β, we are led naturally to the following definition.

Definition 3.32. The critical inverse temperature is

βc(d)
def= inf

{
β≥ 0 : m∗(β) > 0

}= sup
{
β≥ 0 : m∗(β) = 0

}
. (3.27)

That is, βc(d) is the unique value of β such that m∗(β) = 0 if β< βc, and m∗(β) > 0
if β > βc. Of course, one still has to determine whether βc(d) is non-trivial, that is,
whether 0 <βc(d) <∞.

Remark 3.33. By translation invariance, 〈σi 〉+β,0 = 〈σ0〉+β,0 = m∗(β) for all i ∈ Zd .

This implies, using the FKG inequality, that

〈σ0σi 〉+β,0 ≥ 〈σ0〉+β,0〈σi 〉+β,0 = m∗(β)2 .

In particular,
inf

i∈Zd
〈σ0σi 〉+β,0 > 0, ∀β>βc . (3.28)
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Such a behavior is referred to as long-range order. The presence of long-range
order does not, however, imply that the random variables σi display strong corre-
lations at large distances. Indeed, as follows from Exercise 3.15 (see also the more
general statement in point 4 of Theorem 6.58), for any β,

lim
‖i‖1→∞

〈σ0σi 〉+β,0 −〈σ0〉+β,0〈σi 〉+β,0 = 0,

so that σ0 and σi are always asymptotically (as ‖i‖1 →∞) uncorrelated. [3] ¦

A second characterization of uniqueness

The following theorem provides the promised link between the two notions of first-
order phase transition introduced in Definitions 3.8 and 3.24: non-uniqueness oc-
curs at (β,h) if and only if the pressure fails to be differentiable in h at this point.
The theorem also provides the extension of the relation (3.8) to values of h at which
the pressure is not differentiable. In that case, we can rely on the convexity of
the pressure, which we proved in Theorem 3.6, to conclude that its right- and left-
derivatives with respect to h are always well defined.

Theorem 3.34. The following identities hold for all values of β≥ 0 and h ∈R:

∂ψ

∂h+ (β,h) = m+(β,h),
∂ψ

∂h− (β,h) = m−(β,h) .

In particular, h 7→ψ(β,h) is differentiable at h if and only if there is a unique Gibbs
state at (β,h).

Remark 3.35. Theorem 3.34 shows that the pressure is differentiable with respect
to h precisely for those values of β and h at which there is a unique infinite-volume
Gibbs state. We will see later (Exercise 6.33) that uniqueness of the infinite-volume
Gibbs state also implies differentiability with respect to β. (Actually, although we
will not prove it, the pressure of the Ising model on Zd is always differentiable with
respect to β.) ¦
Proof. Remember that the set Bβ of points of non-differentiability of the pressure
is at most countable. Therefore, for each h ∈ R, it is possible to find a sequence
hk ↓ h such that hk 6∈Bβ for all k ≥ 1. It then follows from (3.9) that

∂ψ

∂h+ (β,h) = lim
hk↓h

m(β,hk ) = lim
hk↓h

m+(β,hk ) = m+(β,h) ,

since m+(β,h′) = m(β,h′) for all h′ 6∈ Bβ (Corollary 3.7) and m+(β,h) is a right-
continuous function of h (Proposition 3.29). Now, by symmetry,

∂ψ

∂h− (β,h) =− ∂ψ

∂h+ (β,−h) =−m+(β,−h) = m−(β,h) .

As a consequence, we conclude that

∂ψ

∂h
(β,h) exists ⇔ m+(β,h) = m−(β,h) .

The conclusion follows since, by Proposition 3.29 and Theorem 3.28,

m+(β,h) = m−(β,h) ⇔ 〈σ0〉+β,h = 〈σ0〉−β,h ⇔ uniqueness at (β,h).

In the following two sections, we prove item 3 of Theorem 3.25 which estab-
lishes, at h = 0, distinct low- and high-temperature behaviors.
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3.7.2 Spontaneous symmetry breaking at low temperatures

In this subsection, we prove that βc(d) < ∞, for all d ≥ 2. In order to do so, it is
sufficient to show that, uniformly in the size of Λ,

µ+
Λ;β,0(σ0 =−1) ≤ δ(β) , (3.29)

where δ(β) ↓ 0 when β→∞. Indeed, this has the consequence that

〈σ0〉+Λ;β,0 =µ+
Λ;β,0(σ0 =+1)−µ+

Λ;β,0(σ0 =−1)

= 1−2µ+
Λ;β,0(σ0 =−1)

≥ 1−2δ(β) .

Therefore, if one fixes β large enough, so that 1 − 2δ(β) > 0, and then takes the
thermodynamic limitΛ ↑Zd , one deduces that

m∗(β) = 〈σ0〉+β,0 > 0. (3.30)

Using the characterization (3.27), this shows that βc <∞: a first-order phase tran-
sition indeed occurs at low temperatures.

The proof of (3.29) uses a key idea originally due to Peierls, today known as
Peierls’ argument and considered a cornerstone in the understanding of phase tran-
sitions. It consists in making the following idea rigorous.

When β is large, neighboring spins with different values make a high contri-
bution to the total energy and are thus strongly suppressed. Therefore the contours,
which are the lines that separate regions of + and − spins, should be rare and a typ-
ical configuration under µ+

Λ;β,0 should have the structure of a “sea” of +1 spins with

small “islands” of − spins (see Figure 3.10). ¦

In other words, when β is large, typical configurations under µ+
Λ;β,0 are small

perturbations of the ground state η+, and these perturbations are realized by the
contours of the configurations.

We will implement this strategy for the two-dimensional model and will see
later how it can be extended to higher dimensions.

Low-temperature representation

Consider the two-dimensional Ising model inΛbZ2 , with zero magnetic field and
+ boundary condition. We fix some configuration ω ∈ Ω+

Λ and give a geometrical
description of ω whose purpose is to account for the above-mentioned fact that a
low temperature favors the alignment of nearest-neighbor spins. The starting point
is thus to express the Hamiltonian in a way that emphasizes the role played by pairs
of opposite spins:

HΛ;β,0 =−β
∑

{i , j }∈E b
Λ

σiσ j =−β|E b
Λ|+

∑

{i , j }∈E b
Λ

β(1−σiσ j ) .

The dependence on ω is only in the sum
∑

{i , j }∈E b
Λ

β(1−σiσ j ) =
∑

{i , j }∈E b
Λ :

σi 6=σ j

2β= 2β ·#
{
{i , j } ∈ E b

Λ : σi 6=σ j
}

.
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Figure 3.10: A configuration of the two-dimensional Ising model in a finite
box Λ with + boundary condition. At low temperature, the lines separating
regions of + and − spins are expected to be short and sparse, leading to a
positive magnetization inΛ (and thus the validity of (3.29)).

Let us associate to each vertex i ∈Z2 the closed unit square centered at i :

Si
def= i + [− 1

2 , 1
2 ]2 . (3.31)

The boundary (in the sense of the standard topology on R2) of Si , denoted by ∂Si ,
can be considered as being made of four edges connecting nearest-neighbors of
the dual lattice

Z2
∗ =Z2 + ( 1

2 , 1
2 )

def= {
(i1 + 1

2 , i2 + 1
2 ) : (i1, i2) ∈Z2} .

Notice that a given edge e of the original lattice intersects exactly one edge e⊥ of the
dual lattice. If we associate to a configuration ω ∈Ω+

Λ the random set

M (ω)
def=

⋃
i∈Λ :σi (ω)=−1

Si ,

then again ∂M (ω) is made of edges of the dual lattice. Moreover, each edge e⊥ =
{i , j }⊥ ⊂ ∂M (ω) separates two opposite spins: σi (ω) 6= σ j (ω). One can therefore
write

HΛ;β,0(ω) =−β|E b
Λ|+2β|∂M (ω)| .
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(Here, |∂M (ω)| denotes the number of edges contained in ∂M (ω) or, equivalently,
the total length of ∂M (ω).) A configuration ω with its associated set ∂M (ω) is rep-
resented in Figure 3.10.

We will now decompose ∂M (ω) into disjoint components. For that, it is conve-
nient to fix a deformation rule to decide how these components are defined. To this
end, we first remark that each dual vertex of Z2

∗ is adjacent to either 0, 2 or 4 edges
of ∂M (ω) 2. When this number is 4, we deform ∂M (ω) using the following rule:

=⇒

Figure 3.11: The deformation rule.

An application of this rule at all points at which the incidence number is 4 yields
a decomposition of ∂M (ω) into a set of disjoint closed simple paths on the dual
lattice, as in Figure 3.12. In terms of dual edges,

∂M (ω) = γ1 ∪·· ·∪γn .

Each path γi is called a contour of ω. Let Γ(ω)
def= {γ1, . . . ,γn} and define the length

|γ| of a contour γ ∈ Γ(ω) as the number of edges of the dual lattice that it contains.
For example, in Figure 3.12, |γ5| = 14.

Using the above notations, the energy of a configuration ω ∈ Ω+
Λ can be very

simply expressed in terms of its contours:

HΛ;β,0(ω) =−β|E b
Λ|+2β

∑
γ∈Γ(ω)

|γ| .

Consequently, the partition function in Λ with + boundary condition can be writ-
ten

Z+
Λ;β,0 = eβ|E

b
Λ |

∑
ω∈Ω+

Λ

∏
γ∈Γ(ω)

e−2β|γ| . (3.32)

(As usual, the product is defined as equal to 1 when Γ(ω) =∅.) Finally, the proba-
bility of ω ∈Ω+

Λ can be expressed in terms of contours as

µ+
Λ;β,0(ω) = e−HΛ;β,0(ω)

Z+
Λ;β,0

=
∏
γ∈Γ(ω) e−2β|γ|

∑
ω

∏
γ∈Γ(ω) e−2β|γ| . (3.33)

Remark 3.36. The above probability being a ratio, the terms eβ|E
b
Λ | have canceled

out. Therefore, having defined the Hamiltonian without the constant term β|E b
Λ|

would have led to the same Gibbs distribution: the energy of a system can always
be shifted by a constant without affecting the distribution. ¦

2 One way to show that is to consider a dual vertex x ∈ Z2∗ together with the four surrounding
points of Z2, which we denote (in clockwise order) by i , j ,k, l . Since (ωiω j )(ω jωk )(ωkωl )(ωlωi ) =
ω2

i ω
2
jω

2
kω

2
l = 1, the number of products equal to −1 in the leftmost expression is even. But such a

product is equal to −1 precisely when the edge of a contour separates the corresponding spins.
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γ1

γ2 γ3

γ4

γ5

γ6

γ7

γ8

γ9

Figure 3.12: The contours (paths on the dual lattice) associated to the config-
uration of Figure 3.10. Together with the value of the spins on the boundary
(+1 in the present case), the original configurationω can be reconstructed in
a unique manner.

Peierls’ argument

We consider the boxB(n) = {−n, . . . ,n}2. To studyµ+
B(n);β,0

(σ0 =−1), we first observe

that any configuration ω ∈ Ω+
B(n)

such that σ0(ω) = −1 must possess at least one
(actually, an odd number of) contours surrounding the origin.

To make this statement precise, notice that each contour γ ∈ Γ(ω) is a bounded
simple closed curve in R2 and therefore splits the plane into two regions, exactly
one of which is bounded, called the interior of γ and denoted Int(γ). We can thus
write

µ+
B(n);β,0(σ0 =−1) ≤µ+

B(n);β,0

(∃γ∗ ∈ Γ : Int(γ∗) 3 0
)≤

∑
γ∗:Int(γ∗)30

µ+
B(n);β,0(Γ 3 γ∗) .

Lemma 3.37. For all β> 0 and any contour γ∗,

µ+
B(n);β,0(Γ 3 γ∗) ≤ e−2β|γ∗| . (3.34)

The bound (3.34) shows that the probability that a given contour appears in a con-
figuration becomes small whenβ is large or when the contour is long. Later, we will
refer to such a fact by saying that the ground state η+ is stable.
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Proof of Lemma 3.37. Using (3.33),

µ+
B(n);β,0(Γ 3 γ∗) =

∑
ω:Γ(ω)3γ∗

µ+
B(n);β,0(ω)

= e−2β|γ∗|
∑
ω:Γ(ω)3γ∗

∏
γ∈Γ(ω)\{γ∗} e−2β|γ|

∑
ω

∏
γ∈Γ(ω) e−2β|γ| . (3.35)

We will show that the ratio in (3.35) is bounded above by 1, by proving that the sum
in the numerator is the same as the one in the denominator, but with an additional
constraint. To each configuration ω with Γ(ω) 3 γ∗ appearing in the sum of the
numerator, we associate the configuration Eγ∗ (ω) obtained from ω by “removing
γ∗”. This can be done by simply flipping all spins in the interior of γ∗:

(Eγ∗ (ω))i
def=

{
−ωi if i ∈ Int(γ∗),

ωi otherwise.
(3.36)

It is important to realize that Eγ∗ (ω) is the configuration whose set of contours is
exactly Γ(ω) \ {γ∗}. For instance, even if Int(γ∗) contains other contours (as γ3 in
Figure 3.12, which contains γ4 and γ6 in its interior), these continue to exist after
flipping the spins. Let then C(γ∗) be the set of configurations that can be obtained
by removing γ∗ from a configuration containing γ∗. We have

∑
ω:Γ(ω)3γ∗

∏
γ∈Γ(ω)\{γ∗}

e−2β|γ| =
∑

ω′∈C(γ∗)

∏
γ′∈Γ(ω′)

e−2β|γ′| .

But since the sum overω′ ∈C(γ∗) is less than the sum over allω′ ∈Ω+
B(n)

, this shows
that the ratio in (3.35) is indeed bounded above by 1.

Each of the sums in the ratio in (3.35) is typically exponentially large or small in
|B(n)|. We have proved that the ratio is nevertheless bounded above by 1 by flipping
the spins of the configuration inside the contour γ∗, an operation that relied crucially
on the symmetry of the model under a global spin flip. ¦

Using (3.34), we bound the sum over all contours that surround the origin, by
grouping them according to their lengths. Since the smallest contour surrounding
the origin is made of 4 dual edges,

µ+
B(n);β,0(σ0 =−1) ≤

∑
γ∗: Int(γ∗)30

e−2β|γ∗| (3.37)

=
∑
k≥4

∑
γ∗: Int(γ∗)30

|γ∗|=k

e−2β|γ∗|

=
∑
k≥4

e−2βk #
{
γ∗ : Int(γ∗) 3 0, |γ∗| = k

}
. (3.38)

A contour of length k surrounding the origin necessarily contains a vertex of the set{
(u − 1

2 , 1
2 ) : u = 1, . . . , [k/2]

}
. But the total number of contours of length k starting

from a given vertex is at most 4 · 3k−1. Indeed, there are 4 available directions for
the first segment, then at most 3 for each of the remaining k−1 segments (since the
contour does not use twice the same edge). Therefore,

#
{
γ∗ : Int(γ∗) 3 0, |γ∗| = k

}≤ k
2 ·4 ·3k−1 . (3.39)
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Gathering these estimates,

µ+
B(n);β,0(σ0 =−1) ≤ 2

3

∑
k≥4

k3k e−2βk def= δ(β) . (3.40)

If β is large enough (so that 3e−2β < 1), then the series in (3.40) converges. More-
over, δ(β) ↓ 0 as β→∞. This proves (3.29), which concludes the proof that βc(2) <
∞.

Before turning to the case d ≥ 3, let us see what additional information about
the low-temperature behavior of the two-dimensional Ising model can be extracted
using the approach discussed above. The next exercise shows that, at sufficiently
low temperatures, typical configurations in B(n), for the model with + boundary
condition, consist of a “sea” of + spins with small islands of − spins (the latter pos-
sibly containing “lakes” of + spins, etc.). Namely, the largest contour in B(n) has a
length of order logn.

Exercise 3.18. Consider the two-dimensional Ising model.

1. Show that there exists β0 <∞ such that the following holds for all β> β0. For
any c > 0, there exists K0(c) <∞ such that, for all K > K0(c) and all n,

µ+
B(n);β,0

(∃γ ∈ Γwith |γ| ≥ K logn
)≤ n−c .

2. Show that, for all β ≥ 0 and all c > 0, there exist K1(β,c) > 0 and n0(c) < ∞
such that, for all K < K1(β,c) and all n ≥ n0(c),

µ+
B(n);β,0

(∃γ ∈ Γwith |γ| ≥ K logn
)≥ 1−e−n2−c

.

Introducing a positive magnetic field h should only make the appearance of con-
tours less likely, so that it is natural to expect that the claims of the previous exercise
still hold in that case.

Exercise 3.19. Extend the claims of Exercise 3.18 to the case h > 0. Hint: For the
first claim, observe that the existence of a long contour implies the existence of a long
path of − spins, which is a decreasing event; then use the FKG inequality.

Extension to larger dimensions. It remains to show that a phase transition also
occurs in the Ising model in dimensions d ≥ 3. Adapting Peierls’ argument to higher
dimensions is possible, but the counting in (3.39) becomes a little trickier.

Exercise 3.20. Show that Peierls’ estimate can be extended to Zd , d ≥ 3. The combi-
natorial estimate on the sum of contours can be done using Lemma 3.38 below.

Nevertheless, we will analyze the model in d ≥ 3 by following an alternative ap-
proach: using the natural embedding of Zd into Zd+1 and the GKS inequalities, we
will prove that βc(d) is nonincreasing in d .

The idea is elementary: one can build the Ising model on Zd+1 by considering
a stack of Ising models on Zd and adding interactions between neighboring spins
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living in successive layers. Then, the GKS inequalities tell us that adding these inter-
actions does not decrease the magnetization and, thus, does not increase the inverse
critical temperature. ¦

To simplify notation, we treat explicitly only the case d = 3; the extension to
higher dimensions is straightforward. We will seeZ2 as embedded inZ3. Therefore,
we will temporarily use the following notations:

B3(n)
def= {−n, . . . ,n}3 , B2(n)

def= {−n, . . . ,n}2 .

We claim that

〈σ0〉+B3(n);β,0 ≥ 〈σ0〉+B2(n);β,0 .

Namely, consider the set of edges {i , j } connecting two nearest-neighbor vertices
i = (i1, i2, i3) and j = ( j1, j2, j3) such that i3 = 0 and | j3| = 1. The two spins liv-
ing at the endpoints of such an edge contribute to the total energy by an amount
−βσiσ j ≡ −Ji jσiσ j (remember the Hamiltonian written as in (3.20)). Thanks to
the GKS inequalities,

∂

∂Ji j
〈σ0〉+B3(n);β,0 = 〈σ0σiσ j 〉+B3(n);β,0 −〈σ0〉+B3(n);β,0〈σiσ j 〉+B3(n);β,0 ≥ 0.

We can therefore consider those edges, one after the other, and for each of them
gradually decrease the interaction from its initial value Ji j = β down to Ji j = 0.

Denoting by µ+,0
B3(n);β,0

the Gibbs distribution obtained after all those coupling con-

stants Ji j have been brought down to zero, we obtain

〈σ0〉+B3(n);β,0 ≥ 〈σ0〉+,0
B3(n);β,0

.

Observe that the spins contained in the layer { j3 = 0} interact now as if they were in
a two-dimensional system, and so 〈σ0〉+,0

B3(n);β,0
= 〈σ0〉+B2(n);β,0

. We therefore get

lim
n→∞〈σ0〉+B3(n);β,0 ≥ lim

n→∞〈σ0〉+B2(n);β,0 .

Combined with (3.27), this inequality shows, in particular, that βc(3) ≤ βc(2). The
existence of a first-order phase transition at low temperatures for the Ising model
on Z3 thus follows from the already proven fact that βc(2) <∞.

Improved bound. It is known that the inverse critical temperature of the two-
dimensional Ising model equals

βc(2) = 1
2 arcsinh(1) ∼= 0.441.

Obviously, not much care was taken, in our application of Peierls’ argument, to
optimize the resulting upper bound on βc(2). The following exercise shows how a
slightly more careful application of the same ideas can lead to a rather decent upper
bound (with a relative error of order 10%, compared to the exact value).
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Exercise 3.21. 1. Check, using (3.40), that βc(2) < 0.88.

2. The aim of this exercise is to improve this estimate to βc(2) < 0.493. This will
be done by showing that

βc(2) ≤ 1
2 logµ ,

where µ is the connectivity constant of Z2, defined by

µ
def= lim

n→∞
1

n
logCn ,

where Cn is the number of nearest-neighbor paths of length n starting at the
origin and visiting each of its vertices at most once. It is known that 2.62 <µ<
2.68. Hint: Proceed similarly as in (3.37) and show that the ratio

µ+
B(n);β,0

(
σi =−1∀i ∈B(R)

)

µ−
B(n);β,0

(
σi =−1∀i ∈B(R)

) < 1,

uniformly in n, provided that β> 1
2 logµ and that R is large enough.

3.7.3 Uniqueness at high temperature

There exist several distinct methods to prove that there is a unique Gibbs state
when the spins are weakly dependent, that is, at high temperatures. Two general
approaches will be presented in Section 6.5. Here, we will rely on a graphical repre-
sentation, which is well adapted to a description of high-temperatures correlations.

High-temperature representation. This representation relies on the following el-
ementary identity. Since σiσ j only takes the two values ±1,

eβσiσ j = cosh(β)+σiσ j sinh(β) = cosh(β)
(
1+ tanh(β)σiσ j

)
. (3.41)

Identity (3.41) can be used to rewrite the Boltzmann weight. For all Λ b Zd and
ω ∈Ω+

Λ,

e−HΛ;β,0(ω) =
∏

{i , j }∈E b
Λ

eβσi (ω)σ j (ω) = cosh(β)|E
b
Λ |

∏

{i , j }∈E b
Λ

(
1+ tanh(β)ωiω j

)
, (3.42)

where E b
Λ was defined in (3.2). We will now expand the product over the edges.

Exercise 3.22. Show that, for any nonempty finite set E ,

∏
e∈E

(1+ f (e)) =
∑

E⊂E

∏
e∈E

f (e) . (3.43)

(As usual, the product in the right-hand side is 1 if E =∅.)

Using (3.43) in (3.42) and changing the order of summation, we get

Z+
Λ;β,0 = cosh(β)|E

b
Λ |

∑

E⊂E b
Λ

tanh(β)|E | ∑
ω∈Ω+

Λ

∏
{i , j }∈E

ωiω j

︸ ︷︷ ︸
=∏

i∈Λω
I (i ,E)
i

,
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where I (i ,E) is the incidence number: I (i ,E)
def= #

{
j ∈Zd : {i , j } ∈ E

}
. Now, the sum-

mation over ω ∈Ω+
Λ can be made separately for each vertex i ∈Λ:

∑
ωi=±1

ωI (i ,E)
i =

{
2 if I (i ,E) is even,

0 otherwise.
(3.44)

We conclude that

Z+
Λ;β,0 = 2|Λ| cosh(β)|E

b
Λ |

∑

E∈E+;even
Λ

tanh(β)|E | , (3.45)

where

E+;even

Λ

def= {
E ⊂ E b

Λ : I (i ,E) is even for all i ∈Λ}
.

When convenient, we will identify such sets of edges with the graph they induce 3.
The expression (3.45) is called the high-temperature representation of the parti-

tion function. Proceeding in the same manner, we see that 〈σ0〉+Λ;β,0 can be written

〈σ0〉+Λ;β,0 =
(
Z+
Λ;β,0

)−12|Λ| cosh(β)|E
b
Λ |

∑

E∈E+;0
Λ

tanh(β)|E |

=
∑

E∈E+;0
Λ

tanh(β)|E |

∑
E∈E+;even

Λ
tanh(β)|E | , (3.46)

where

E+;0
Λ

def= {
E ⊂ E b

Λ : I (i ,E) is even for all i ∈Λ\ {0}, but I (0,E) is odd
}

.

Given E ⊂ E b
Λ, we denote by ∆(E) the set of all edges of E b

Λ sharing no endpoint

with an edge of E . Any collection of edges E ∈E+;0
Λ

can then be decomposed as E =
E0 ∪E ′, with E0 6=∅ the connected component of E containing 0, and E ′ ∈ E+;even

Λ
satisfying E ′ ⊂∆(E0). Therefore,

〈σ0〉+Λ;β,0 =
∑

E0∈E+;0
Λ

connected,E030

tanh(β)|E0|
∑

E ′∈E+;even
Λ

:E ′⊂∆(E0) tanh(β)|E
′|

∑
E∈E+;even

Λ
tanh(β)|E | . (3.47)

Proof that βc(d) > 0, for all d . Bounding the ratio in (3.47) by 1,

〈σ0〉+B(n);β,0 ≤
∑

E0∈E+;0
B(n)

connected,E030

tanh(β)|E0| . (3.48)

The sum can be bounded using the following lemma.

Lemma 3.38. Let G be a connected graph with N edges. Starting from an arbitrary
vertex of G, there exists a path in G crossing each edge of G exactly twice.

3The graph induced by a set E of edges is the graph having E as edges and the endpoints of the
edges in E as vertices.
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Proof. The proof proceeds by induction on N , observing that an arbitrary con-
nected graph can always be built one edge at a time in such a way that all inter-
mediate graphs are also connected. When N = 1, the result is trivial. Suppose that
the result holds when N = k and let π= (π(1), . . . ,π(2k)) be one of the correspond-
ing paths. We add a new edge to the graph, keeping it connected; this implies that
at least one endpoint v of this edge belongs to the original graph. The desired path
is obtained by following π until the first visit at v , then crossing the new edge once
in each direction, and finally following the path π to its end.

Using this lemma, we see that the number of graphs E0 with ` edges contributing
to (3.48) is bounded above by the number of paths of length 2` starting from 0.
The latter is certainly smaller than (2d)2` since each new edge can be taken in at
most 2d different directions. On the other hand, E0 connects necessarily 0 toB(n)c:
Indeed,

∑
i∈Zd I (i ,E0) = 2|E0| is even; since I (0,E0) is odd, there must be at least one

vertex i 6= 0 with I (i ,E0) odd; however, such a vertex cannot belong to B(n), since
I (i ,E0) is even for all i ∈ B(n) \ {0}. We conclude that |E0| ≥ n, which yields, since
tanh(β) ≤β,

〈σ0〉+B(n);β,0 ≤
∑
`≥n

(4d 2β)` ≤ e−cn , (3.49)

with c = c(β,d) > 0, for all β< 1/(4d 2). In particular, 〈σ0〉+β,0 = 0 for all β< 1/(4d 2),

which implies that βc(d) > 0, that is, uniqueness at high temperatures, by Theo-
rem 3.28 and the characterization (3.27).

Proof that βc(1) =+∞. Consider the Ising model in a one-dimensional box B(n)
with + boundary condition:

0 +n−n

Due to the structure ofZ, there are only few subgraphs of E ⊂ E b
B(n)

appearing in
the ratio (3.46) and they are particularly simple. We first consider the denominator.
Since the subgraphs appearing in the sum must be such that the incidence number
of each i ∈B(n) is either 0 or 2,E+;even

B(n)
can contain only two graphs: the graph whose

set of edges is E =∅, as in the previous figure, and the one for which E = E b
B(n)

:

0 +n−n

On the other hand, E+;0
B(n)

also reduces to two graphs, one composed of all edges
with two nonnegative endpoints, and one composed of all edges with two nonpos-
itive endpoints:

0 +n−n

0 +n−n
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Consequently, (3.46) becomes

〈σ0〉+B(n);β,0 =
2tanh(β)n+1

1+ tanh(β)2(n+1)
,

which indeed tends to 0 when n →∞, for all β<∞.

Exercise 3.23. Derive representations similar to (3.47) for 〈σiσ j 〉+Λ;β,0, Z∅
Λ;β,0 and

〈σiσ j 〉∅Λ;β,0.

The next exercise shows that the 2-point function decays exponentially when β is
small enough.

Exercise 3.24. Using Exercise 3.23, prove that, for all β sufficiently small, there exists
c = c(β) > 0 such that 〈σiσ j 〉β,0 ≤ e−c‖ j−i‖1 , for all i , j ∈Zd , where 〈·〉β,0 is the unique
Gibbs state.

Note that, as shown in the next exercise, the decay of the 2-point function can never
be faster than exponential (when β 6= 0):

Exercise 3.25. Using the GKS inequalities, prove that, in any dimension d ≥ 1 and
at any β≥ 0,

〈σiσ j 〉+β,0 ≥ 〈σiσ j 〉∅β,0 ≥ 〈σ0σ‖ j−i‖1〉d=1
Λi , j ;β,0 ,

where the expectation in the right-hand side is with respect to the Gibbs distri-
bution with free boundary condition in the box Λi j = {0, . . . ,‖ j − i‖1} ⊂ Z. Us-
ing Exercise 3.23, show that the 2-point function in the right-hand side is equal to
(tanhβ)‖ j−i‖1 .

Remark 3.39. It is actually possible to prove that the exponential decay of 〈σiσ j 〉β,0

and the exponential relaxation of 〈σ0〉+B(n);β,0
toward 〈σ0〉+β,0 hold true for all β <

βc(d). [3] ¦

Exercise 3.26. Use the high-temperature representation as an alternative way of
computing the pressure of the one-dimensional Ising model with h = 0. Compare
the expressions for ψ+

B(n)
, ψ∅

B(n)
and ψper

B(n)
.

3.7.4 Uniqueness in nonzero magnetic field

We are now left with the proof of item 1 of Theorem 3.25, which states that, when
h 6= 0, the Gibbs state associated to (β,h) is always unique, regardless of the value
of β. The proof will take us on a detour, using results from complex analysis, and
will allow us to establish a very strong property of the pressure of the Ising model.

We will study the existence and properties of the pressure when h takes values
in the complex domains

H+ def= {z ∈C :Rez > 0} ,

H− def= {z ∈C :Rez < 0} .

Since the inverse temperature β > 0 will play no particular role in this section, we
will omit it from the notations at some places. For example, we will write ψ(h)
rather than ψ(β,h).
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Theorem 3.40. Let β > 0. As a function of the magnetic field h, the pressure of the
Ising model in the thermodynamic limit, ψ = ψ(h), can be extended from {h ∈ R :
h > 0} (resp. {h ∈ R : h < 0}) to an analytic function on the whole domain H+ (resp.
H−). On H+ and H−, ψ can be computed using the thermodynamic limit with free
boundary condition.

This result of course implies that the complex derivative of ψ with respect to h ex-

ists on H+ and H−. Therefore, the real partial derivative ∂ψ
∂h exists at each real h 6= 0.

By Theorem 3.34, this implies uniqueness of the Gibbs state for all h 6= 0, thus com-
pleting the proof of Theorem 3.25.

Remark 3.41. The GHS inequality, which is not discussed in this book, allows to
give an alternative proof of the differentiability of the pressure when h 6= 0, avoiding
complex analysis. Namely, the GHS inequality can be used to show that the magne-
tization h 7→ 〈σ0〉+β,h is concave, and hence continuous, onR≥0. This implies that its

antiderivative (which is equal to ψ up to a constant) exists and is differentiable on
(0,+∞). Of course, combined with Theorem 3.34, Theorem 3.40 implies the much
stronger statement that h 7→ 〈σ0〉+β,h is real analytic on {h < 0} and {h > 0}. ¦

We have seen that, for real parameters, the thermodynamic limit of the pres-
sure can be computed using an arbitrary boundary condition. When the magnetic
field is complex, the boundary condition becomes a nuisance. It turns out that the
free boundary condition is particularly convenient. We will therefore work in finite
volumesΛbZd and study

ψ∅
Λ

(h) = 1

|Λ| logZ∅
Λ;β,h .

The existence and analyticity properties of the pressure are established by taking
the thermodynamic limit Λ ⇑ Zd for this choice of boundary condition. The ana-
lytic function obtained is then the analytic continuation of the pressure to complex
values of the field 4.

On the one hand when the magnetic field is real, Z∅
Λ;β,h being a finite linear

combination of powers of e±h , is real-analytic in h. Moreover, since

Z∅
Λ;β,h > 0 for all h ∈R , (3.50)

the pressure ψ∅
Λ

(·) is also real-analytic in h. It is not true, however, that this real

analyticity always holds in the thermodynamic limit Λ ⇑Zd . Indeed, we have seen
(using Peierls’ argument) that, at low temperature, the pressure is not even differ-
entiable at h = 0.

On the other hand, since the Boltzmann weights are complex numbers when
h ∈C, the partition function Z∅

Λ;β,h can very well vanish, leading to a problem even

for the definition of the finite-volume pressure.

Fortunately, the celebrated Lee–Yang Circle Theorem, Theorem 3.43, will show
that the partition function satisfies a remarkable property, analogous to (3.50), in
suitable domains of the complex plane. This will allow us to control the analyticity
of the pressure in the thermodynamic limit, as explained in the following result.

4We remind the reader of the following fact: if two functions analytic on a domain D coincide on a
set A ⊂ D which has an accumulation point in D , then these two functions are equal on D . Therefore, if
it were possible to obtain another pressure ψ̃ using a different boundary condition, analytic on H+ and
H−, then, since this pressure coincides with the one obtained with free boundary conditions on the real
axis, it must coincide with it on H+ and H−.
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Theorem 3.42 (Lee–Yang). Let β≥ 0. Let D ⊂C be open, simply connected and such
that D ∩R is an interval of R. Assume that, for every finite volume ΛbZd ,

Z∅
Λ;β,h 6= 0 ∀h ∈ D . (3.51)

Then, the pressure h 7→ψ(h) admits an analytic continuation to D.

We know from the analysis done in the previous sections that the pressure is not
differentiable at h = 0 when β > βc(d). When this happens, the previous theo-
rem implies that there must exist a sequence (hk ) ∈C, tending to 0 and a sequence
Λk ⇑ Zd such that Z∅

Λk ;β,hk
= 0 for all k. Therefore, even though the partition func-

tions never vanish as long as h is real, complex zeroes approach the point h = 0 in
the thermodynamic limit. In this sense, although values of the magnetic field with
a nonzero imaginary part may be experimentally meaningless [4], the way the par-
tition function behaves for such complex values of the magnetic field turns out to
have profound physical consequences.

Proof of Theorem 3.42: (The precise statements of the few classical results of com-
plex analysis needed in the proof below can be found in Appendix B.3.)

LetΛn ⇑Zd . Using (3.51), Theorem B.23 guarantees that one can find a function
h 7→ logZ∅

Λn ;β,h analytic on D and coinciding with the quantity studied in the rest of

this chapter when h ∈ D ∩R (see Remark B.24 for the existence of a branch of the
logarithm with this property). One can then define

gn(h)
def= exp

(|Λn |−1 logZ∅
Λn ;β,h

)
,

which is also analytic on D . Now, when h ∈ D ∩R, gn(h) coincides with eψ
∅
Λn

(h),

and Theorem 3.6 thus guarantees that, for such values of h, gn(h) → g (h)
def= eψ(h)

as n →∞, where ψ is the pressure of the Ising model in infinite volume.
The next observation is that the sequence (gn) is locally uniformly bounded on

D , since

|Z∅
Λn ;β,h | ≤

∑
ω∈ΩΛn

∣∣exp
(−H ∅

Λn ;β,h(ω)
)∣∣

=
∑

ω∈ΩΛn

exp
(−H ∅

Λn ;β,Reh(ω)
)≤ exp

(
(2dβ+|Reh|+ log2)|Λn |

)
,

and thus |gn(h)| = exp(|Λn |−1 log |Z∅
Λn ;β,h |) ≤ exp(2dβ+|Reh|+ log2) for all h ∈ D .

We are now in a position to apply Vitali’s convergence theorem (Theorem B.25)
in order to conclude that (gn)n≥1 converges locally uniformly, on D , to an analytic
function g .

Moreover, since gn(h) 6= 0 for all h ∈ D and all n ≥ 1, Hurwitz’ theorem (Theo-
rem B.26) implies that g has no zeroes on D . Indeed, the other possibility (that is,
g ≡ 0 on D) is incompatible with the fact that g = eψ > 0 on D ∩R.

Since g does not vanish on D , it follows from Theorem B.23 that the latter ad-
mits an analytic logarithm in D . However, choosing again the branch that is real on
D ∩R, the function log g coincides with the pressure of the Ising model on the real
axis, which proves the theorem.

To prove Theorem 3.40 using Theorem 3.42, we still have to show
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Theorem 3.43 (Lee–Yang Circle Theorem). Condition (3.51) is satisfied when D =
H+ and when D = H−.

The proof given below will involve working with the variable

z
def= e−2h

rather than h. But h ∈ H+ if and only if z ∈U, where U is the open unit disk

U
def= {z ∈C : |z| < 1} .

Therefore, Theorem 3.43 implies that all zeroes of Z∅
Λn ;β,h (seen as a function of z)

lie on the unit circle. This explains the origin of the name associated to the above
result.

Proof. Whenβ= 0, the claim is trivial. We therefore assume from now on thatβ> 0.
It will be convenient to consider the model as defined on a subgraph of Zd with
no isolated vertices, that is, to consider the model on a graph (V ,E) where E is a
finite set of edges between nearest-neighbors of Zd and where V is the set of all
endpoints of edges in E . It will be assumed that the interactions among the spins
on V appearing in the Hamiltonian are only between spins at vertices connected
by an edge of E .

As we already said, the partition function with free boundary condition in V is
a finite linear combination of powers of e±h . We will now express it as a polynomial
in the variable z = e−2h . Namely,

Z∅
V ;β,h =

∑
ω∈ΩV

∏
{i , j }∈E

eβσi (ω)σ j (ω)
∏
i∈V

ehσi (ω)

= eβ|E |+h|V | ∑
ω∈ΩV

∏
{i , j }∈E

eβ(σi (ω)σ j (ω)−1)
∏
i∈V

eh(σi (ω)−1) .

A configuration ω ∈ΩV can always be identified with the set X = X (ω) ⊂V defined

by X (ω)
def= {i ∈V :σi (ω) =−1}. We can therefore write

∑
ω∈ΩV

∏
{i , j }∈E

eβ(σi (ω)σ j (ω)−1)
∏
i∈V

eh(σi (ω)−1) =
∑

X⊂V
aE (X )z |X | def= PE (z) ,

where aE (∅) = aE (V )
def= 1 and, in all other cases,

aE (X )
def=

∏
{i , j }∈E

i∈X , j∈V \X

e−2β .

Observe that these coefficients satisfy aE (X ) ∈ [0,1]. Since Z∅
V ;β,h = eβ|E |+h|V |PE (z),

in order to show that Z∅
V ;β,h 6= 0 for all h ∈ H+, it suffices to prove that PE (z) does

not vanish on U.
The next step is to turn the one-variable but high-degree polynomial PE into a

many-variables but degree-one (in each variable) polynomial: let zV = (zi )i∈V ∈CV

and consider the polynomial

P̂E (zV )
def=

∑
X⊂V

aE (X )
∏
i∈X

zi .
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Of course, the original polynomial PE (z) is recovered by taking zi = z for all i ∈V .
We will show that

|zi | < 1,∀i ∈V =⇒ P̂E (zV ) 6= 0. (3.52)

The proof proceeds by induction on the cardinality of E . We first check that (3.52)
holds when E consists of a single edge {i , j }. In that case, since aE ({i }) = aE ({ j }) =
e−2β,

P̂E (z{i , j }) = zi z j +e−2β(zi + z j )+1.

Therefore, P̂E (z{i , j }) = 0 if and only if

zi =−e−2βz j +1

z j +e−2β
.

Using the fact that 0 ≤ e−2β < 1, it is easy to check (see Exercise 3.27 below) that the
Möbius transformation z 7→ −(e−2βz + 1)/(z + e−2β) interchanges the interior and
the exterior of U. This implies that if |z j | < 1, then |zi | > 1, so that P̂E (zi , z j ) never
vanishes when both |zi |, |z j | < 1.

Let us now assume that (3.52) holds for (V ,E) and let b = {i , j } be an edge of
Zd not contained in E . We want to show that (3.52) still holds for the graph (V ∪
{i , j },E ∪ {b}).

There are three cases to consider, depending on whether V ∩{i , j } is empty, con-
tains one vertex, or contains two vertices.

Case 1: V ∩ {i , j } =∅. In this case, the sum over X ⊂ V ∪ {i , j } can be split into two
independent sums, over X1 ⊂V and X2 ⊂ {i , j }, giving

P̂E∪{b}(zV ∪{i , j }) = P̂E (zV )P̂{b}(z{i , j }) . (3.53)

Since neither of the polynomials on the right-hand side vanishes (by the induction
hypothesis) when |zk | < 1 for all k ∈V ∪ {i , j }, the same must be true of the polyno-
mial on the left-hand side.

Case 2: V ∩ {i , j } = {i }. The main idea here is to add the new edge b in two steps.
First, we add to E a “virtual” edge b′ = {i ′, j }, where i ′ is a virtual vertex not present
in V , and then identify i ′ with i , by a procedure called Asano contraction:

i ji ′ j

E E

i

On the one hand, since V ∩ {i ′, j } = ∅, we are back to Case 1: the polynomial
P̂E∪{b′}(zV ∪{i ′, j }) can be factorized as in (3.53) and, by the induction hypothesis,
we conclude that it cannot vanish when all its variables have modulus smaller than
1.

On the other hand, the sum over X ⊂ V ∪ {i ′, j } in P̂E∪{b′}(zV ∪{i ′, j }) can be split
depending on X ∩ {i ′, i } being {i , i ′}, {i ′}, {i } or ∅, giving

P̂E∪{b′}(zV ∪{i ′, j }) = P̂−,−zi zi ′ +P̂+,−zi ′ +P̂−,+zi +P̂+,+ ,
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where P̂+,+,P̂+,−,P̂−,+ and P̂−,− are polynomials in the remaining variables: z j

and zk , k ∈V \ {i }.
The Asano-contraction of P̂E∪{b′}(zV ∪{i ′, j }) is defined as the polynomial

P̂−,−zi +P̂+,+ .

It turns out that the latter polynomial coincides with P̂E∪{b}(zV ∪{ j }).

Lemma 3.44. P̂E∪{b}(zV ∪{ j }) = P̂−,−zi +P̂+,+.

Proof. Let Ṽ
def= (V \ {i })∪ { j }. For σ1,σ2 ∈ {−,+}, the polynomials P̂σ1,σ2 are explic-

itly given by
P̂σ1,σ2 =

∑
X⊂Ṽ

aσ1,σ2
E∪{b′}(X )

∏
k∈X

zk ,

with

a−,−
E∪{b′}(X )

def= (
1{X3 j } +1{X 63 j }e

−2β)
aE (X ∪ {i }) ,

a+,−
E∪{b′}(X )

def= (
1{X3 j } +1{X 63 j }e

−2β)
aE (X ) ,

a−,+
E∪{b′}(X )

def= (
1{X 63 j } +1{X3 j }e

−2β)
aE (X ∪ {i }) ,

a+,+
E∪{b′}(X )

def= (
1{X 63 j } +1{X3 j }e

−2β)
aE (X ) .

Doing a similar decomposition for the polynomial P̂E∪{b}(zV ∪{ j }), we get:

P̂E∪{b}(zV ∪{ j }) = P̂−zi +P̂+ ,

where, for σ ∈ {−,+}, we have introduced

P̂σ def=
∑

X⊂Ṽ

aσE∪{b}(X )
∏

k∈X
zk ,

with

a−
E∪{b}(X )

def= (
1{X3 j } +1{X 63 j }e

−2β)
aE (X ∪ {i }) ,

a+
E∪{b}(X )

def= (
1{X 63 j } +1{X3 j }e

−2β)
aE (X ) .

The conclusion follows.

Since we have seen that the polynomial P̂E∪{b′}(zV ∪{i ′, j }) does not vanish when
all its variables have modulus smaller than 1, it suffices to show that its Asano-
contraction also cannot vanish when all its variables have modulus smaller than
1.

Let us fix the variables zk , k ∈ V \ {i }, and z j so that they all belong to U. By

Case 1, we know that, in this situation, P̂E∪{b′}(zE∪{i ′, j }) cannot vanish when zi and
zi ′ also both belong to U. By taking zi = zi ′ = z, we conclude that

z 7→ P̂−,−z2 + (P̂−,++P̂+,−)z +P̂+,+

cannot have zeros of modulus smaller than 1. In particular, the product of its two
roots has modulus 1 or larger. But the latter implies that |P̂+,+| ≥ |P̂−,−| and, thus,
z 7→ P̂−,−z +P̂+,+ cannot vanish when |z| < 1.
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Case 3: V ∩ {i , j } = {i , j }. This case is treated in a very similar way, so we only sketch
the argument and leave the details as an exercise to the reader.

Adding a virtual edge b′′ = {i ′, j ′} yields a polynomial P̂E∪{b′′}(zV ∪{i ′, j ′}) satisfy-
ing (3.52) by Case 1. We then proceed as above and apply two consecutive Asano
contractions: the first to identify the variables z j ′ and z j , the second to identify the
variables zi ′ and zi .

i ′

j ′

E

j

i i ′

j

E i i

j

E

Figure 3.13: A picture of case 3: We first add a virtual edge {i ′, j ′} to E , then
identify first j and j ′, and then i and i ′.

Remark 3.45. The reader might have noticed that the proof given above does not
depend on the structure of the graph inherited from the Hamiltonian of the model.
Moreover, the fact that the interaction is the same between each pair of nearest-
neighbor spins, was not used: the coupling constant β used for all edges could be
replaced by couplings Ji j varying from edge to edge. Therefore, the Circle Theorem
and its consequence, Theorem 3.42, can be adapted to obtain analyticity of the
pressure in more general settings. ¦

Exercise 3.27. Let ϕ(z)
def= αz+1

α+z , where 0 ≤α< 1. Show that ∂U is invariant under ϕ,
and that ϕ maps the interior of U onto its exterior and vice versa.

Exercise 3.28. Using the explicit formula (3.10) for the pressure of the one-
dimensional Ising model, determine the location of its singularities as a function
of the (complex) magnetic field h. What happens as β tends to infinity?

The next exercise provides an alternative approach to the analyticity of the pres-
sure in a smaller open part of the complex plane, still containing R\ {0}.

Exercise 3.29. Assume that Reh > 0. Observe that, by considering two independent
copies of the system with magnetic field h and h̄, one can write

|Z∅
Λ;β,h |

2 =
∑
ω,ω′

exp
{
β

∑
{i , j }∈EΛ

(ωiω j +ω′
iω

′
j )+

∑
i∈Λ

(hωi + h̄ω′
i )

}
.

We define θi ∈ {0,π/2,π,3π/2}, i ∈ Λ, by cosθi
def= 1

2 (ωi +ω′
i ) and sinθi

def= 1
2 (ωi −

ω′
i ). Show that, after changing to these variables and expanding the exponential,

one obtains

|Z∅
Λ;β,h |

2 =
∑

(θi )i∈Λ

∑
m=(mi )i∈Λ
mi∈{0,1,2,3}

α̂me i
∑

i∈Λmiθi = 4|Λ| α̂(0,...,0) ,

with coefficients α̂m nonnegative and nondecreasing in Reh +Imh and in Reh −
Imh. Conclude that |Z∅

Λ;β,h | > 0 when Reh > |Imh|.
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3.7.5 Summary of what has been proved

In this brief subsection, we summarize the main results that have been derived.
First, we emphasize that the main features of the discussion in Section 1.4.3 have
been fully recovered (compare, in particular, with Figure 1.11):

Theorem 3.46. Let βc(d) be the inverse critical temperature of the Ising model onZd

(we have seen that βc(1) =+∞, while 0 <βc(d) <∞ for d ≥ 2).

1. For all β < βc(d), the average magnetization density m(β,h) is well defined
(and independent of the boundary condition and of the sequence of boxes used
in its definition) for all h ∈R. It is an odd, nondecreasing, continuous function
of h; in particular, m(β,0) = 0.

2. For all β > βc(d), the average magnetization density m(β,h) is well defined
(and independent of the boundary condition and of the sequence of boxes used
in its definition) for all h ∈ R \ {0}. It is an odd, nondecreasing function of h,
which is continuous everywhere except at h = 0, where

lim
h↓0

m(β,h) = m+(β,h) > 0, lim
h↑0

m(β,h) = m−(β,h) < 0.

In particular, the spontaneous magnetization satisfies

m∗(β) = 0 when β<βc(d) , m∗(β) > 0 when β>βc(d) .

Remark 3.47. As has already been mentioned, it is known that m∗(βc) = 0. By Exer-
cise 3.17, this implies that the function β 7→ m∗(β) is continuous at βc. ¦
Remark 3.48. It follows from the above that, when h = 0, the spontaneous magne-
tization m∗(β) allows one to distinguish the ordered regime (in which m∗(β) > 0)
from the disordered regime (in which m∗(β) = 0). A function with this property is
said to be an order parameter. ¦

Proof of Theorem 3.46. On the one hand, we know from Theorem 3.43 that, for all
β ≥ 0, the pressure ψ(β,h) is differentiable with respect to h at all h 6= 0. On the
other hand, point 3 of Theorem 3.25 and Theorem 3.34 imply that the function
h 7→ ψ(β,h) is differentiable at h = 0 when β < βc(d), but is not differentiable at
h = 0 when β > βc(d). This implies that Bβ =∅ when h 6= 0 or β < βc(d), and that
Bβ = {0} when h = 0 and β>βc(d).

By Corollary 3.7, the above implies that m(β,h) is well defined and independent
of the boundary condition whenever h 6= 0 or β < βc(d). This shows, in particular,
that m(β,h) = m+(β,h) for all h > 0.

The claim that m(β,h) is an odd, nondecreasing function of h that is continuous
for all h 6∈Bβ follows from symmetry and Corollary 3.7.

We have also seen that the Gibbs states provide a satisfactory description of the
model in the thermodynamic limit. These objects give a first glimpse of the way
by which models in infinite volume will be described later in the book. The states
〈·〉+

β,h and 〈·〉−
β,h , constructed with + and − boundary conditions respectively, were

instrumental in characterizing the uniqueness regime. Much more will be said on
these states, in particular in Chapter 6.
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3.8 Proof of the Correlation Inequalities

3.8.1 Proof of the GKS inequalities

Although the GKS inequalities (3.21) and (3.22) are already more than we need to
study the (nearest-neighbor) Ising model, we will prove them in an even more gen-
eral setting.

Let Λ b Zd and let K = (KC )C⊂Λ be a family of real numbers, called coupling
constants. Consider the following probability distribution onΩΛ:

νΛ;K(ω)
def= 1

ZΛ;K
exp

{ ∑
C⊂Λ

KCωC
}

,

whereωC
def= ∏

i∈C ωi and ZΛ;K is the associated partition function. The Gibbs distri-
butions µ+

Λ;J,h, µ∅
Λ;J,h and µper

Λ;J,h can all be written in this form, with KC ≥ 0 ∀C ⊂Λ,

if h ≥ 0. For example, µ+
Λ;β,h = νΛ;K once

KC =





h +β#
{

j 6∈Λ : j ∼ i
}

if C = {i } ⊂Λ,

β if C = {i , j } ⊂Λ, i ∼ j ,

0 otherwise.

Exercise 3.30. Check that µ∅
Λ;β,h and µ

per
Λ;β,h can also be written in this form for a

suitable choice of the coefficients K, and that these coefficients can all be taken non-
negative if h ≥ 0.

We can now state the following generalization of Theorem 3.20.

Theorem 3.49. Let K = (KC )C⊂Λ be such that KC ≥ 0 for all C ⊂ Λ. Then, for any
A,B ⊂Λ,

〈σA〉Λ;K ≥ 0, (3.54)

〈σAσB 〉Λ;K ≥ 〈σA〉Λ;K〈σB 〉Λ;K . (3.55)

Proof. Clearly, ZΛ;K > 0. We can thus focus on the numerators. Expanding the ex-
ponentials as Taylor series as eKCωC =∑

nC≥0
1

nC ! K
nC
C ω

nC
C , we can write

ZΛ;K〈σA〉Λ;K =
∑
ω
ωA

∏
C⊂Λ

eKCωC

=
∑

(nC )C⊂Λ
nC≥0

∏
C⊂Λ

K nC
C

nC !

∑
ω
ωA

∏
C⊂Λ

ω
nC
C . (3.56)

We rewrite ωA
∏

C⊂Λω
nC
C =∏

i∈Λω
mi
i , where mi = 1{i∈A} +

∑
C⊂Λ,C3i nC . Upon sum-

mation, since
∑

ωi=±1
ω

mi
i =

{
2 if mi is even,

0 if mi is odd,

it follows that ∑
ω

∏
i∈Λ

ω
mi
i =

∏
i∈Λ

∑
ωi=±1

ω
mi
i ≥ 0.
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This establishes (3.54). To prove (3.55), we duplicate the system. That is, we con-
sider the product probability distribution νΛ;K ⊗νΛ;K onΩΛ×ΩΛ defined by

νΛ;K ⊗νΛ;K(ω,ω′) def= νΛ;K(ω)νΛ;K(ω′) .

If we define σi (ω,ω′) def= ωi and σ′
i (ω,ω′) def= ω′

i , then

〈σAσB 〉Λ;K −〈σA〉Λ;K〈σB 〉Λ;K = 〈σA(σB −σ′
B )〉νΛ;K⊗νΛ;K .

The problem is thus reduced to proving the nonnegativity of

(ZΛ;K)2〈σA(σB −σ′
B )〉νΛ;K⊗νΛ;K =

∑
ω,ω′

ωA(ωB −ω′
B )

∏
C⊂Λ

eKC (ωC+ω′
C ) .

Introducing the variables ω′′
i

def= ωiω
′
i =ω′

i /ωi ,

∑
ω,ω′

ωA(ωB −ω′
B )

∏
C⊂Λ

eKC (ωC+ω′
C ) =

∑
ω,ω′′

ωAωB (1−ω′′
B )

∏
C⊂Λ

eKC (1+ω′′
C )ωC

=
∑
ω′′

(1−ω′′
B )

∑
ω
ωAωB

∏
C⊂Λ

eKC (1+ω′′
C )ωC .

Since 1−ω′′
B ≥ 0, (3.55) follows by treating this last sum overω (for each fixedω′′) as

the one in (3.56), working with coupling constants KC (1+ω′′
C ) ≥ 0.

Exercise 3.31. Let K = (KC )C⊂Λ and K′ = (K ′
C )C⊂Λ be such that KC ≥ |K ′

C | (in partic-
ular, KC ≥ 0), for all C ⊂Λ. Show that, for any A,B ⊂Λ,

〈σA〉Λ;K ≥ 〈σA〉Λ;K′ .

Hint: apply a variant of the argument used to prove (3.55).

3.8.2 Proof of the FKG inequality

We provide here a very general and short proof of the FKG inequality. The inter-
ested reader can find an alternative proof in Section 3.10.3, based on Markov chain
techniques, which he might find more intuitive.

Our aim is to show that, for a finite volume Λ b Zd and two nondecreasing
functions f , g :Ω→R,

〈 f g 〉η
Λ;J,h ≥ 〈 f 〉η

Λ;J,h〈g 〉η
Λ;J,h . (3.57)

Again, we will prove a result that is more general than required. Remember that the
order we use on ΩΛ is the following: ω ≤ ω′ if and only if ωi ≤ ω′

i for all i ∈ Λ. We
also define, for ω= (ωi )i∈Λ and ω′ = (ω′

i )i∈Λ,

ω∧ω′ def= (ωi ∧ω′
i )i∈Λ ,

ω∨ω′ def= (ωi ∨ω′
i )i∈Λ .

As explained below, (3.57) is a consequence of the following general result.
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Theorem 3.50. Let µ=⊗
i∈Λµi be a product measure on ΩΛ. Let f1, . . . , f4 :ΩΛ→R

be nonnegative functions onΩΛ such that

f1(ω) f2(ω′) ≤ f3(ω∧ω′) f4(ω∨ω′), ∀ω,ω′ ∈ΩΛ. (3.58)

Then
〈 f1〉µ〈 f2〉µ ≤ 〈 f3〉µ〈 f4〉µ . (3.59)

Before turning to the proof of this result, let us explain why it implies (3.57). With
no loss of generality, we can assume that f and g depend only on the values of the
configuration insideΛ and that both are nonnegative 5. For i ∈Λ, s ∈ {±1}, let

µi (s)
def= ehs+s

∑
j 6∈Λ, j∼i Ji jη j .

We have

〈 f 〉η
Λ;J,h =

∑
ω∈ΩΛ

f (ω)p(ω)µ(ω) = 〈 f p〉µ ,

where

p(ω)
def=

exp{
∑

{i , j }∈EΛ Ji jωiω j }

Zη
Λ;J,h

.

Let f1 = p f , f2 = pg , f3 = p, f4 = p f g . If (3.58) holds for this choice, then (3.59)
holds, and so (3.57) is proved. To check (3.58), we must verify that

p(ω)p(ω′) ≤ p(ω∨ω′)p(ω∧ω′) .

But this is true since

ωiω j +ω′
iω

′
j ≤ (ωi ∨ω′

i )(ω j ∨ω′
j )+ (ωi ∧ω′

i )(ω j ∧ω′
j ) .

Indeed, the inequality is obvious if both terms in the right-hand side are equal to 1.
Let us therefore assume that at least one of them is equal to −1. This cannot happen
if both ωi 6= ω′

i and ω j 6= ω′
j . Without loss of generality, we can thus suppose that

ωi =ω′
i . In that case, the right-hand side equals

ωi
{
(ω j ∨ω′

j )+ (ω j ∧ω′
j )

}=ωi (ω j +ω′
j ) =ωiω j +ω′

iω
′
j .

Remark 3.51. As the reader can easily check, the proof below does not rely on the
fact that the spins take their values in {±1}; it actually holds for arbitrary real-valued
spins. ¦

Proof of Theorem 3.50. For some fixed i ∈Λ, any configurationω ∈ΩΛ can be iden-
tified with the pair (ω̃,ωi ), where ω̃ ∈ΩΛ\{i }. We will show that

f1(ω) f2(ω′) ≤ f3(ω∧ω′) f4(ω∨ω′) . (3.60)

implies
f̃1(ω̃) f̃2(ω̃′) ≤ f̃3(ω̃∧ ω̃′) f̃4(ω̃∨ ω̃′) , (3.61)

5Indeed, if these hypotheses are not verified, we can redefine f (ω), for ω ∈ ΩΛ, by f (ωη|Λc ) −
minω′ f (ω′η|Λc ) where ωη|Λc is the configuration that coincides with ω on Λ and with η on Λc. The
same can be done with g . Note that this does not affect the covariance of f and g .
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where (for k = 1,2,3,4) f̃k (ω̃)
def= 〈 fk (ω̃, · )〉µi =

∑
v=±1 fk (ω̃, v)µi (v). Using this obser-

vation |Λ| times yields the desired result.
The left-hand side of (3.61) can be written

〈 f1(ω̃,u) f2(ω̃′, v)〉µi⊗µi = 〈1{u=v} f1(ω̃,u) f2(ω̃′, v)〉µi⊗µi

+〈1{u<v}( f1(ω̃,u) f2(ω̃′, v)+ f1(ω̃, v) f2(ω̃′,u))〉µi⊗µi .

Similarly, the right-hand side of (3.61) can be written

〈 f3(ω̃∧ ω̃′,u) f4(ω̃∨ ω̃′, v)〉µi⊗µi = 〈1{u=v} f3(ω̃∧ ω̃′,u) f4(ω̃∨ ω̃′, v)〉µi⊗µi

+〈1{u<v}( f3(ω̃∧ ω̃′,u) f4(ω̃∨ ω̃′, v)+ f3(ω̃∧ ω̃′, v) f4(ω̃∨ ω̃′,u))〉µi⊗µi .

We thus obtain

f̃3(ω̃∧ ω̃′) f̃4(ω̃∨ ω̃′)− f̃1(ω̃) f̃2(ω̃′)

= 〈1{u=v}
(

f3(ω̃∧ ω̃′,u) f4(ω̃∨ ω̃′, v)− f1(ω̃,u) f2(ω̃′, v)
)〉µn⊗µn

+〈1{u<v}
(
C +D − A−B

)〉µn⊗µn , (3.62)

where we have introduced A
def= f1(ω̃,u) f2(ω̃′, v), B

def= f1(ω̃, v) f2(ω̃′,u), C
def= f3(ω̃∧

ω̃′,u) f4(ω̃∨ ω̃′, v) and D
def= f3(ω̃∧ ω̃′, v) f4(ω̃∨ ω̃′,u).

The first term in the right-hand side of (3.62) is nonnegative thanks to inequal-
ity (3.60). The desired claim (3.61) will thus follow if we can show that A+B ≤C+D .

Observe first that (3.60) implies that A ≤C , B ≤C and

AB = f1(ω̃,u) f2(ω̃′,u) f1(ω̃, v) f2(ω̃′, v)

≤ f3(ω̃∧ ω̃′,u) f4(ω̃∨ ω̃′,u) f3(ω̃∧ ω̃′, v) f4(ω̃∨ ω̃′, v) =C D .

On the one hand, if C = 0, then A = B = 0 and the inequality A+B ≤C+D is obvious.
On the other hand, when C 6= 0, the inequality follows from

(C +D − A−B)/C ≥ 1+ AB/C 2 − (A+B)/C = (1− A/C )(1−B/C ) ≥ 0.

3.9 Bibliographical references

The Ising model is probably the most studied model in statistical physics and, as
such, is discussed in countless books and review articles. An old, but very good,
general discussion in the spirit of what is done here is [146]. We list some references
for the material presented in the chapter.

Pressure. The notion of convergence in the sense of van Hove (formulated in a
slightly different, but equivalent way) was first introduced in [345].

In the context of lattice spin systems, the existence and the basic properties of
the thermodynamic limit for the pressure were first established by Griffiths [145]
and Gallavotti and Miracle-Solé [128]. The proofs given in this chapter (Theo-
rem 3.6 and Exercise 3.3) can be extended to cover a very wide class of models,
possibly with interactions of infinite range. See the books by Ruelle [289] and Si-
mon [308] for additional results and information.

The computation of the pressure of the one-dimensional (nearest-neighbor)
Ising model (Theorem 3.9) was the main result of Ising’s PhD thesis and was pub-
lished in [175]. It relied on some simple combinatorics in order to compute the



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

3.9. Bibliographical references 131

generating function
∑

N ZVN ;β,h sN , from which Ising then extracted the value of the
partition function. The transfer matrix computation seems to be due to Kramers
and Wannier [200].

The first computation of the pressure of the two-dimensional Ising model with-
out magnetic field, whose result is stated at the end of Section 3.3, was achieved
in a groundbreaking work by Onsager [259]. Extensions of the computations to
nonzero magnetic field in two dimensions, or to higher dimensions, have not been
found despite much effort.

Gibbs states. The notion of Gibbs state as used in this chapter (rather than the
more general version discussed in Chapter 6) was commonly used in the 1960s and
1970s, see, for example, the early review by Gallavotti [127].

Correlation inequalities and applications. The first version of the GKS inequali-
ties was obtained by Griffiths [142]; in the form stated in Theorem 3.49 they are due
to Kelly and Sherman [188]. These inequalities admit important generalizations to
more general single-spin spaces; see, for example, [139, 310]. The proof of the GKS
inequalities given in Section 3.8 is due to Ginibre [138].

The FKG inequality has first been established by Fortuin, Kasteleyn and Gini-
bre [110]. The proof given in Section 3.8.2 is due to Ahlswede and Daykin [2]; our
presentation is inspired by [10]. The alternative proof presented in Section 3.10.3
was found by Holley [163]; see also [132, 225].

The applications of the correlation inequalities given in Section 3.6 are part of
the folklore and are spread out over many papers. A good early reference is [146].
Exercise 3.15 is adapted from [229].

The uniqueness criteria given in Theorems 3.28 and 3.34 are due to Lebowitz
and Martin-Löf [219]. The other claims concerning the magnetization density are
again part of the folklore.

Peierls’ argument. The geometric proof described in Section 3.7.2 is due to
Peierls [266]; see also [144, 80]. This argument has become central in the rigor-
ous analysis of first-order phase transitions and is at the basis of the Pirogov–Sinai
theory, a far-reaching generalization which is the main topic of Chapter 7.

The approach described in Exercise 3.21 is inspired by [198]. The more precise
bounds on the connectivity constant 2.625622 <µ< 2.679193 can be found in [182]
and [277] respectively. Numerically, the best estimate at the moment of writing
seems to be µ∼= 2.63815853032790(3) [180].

High-temperature representation. The high-temperature representation, which
is described in Section 3.7.3, was introduced by van der Waerden in [340].

The proof of uniqueness based on the high-temperature expansion is again part
of the folklore. There are many alternative ways of establishing uniqueness at high
enough temperature, among which: Dobrushin’s uniqueness theorem (discussed
in Section 6.5.2), the cluster expansion (discussed in Section 6.5.4) and disagree-
ment percolation (see, for example, [132]). These can be used to extract additional
information, such as analyticity of the pressure, exponential decay of correlations,
exponential convergence of the finite-volume expectations of local functions, etc.;
see [86] for a discussion of the remarkable additional properties that hold at suffi-
ciently high temperatures.
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Uniqueness in non-zero magnetic field. Theorems 3.40, 3.42 and 3.43 are due to
Lee and Yang and appeared first in [353, 220]. The Asano contraction method used
in the proof of the latter theorem was introduced by Asano in [13]; see also [290].
For a rather extensive bibliography on this topic and various extensions, see [33].

Although we do not discuss this in the text, it is possible to derive various prop-
erties of interest from the Lee–Yang theorem, such as exponential decay of trun-
cated correlation functions (for example, 〈σ0σi 〉β,h −〈σ0〉β,h〈σi 〉β,h) at all β when
h 6= 0 [95], as well as analyticity in h of correlation functions [216]. See also [120,
121].

Another route to the proof of uniqueness at non-zero magnetic field is through
the GHS inequality. The latter was first proved by Griffiths, Hurst and Sherman
in [143]. It states that the Ising model with magnetic field h = (hi )i∈Λ satisfies

∂2

∂hi∂h j
〈σk〉∅Λ;β,h ≤ 0,

for all Λ b Zd and i , j ,k ∈ Λ, provided that h` ≥ 0 for all ` ∈ Λ. Taking hi = h for
all i , it implies in particular that the magnetization density m(β,h) is concave (in
particular, continuous) as a function of h ≥ 0.

The alternative argument given in Exercise 3.29 is adapted from a more general
approach by Dunlop [96].

3.10 Complements and further reading

3.10.1 Kramers–Wannier duality

In this section we present an argument, proposed by Kramers and Wannier [200],
which suggests that the critical inverse temperature of the Ising model on Z2 is
equal to

βc(2) = 1
2 log(1+

p
2) . (3.63)

The starting point is the representation of the partition function with + boundary
condition in terms of contours in (3.32):

Z+
B(n);β,0 = eβ|E

b
B(n)|

∑
ω∈Ω+

B(n)

∏
γ∈Γ(ω)

e−2β|γ| . (3.64)

Let B(n)∗ = {−n − 1
2 ,−n + 1

2 , . . . ,n − 1
2 ,n + 1

2 }2 ⊂ Z2
∗ be the box dual to B(n). From

Exercise 3.23, we have the high-temperature representation

Z∅
B(n)∗;β∗,0

= 2|B(n)∗| cosh(β∗)|EB(n)∗ |
∑

E∈Eeven
B(n)∗

tanh(β∗)|E | . (3.65)

We will now identify each set E ∈Eeven
B(n)∗ with the edges of the contours of a unique

configuration ω ∈Ω+
B(n)

:
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B(n) B(n)∗

Lemma 3.52. Let E ∈ EB(n)∗ . Then E ∈ Eeven
B(n)∗ if and only if E coincides with the

edges of the contours of a configuration ω ∈Ω+
B(n)

.

Proof. If E ∈ Eeven
B(n)∗ , then applying the rounding operation of Figure 3.11 yields a

set of disjoint closed loops which are the contours of the configuration ω ∈ Ω+
B(n)

defined by

ωi
def= (−1)|{loops surrounding i }| , i ∈B(n) .

Conversely, we have already seen in footnote 2, page 111, that the set of edges of
the contours of a configuration ω ∈Ω+

B(n)
belong to Eeven

B(n)∗ .

It follows from the previous lemma that

∑
E∈Eeven

B(n)∗

tanh(β∗)|E | =
∑

ω∈Ω+
B(n)

∏
γ∈Γ(ω)

tanh(β∗)|γ| .

Therefore, if β∗ satisfies
tanh(β∗) = e−2β , (3.66)

we obtain the identity

2−|B(n)∗| cosh(β∗)−|EB(n)∗ |Z∅
B(n)∗;β∗,0

= e−β|E
b
B(n)|Z+

B(n);β,0 . (3.67)

When n →∞,
|B(n)∗|
|B(n)| → 1,

|EB(n)∗ |
|B(n)| → 2,

|E b
B(n)

|
|B(n)| → 2.

We thus obtain, by Theorem 3.6,

ψ(β,0) =ψ(β∗,0)− logsinh(2β∗) . (3.68)

The meaning of (3.68) is that the pressure is essentially invariant under the trans-
formation

β 7→β∗ = arctanh(e−2β) , (3.69)

which interchanges the low and high temperatures, as can be verified in the follow-
ing exercise.

Exercise 3.32. Show that the mapping φ : x 7→ arctanh(e−2x ) is an involution (φ ◦
φ = id) with a unique fixed (self-dual) point βsd equal to 1

2 log(1+
p

2). Moreover,
φ([0,βsd)) = (βsd,∞].
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Since φ and logsinh are both analytic on (0,∞), it follows from (3.68) that any
non-analytic behavior of ψ(·,0) at some inverse temperature β must also imply a
non-analytic behavior atβ∗ =φ(β). Consequently, if one assumes that the pressure
ψ(·,0)

1. is non-analytic at βc,

2. is analytic everywhere else,

then βc must coincide with βsd. This leads to the conjecture (3.63).

That the inverse critical temperature of the Ising model onZ2 actually coincides
with the self-dual point of this transformation follows from the exact expression for
the pressure derived by Onsager. There exists in fact a variety of ways to prove that
this is the correct value for βc in the two-dimensional Ising model, relying on the
self-duality of the model, but avoiding exact computations; see, for example, [350].
Extensions to other planar graphs is possible, see [70] and references therein.

The duality relation (3.67) and various generalizations have found numerous
other uses in the rigorous analysis of the two-dimensional Ising model. The book
by Gruber, Hintermann and Merlini [154] discusses duality in considerably more
detail and in a more general framework.

3.10.2 Mean-field bounds

Let ψCW
β

(h), mCW
β

(h) and βCW
c

def= (2d)−1 be the pressure, magnetization and critical

inverse temperature of the Curie–Weiss model associated to the d-dimensional
Ising model (remember the dependence on d in the Hamiltonian (2.2)). The fol-
lowing theorem, due to Thompson [332, 330], shows that these quantities provide
rigorous bounds on the corresponding quantities for the Ising model on Zd . Refer-
ences to additional results pertaining to the relations between a model on Zd and
its mean-field approximation can be found in Section 2.5.4.

Theorem 3.53. The following holds for the Ising model on Zd , d ≥ 1:

1. ψ(β,h) ≥ψCW
β

(h), for all β≥ 0 and all h ∈R;

2. 〈σ0〉+β,h ≤ mCW
β

(h), for all β≥ 0 and all h ≥ 0;

3. βc(d) ≥βCW
c , for all d ≥ 1.

Proof. 1. Since the pressures are even functions of h, we can assume that h ≥ 0. We
start by decomposing the Hamiltonian with periodic boundary condition:

H per

Vn ;β,h
def= −β

∑

{i , j }∈E per
Vn

σiσ j −h
∑

i∈Vn

σi =H per,0
Vn ;β,h +H per,1

Vn ;β,h ,

where

H per,0
Vn ;β,h

def= dβ|Vn |m2 − (h +2dβm)
∑

i∈Vn

σi ,

H per,1
Vn ;β,h

def= −β
∑

{i , j }∈E per
Vn

(σi −m)(σ j −m) ,
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where m ∈ R will be chosen later. We can then rewrite the corresponding partition
function as

Zper

Vn ;β,h
def=

∑
ω∈ΩVn

exp
(−H per

Vn ;β,h(ω)
)

=
∑

ω∈ΩVn

exp
(−H per,1

Vn ;β,h(ω)
)

exp
(−H per,0

Vn ;β,h(ω)
)

= Zper,0
Vn ;β,h

〈
exp

(−H per,1
Vn ;β,h

)〉per,0
Vn ;β,h ,

where we have introduced the Gibbs distribution

µ
per,0
Vn ;β,h(ω)

def=
exp

(−H per,0
Vn ;β,h(ω)

)

Zper,0
Vn ;β,h

, with Zper,0
Vn ;β,h

def=
∑

ω∈ΩVn

exp
(−H per,0

Vn ;β,h(ω)
)

.

By Jensen’s inequality,

Zper

Vn ;β,h ≥ Zper,0
Vn ;β,h exp

(−〈
H per,1

Vn ;β,h

〉per,0
Vn ;β,h

)
.

Observe that

〈
H per,1

Vn ;β,h

〉per,0
Vn ;β,h =−β

∑

{i , j }∈E per
Vn

(〈σi 〉per,0
Vn ;β,h −m

)(〈σ j 〉per,0
Vn ;β,h −m

)

=−βd |Vn |
(
m −〈σ0〉per,0

Vn ;β,h

)2 .

Since
〈σ0〉per,0

Vn ;β,h = tanh(2dβm +h) ,

choosing m to be the largest solution to

m = tanh(2dβm +h)

we get
〈
H per,1

Vn ;β,h

〉per,0
Vn ;β,h = 0 and, therefore,

Zper

Vn ;β,h ≥ Zper,0
Vn ;β,h = e−dβm2|Vn |2|Vn | cosh(2dβm +h)|Vn | .

The conclusion follows (just compare with the expression in Exercise 2.4).
2. Let Λ=B(n), with n ≥ 1, and let i ∼ 0 be any nearest-neighbor of the origin.

Let 〈·〉+,1
Λ;β,h denote the expectation with respect to the Gibbs distribution in Λ with

no interaction between the two vertices 0 and i . Then, using (3.41),

〈σ0〉+Λ;β,h =
∑
ω∈Ω+

Λ
ω0 exp

{
β

∑
{ j ,k}∈E b

Λ
\{0,i }ω jωk

}(
1+ω0ωi tanhβ

)
∑
ω∈Ω+

Λ
exp

{
β

∑
{ j ,k}∈E b

Λ
\{0,i }ω jωk

}(
1+ω0ωi tanhβ

)

=
〈σ0〉+,1

Λ;β,h +〈σi 〉+,1
Λ;β,h tanhβ

1+〈σ0σi 〉+,1
Λ;β,h tanhβ

≤
〈σ0〉+,1

Λ;β,h +〈σi 〉+,1
Λ;β,h tanhβ

1+〈σ0〉+,1
Λ;β,h〈σi 〉+,1

Λ;β,h tanhβ
, (3.70)
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where we used the GKS inequality. Now, observe that, for any x ≥ 0, a ∈ [0,1] and
b ∈ [−1,1],

b +a tanh(x)

1+ba tanh(x)
≤ b + tanh(ax)

1+b tanh(ax)
. (3.71)

Indeed, y 7→ (b + y)/(1+ by) is increasing in y ≥ 0, and tanh(ax) ≥ a tanh(x) (by
concavity). Applying (3.71) to (3.70), we get

〈σ0〉+Λ;β,h ≤
〈σ0〉+,1

Λ;β,h + tanh
(
β〈σi 〉+,1

Λ;β,h

)

1+〈σ0〉+,1
Λ;β,h tanh

(
β〈σi 〉+,1

Λ;β,h

) .

But, since
(
tanh(x)+ tanh(y)

) / (
1+ tanh(x) tanh(y)

)= tanh(x + y), this gives

〈σ0〉+Λ;β,h ≤ tanh
{

arctanh
(〈σ0〉+,1

Λ;β,h

)+β〈σi 〉+,1
Λ;β,h

}
,

which can be rewritten as

arctanh
(〈σ0〉+Λ;β,h

)≤ arctanh
(〈σ0〉+,1

Λ;β,h

)+β〈σi 〉+,1
Λ;β,h .

Finally, by GKS inequalities, 〈σi 〉+,1
Λ;β,h ≤ 〈σi 〉+Λ;β,h , so that

arctanh
(〈σ0〉+Λ;β,h

)≤ arctanh
(〈σ0〉+,1

Λ;β,h

)+β〈σi 〉+Λ;β,h . (3.72)

Clearly, one can iterate (3.72), removing all edges between 0 and its nearest-neigh-
bors, one at a time. This yields

arctanh
(〈σ0〉+Λ;β,h

)≤ arctanh
(〈σ0〉∅{0};β,h

)+β
∑
i∼0

〈σi 〉+Λ;β,h .

Of course, 〈σ0〉∅{0};β,h = tanh(h). Therefore,

arctanh
(〈σ0〉+Λ;β,h

)≤ h +β
∑
i∼0

〈σi 〉+Λ;β,h ,

that is,
〈σ0〉+Λ;β,h ≤ tanh

(
h +β

∑
i∼0

〈σi 〉+Λ;β,h

)
.

We can now let Λ ↑ Zd and use the fact that 〈σi 〉+β,h = 〈σ0〉+β,h for all i to obtain the

desired bound:
〈σ0〉+β,h ≤ tanh

(
h +2dβ〈σ0〉+β,h

)
.

From this we conclude that 〈σ0〉+β,h ≤ mCW
β

(h).

3. When β < βCW
c , the previous item implies that 〈σ0〉+β,0 ≤ mCW

β
(0) = 0. This

implies β<βc(d), which proves the claim.

3.10.3 An alternative proof of the FKG inequality

Here, we provide an alternative proof of the FKG inequality. Although possibly less
general and somewhat longer than the one provided in Section 3.8.2, we believe
that it has the undeniable advantage of being more enlightening. It relies on some
basic knowledge of discrete-time finite-state Markov chains, as exposed, for exam-
ple, in the book [156].
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The Gibbs sampler. Let Λ b Zd and let µ be some probability distribution on
ΩΛ = {−1,1}Λ satisfying µ(ω) > 0 for all ω ∈ΩΛ.

We construct a discrete-time Markov chain (Xn)n≥0 onΩΛ as follows: given that
Xn =ω ∈ΩΛ, the value of Xn+1, say ω′, is sampled using the following algorithm:

1. Sample a number u according to the uniform distribution on [0,1] (indepen-
dently of all other sources of randomness).

2. Sample a vertex i ∈ Λ with uniform distribution (independently of all other
sources of randomness).

3. Set ω′
j =ω j for all j 6= i .

4. Set

ω′
i =

{
+1 if u ≤µ(

σi = 1
∣∣ σ j =ω j ∀ j 6= i

)
,

−1 otherwise.

In other words, there are no transitions between two configurations differing at
more than one vertex; moreover, given two configurations ω,ω′ ∈ ΩΛ differing at
a single vertex i ∈Λ, the transition probability from ω to ω′ is given by

p(ω→ω′) = 1

|Λ| µ
(
σi =ω′

i

∣∣ σ j =ω j ∀ j 6= i
)= 1

|Λ|
µ(ω′)

µ(ω)+µ(ω′)
.

Observe that the Markov chain (Xn)n≥0 is irreducible (since one can move between
two arbitrary configurations by changing one spin at a time, each such transition
occurring with positive probability) and aperiodic (since p(ω→ω) > 0). Therefore
the distribution of Xn converges almost surely towards the unique stationary dis-
tribution. We claim that the latter is given by µ. Indeed, (Xn)n≥0 is reversible with
respect to µ: if ω,ω′ ∈ΩΛ are two configurations differing only at one vertex, then

µ(ω)p(ω→ω′) = 1

|Λ|
µ(ω)µ(ω′)
µ(ω)+µ(ω′)

=µ(ω′)p(ω′ →ω) .

Monotone coupling. Let us now consider two probability distributions µ and µ̃

onΩΛ. As above, we assume that µ(ω) > 0 and µ̃(ω) > 0. Moreover, we assume that

µ
(
σi = 1

∣∣ σ j =ω j ∀ j 6= i
)≤ µ̃(

σi = 1
∣∣ σ j = ω̃ j ∀ j 6= i

)
, (3.73)

for all ω,ω̃ ∈ΩΛ such that ω̃≥ω.
Let us denote by (Xn)n≥0 and (X̃n)n≥0 the Markov chains on ΩΛ associated to

µ and µ̃, as described above. We are going to define the monotone coupling of
these two Markov chains. The coupling is defined by the previous construction,
but using, at each step of the process, the same u ∈ [0,1] and i ∈Λ for both chains.
The important observation is that

X̃n ≥ Xn =⇒ X̃n+1 ≥ Xn+1 .

Indeed, let us denote by i the vertex which has been selected at this step. In order to
violate the inequality X̃n+1 ≥ Xn+1, it is necessary that σi (Xn+1) = 1 and σi (X̃n+1) =
−1. But this is impossible, since for the former to be true, one needs to have u ≤
µ(σi = 1 |σ j =σ j (Xn) ∀ j 6= i ), which, by (3.73), would imply that u ≤ µ̃(σi = 1 |σ j =
σ j (X̃n) ∀ j 6= i ) and, thus, σi (X̃n+1) = 1.
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Stochastic domination. Let µ and µ̃ be as above. It is now very easy to prove that,
for every nondecreasing function f ,

〈 f 〉µ̃ ≥ 〈 f 〉µ . (3.74)

In that case, we say that µ̃ stochastically dominatesµ.
Let us consider the two monotonically coupled Markov chains, as described

above, with initial values X0 = η− ≡ −1 and X̃0 = η+ ≡ 1. We denote by P the dis-
tribution of the coupled Markov chains. Now, since these chains converge, respec-
tively, to µ and µ̃, we can write

〈 f 〉µ̃−〈 f 〉µ = lim
n→∞

∑
η,η̃∈ΩΛ

{
f (η̃)− f (η)

}
P
(
Xn = η, X̃n = η̃)

.

Moreover, by monotonicity of the coupling,

P
(
X̃n ≥ Xn , for all n ≥ 0

)= 1.

We can thus restrict the summation to pairs η̃≥ η:

〈 f 〉µ̃−〈 f 〉µ = lim
n→∞

∑
η,η̃∈ΩΛ
η̃≥η

{
f (η̃)− f (η)

}
P
(
Xn = η, X̃n = η̃)

.

(3.74) follows since η̃≥ η implies that f (η̃)− f (η) ≥ 0.

Proof of the FKG inequality. We can now prove the FKG inequality for the Ising
model on Zd . LetΛbZd , η ∈Ω, β≥ 0 and h ∈R. We want to prove that

〈 f g 〉η
Λ;β,h ≥ 〈 f 〉η

Λ;β,h 〈g 〉η
Λ;β,h , (3.75)

for all nondecreasing functions f and g . Note that we can, and will, assume that
g (τ) > 0 for all τ ∈Ωη

Λ
, since adding a constant to g does not affect (3.75). We can

thus consider the following two probability distributions onΩΛ:

µ(ω)
def= µ

η

Λ;β,h(ωη) , µ̃(ω)
def= g (ωη)

〈g 〉η
Λ;β,h

µ
η

Λ;β,h(ωη) ,

where, givenω ∈ΩΛ,ωη denotes the configuration coinciding withω inΛ and with
η outside Λ. Clearly µ(ω) > 0 and µ̃(ω) > 0 for all ω ∈ΩΛ. (3.75) can then rewritten
as

〈 f 〉µ̃ ≥ 〈 f 〉µ .

Since this is exactly (3.74), it is sufficient to prove that (3.73) holds for these two
distributions.

Observe first that, since g is nondecreasing,

µ̃
(
σi = 1

∣∣ σ j = ω̃ j ∀ j 6= i
)= µ((+1)ω̃)g ((+1)ω̃)

µ((+1)ω̃)g ((+1)ω̃)+µ((−1)ω̃)g ((−1)ω̃)

=
{

1+ µ((−1)ω̃)

µ((+1)ω̃)

g ((−1)ω̃)

g ((+1)ω̃)

}−1

≥
{

1+ µ((−1)ω̃)

µ((+1)ω̃)

}−1
,
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where (+1)ω̃, resp. (−1)ω̃, is the configuration given by ω̃ at vertices different from
i and by +1, resp. −1, at i .

Now,

µ((−1)ω̃)

µ((+1)ω̃)
=
µ
η

Λ;β,h((−1)ω̃η)

µ
η

Λ;β,h((+1)ω̃η)
= exp

(
−2β

∑
j∼i

(ω̃η) j −2h
)

is a nonincreasing function of ω̃. It follows that, for any ω ∈ΩΛ such that ω̃≥ω,

µ̃(σi = 1 |σ j = ω̃ j ∀ j 6= i ) ≥
{

1+ µ((−1)ω)

µ((+1)ω)

}−1

=µ(
σi = 1

∣∣ σ j =ω j ∀ j 6= i
)

,

and (3.73), and thus (3.75), follows.

3.10.4 Transfer matrix and Markov chains

In Section 3.3, we described how the pressure of the one-dimensional Ising model
could be determined using the transfer matrix. Readers familiar with Markov
chains might have noted certain obvious similarities. In this complement, we ex-
plain how these tools can be related and what additional information can be ex-
tracted.

Let A be the transfer matrix of the one-dimensional Ising model, defined

in (3.11). For simplicity, let us denote by Zs,s′
n ≡ Zη

s,s′

Λn ;β,h , s, s′ ∈ {±1}, the partition

function of the model on Λn = {1, . . . ,n}, with boundary condition ηs,s′ given by

ηs,s′
i = s if i ≤ 0 and ηs,s′

i = s′ if i > 0.
Proceeding as in Section 3.3, the transfer matrix can be related to the partition

function Zs,s′
n in the following way: for all n ≥ 1,

Zs,s′
n = (

An+1)
s,s′ .

Let λ > 0 be the largest of the two eigenvalues of A. We denote by ϕ, respectively
ϕ∗, the right-eigenvector, respectively left-eigenvector, associated to λ: Aϕ = λϕ,
ϕ∗A =λϕ∗. We assume that these eigenvectors satisfy the following normalization
assumption: ϕ ·ϕ∗ = 1. All these quantities can be computed explicitly, but we will
not need the resulting expressions here. Notice however that, either by an explicit
computation or by the Perron–Frobenius theorem [45, Theorem 1.1], all compo-
nents of ϕ and ϕ∗ are positive.

We now define a new matrixΠ= (πs,s′ )s,s′=±1 by

πs,s′
def= ϕs′

λϕs
As,s′ .

Π is the transition matrix of an irreducible, aperiodic Markov chain. Indeed, for
s ∈ {±1}, ∑

s′∈{±1}

πs,s′ =
1

λϕs

∑
s′∈{±1}

As,s′ϕs′ =
1

λϕs

(
Aϕ

)
s = 1.

Irreducibility and aperiodicity follow from the positivity of πs,s′ for all s, s′ ∈ {±1}.
Being irreducible,Π possesses a unique stationary distribution ν, given by

ν({s}) =ϕsϕ
∗
s , s ∈ {±1} .
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Indeed, ν({1})+ν({−1}) = 1, by our normalization assumption, and

(
νΠ

)
({s′}) =

∑
s∈{±1}

ν({s})πs,s′ =
1

λ
ϕs′

∑
s∈{±1}

ϕ∗
s As,s′ =ϕs′ϕ

∗
s′ = ν({s′}) ,

since ϕ∗A =λϕ∗.
The probability distribution ν on {±1} provides the distribution of σ0 under the

infinite-volume Gibbs state. Indeed, denoting by µs,s′
B(n);β,h

the Gibbs distribution

on B(n) = {−n, . . . ,n} with boundary condition ηs,s′ , the probability that σ0 = s0 is
given by

µs,s′
B(n);β,h

(σ0 = s0) = Zs,s0
n Zs0,s′

n

Zs,s′
2n+1

=
(

An+1
)

s,s0

(
An+1

)
s0,s′(

A2n+2
)

s,s′
.

Now, as can be checked, for any s, s′ ∈ {±1},

(
An)

s,s′ =λn ϕs

ϕs′

(
Πn)

s,s′ ,

which gives, after substitution in the above expression,

µs,s′
B(n);β,h

(σ0 = s0) =
(
Πn

)
s,s0

(
Πn

)
s0,s′(

Π2n+2
)

s,s′
.

Since the Markov chain is irreducible and aperiodic, limn→∞(Πn)s,s′ = ν({s′}) for all
s, s′ ∈ {±1}. We conclude that

lim
n→∞µ

s,s′
B(n);β,h

(σ0 = s0) = ν({s0})ν({s′})

ν({s′})
= ν({s0}) .

One can check similarly that the joint distribution of any finite collection (σi )a≤i≤b

of spins is given by

lim
n→∞µ

s,s′
B(n);β,h

(
σk = sk ,∀a ≤ k ≤ b

)= ν({sa})
b−1∏
k=a

πsk ,sk+1 .

The interested reader can find much more information, in a more general setting,
in [134, Chapter 11].

3.10.5 The Ising antiferromagnet

The Ising antiferromagnet is a model whose neighboring spins tend to point in op-
posite directions, this effect becoming stronger at lower temperatures. It therefore
does not exhibit spontaneous magnetization.

We only consider the antiferromagnet in the absence of a magnetic field. This
model can be thought of as an Ising model with negative coupling constants:

H anti
Λ;β (ω)

def= β
∑

{i , j }∈E b
Λ

σi (ω)σ j (ω) . (3.76)

Let a vertex i = (i1, . . . , id ) ∈ Zd be called even (resp. odd) if i1 + ·· ·+ id is even
(resp. odd). Consider the transformation τeven :Ω→Ω defined by

(τevenω)i
def=

{
+ωi if i is even,

−ωi otherwise.
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One can then define τodd :Ω→Ω by

(τoddω)i
def= −(τevenω)i , i ∈Zd .

Not surprisingly, the main features of this model can be derived from the results
obtained for the Ising model:

Exercise 3.33. Observing that

H anti
Λ;β (ω) =HΛ;β(τevenω) ,

use the results obtained in this chapter to show that, when β > βc(d), two distinct
Gibbs states can be constructed, 〈·〉even

β
and 〈·〉odd

β
. Describe the typical configurations

under these two states.

Let us just emphasize that the trick used in the previous exercise to reduce the anal-
ysis to the ferromagnetic case relies in an essential way on the fact that the lattice
Zd is bipartite, that is, one can color each of its vertices in either black or white in
such a way that no neighboring vertices have the same color. On a non-bipartite
lattice, or in the presence of a magnetic field, the behavior of the antiferromagnet
is much more complicated; some aspects will be discussed in Exercises 7.5 and 7.7.

3.10.6 Random-cluster and random-current representations.

In this chapter, we chose an approach to the Ising model that we deemed best
suited to the generalization to other models done in the rest of the book. In partic-
ular, we barely touched on the topics of geometrical representations: we only intro-
duced the low- and high-temperature representations in Sections 3.7.2 and 3.7.3,
in the course of our analysis of the phase diagram. In this section, we briefly in-
troduce two other graphical representations that have played and continue to play
a central role in the mathematical analysis of the Ising model, the random-cluster
and random-current representations.

Good references to the random-cluster representation can be found in the re-
view paper [132] by Georgii, Häggström and Maes, and the books by Grimmett [150]
and Werner [350]. The lecture notes [91] by Duminil-Copin provide a good in-
troduction to several graphical representations, including the random-cluster and
random-current representations. In addition to the latter, graphical representa-
tions of correlation functions in terms of interacting random paths (an example of
which being the high-temperature representation of Section 3.7.3) are also very im-
portant tools; a thorough discussion can be found in the book [102] by Fernández,
Fröhlich and Sokal.

The random-cluster representation. This representation was introduced by For-
tuin and Kasteleyn [109]. Besides playing an instrumental role in many mathemati-
cal investigations of the Ising model, it also provides a deep link with other classical
models, in particular the q-state Potts model and the Bernoulli bond percolation
process. Moreover, this representation is the basis of numerical algorithms, first
introduced by Swendsen and Wang [323], that are very efficient at sampling from
such Gibbs distributions.

The starting point is similar to what was done to derive the high-temperature
representation of the model: we expand in a suitable way the Boltzmann weight.
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Here, we write

eβσiσ j = e−β+ (eβ−e−β)1{σi=σ j } = eβ
(
(1−pβ)+pβ1{σi=σ j }

)
,

where we have introduced pβ
def= 1−e−2β ∈ [0,1].

Let ΛbZd . Using the above notations, we obtain, after expanding the product
(remember Exercise 3.22),

∏

{i , j }∈E b
Λ

eβσiσ j = eβ|E
b
Λ |

∑

E⊂E b
Λ

p |E |
β

(1−pβ)|E
b
Λ \E | ∏

{i , j }∈E
1{σi=σ j } .

The partition function Z+
Λ;β,0 can thus be expressed as

Z+
Λ;β,0 = eβ|E

b
Λ |

∑

E⊂E b
Λ

p |E |
β

(1−pβ)|E
b
Λ \E | ∑

ω∈Ω+
Λ

∏
{i , j }∈E

1{σi (ω)=σ j (ω)}

= eβ|E
b
Λ |

∑

E⊂E b
Λ

p |E |
β

(1−pβ)|E
b
Λ \E | 2N w

Λ (E)−1 ,

where N w
Λ(E) denotes the number of connected components (usually called clus-

ters in this context) of the graph (Zd ,E∪EZd \Λ) (in other words, the graph obtained
by considering all vertices of Zd and all edges of Zd which either belong to E or do
not intersect the box Λ). Indeed, in the sum over ω ∈Ω+

Λ, the only configurations
contributing are those in which all spins belonging to the same cluster agree.

The FK-percolation process in Λ with wired boundary condition is the prob-
ability distribution on the set P(E b

Λ) of all subsets of E b
Λ assigning to a subset of

edges E ⊂ E b
Λ the probability

νFK,w
Λ;pβ,2(E)

def=
p |E |
β

(1−pβ)|E
b
Λ \E | 2N w

Λ (E)

∑
E ′⊂E b

Λ
p |E ′|
β

(1−pβ)|E
b
Λ

\E ′| 2N w
Λ

(E ′)
.

Remark 3.54. Observe that, by replacing the factor 2 in the above expression by
1, the distribution νFK,w

Λ;pβ,2 reduces to the Bernoulli bond percolation process on

E b
Λ, in which each edge of EZd belongs to E with probability pβ, independently

from the other edges. Similarly, the random-cluster representation of the q-state
Potts model is obtained by replacing the factor 2 by q . In this sense, the FK-
percolation process provides a one-parameter family of models interpolating be-
tween Bernoulli percolation, Ising and Potts models. ¦

For A,B ⊂Zd , let us write {A ↔ B} for the event that there exists a cluster inter-
secting both A and B .

Exercise 3.34. Proceeding as above, check the following identities: for any i , j ∈Λb
Zd ,

〈σi 〉+Λ;β,0 = νFK,w
Λ;pβ,2(i ↔ ∂exΛ) , 〈σiσ j 〉+Λ;β,0 = νFK,w

Λ;pβ,2(i ↔ j ) .

One feature that makes the random-cluster representation particularly useful,
as it makes it possible to successfully import many ideas and techniques developed
for Bernoulli bond percolation, is the availability of an FKG inequality. Let Λb Zd

and consider the partial order on P(E b
Λ) given by E ≤ E ′ if and only if E ⊂ E ′.
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Exercise 3.35. Show, using Theorem 3.50, that

νFK,w
Λ;pβ,2(A ∩B) ≥ νFK,w

Λ;pβ,2(A )νFK,w
Λ;pβ,2(B) ,

for all pairs A ,B of nondecreasing events on P(E b
Λ).

As an immediate application, one can prove the existence of the thermody-
namic limit.

Exercise 3.36. Show that, for every local increasing event A ,

lim
Λ↑Zd

νFK,w
Λ;pβ,2(A )

exists. Hint: proceed as in the proof of Theorem 3.17.

As already mentioned in Remark 3.15 and as will be explained in more detail in
Chapter 6, it follows from the previous exercise and the Riesz–Markov–Kakutani
representation theorem that one can define a probability measure νFK,w

pβ,2 on E such

that

νFK,w
pβ,2(A ) = lim

Λ↑Zd
νFK,w
Λ;pβ,2(A ) ,

for all local events A . A simple but remarkable observation is that the statements
of Exercise 3.34 still hold under νFK,w

pβ,2. In particular,

〈σ0〉+β,0 = νFK,w
pβ,2(0 ↔∞) , (3.77)

where {0 ↔∞}
def= ⋂

n{0 ↔ ∂exB(n)} corresponds to the event that there exists an in-
finite path of disjoint open edges starting from 0 (or, equivalently, that the cluster
containing 0 has infinite cardinality). Since Theorem 3.28 shows that the existence
of a first-order phase transition at inverse temperature β (and magnetic field h = 0)
is equivalent to 〈σ0〉+β,0 > 0, the above relation implies that the latter is also equiv-

alent to percolation in the associated FK-percolation process. This observation
provides new insights into the phase transition we have studied in this chapter and
provides the basis for a geometrical analysis of the Ising model using methods in-
herited from percolation theory.

Exercise 3.37. Prove the identity (3.77).

The random-current representation. Also of great importance in the mathemat-
ical analysis of the Ising model, with many fundamental applications, this repre-
sentation had already been introduced in [143], but its true power was realized by
Aizenman [4].

Once again, the strategy is to expand the Boltzmann weight in a suitable way,
then expand the product over pairs of neighbors, and finally sum explicitly over the
spins. For the first step, we simply expand the exponential as a Taylor series:

eβσiσ j =
∞∑

n=0

βn

n!
(σiσ j )n .
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We then get, writing n = (ne )e∈E b
Λ

for a collection of nonnegative integers,

∏

{i , j }∈E b
Λ

eβσiσ j =
∑
n

{ ∏

e∈E b
Λ

βne

ne !

} ∏

{i , j }∈E b
Λ

(σiσ j )n{i , j } .

The partition function Z+
Λ;β,0 can thus be expressed as

Z+
Λ;β,0 =

∑
n

{ ∏

e∈E b
Λ

βne

ne !

} ∑
ω∈Ω+

Λ

∏

{i , j }∈E b
Λ

(σi (ω)σ j (ω))n{i , j }

=
∑
n

{ ∏

e∈E b
Λ

βne

ne !

} ∏
i∈Λ

∑
ωi=±1

ωÎ (i ,n)
i ,

where Î (i ,n)
def= ∑

j : j∼i n{i , j }. Since

∑
ωi=±1

ωm
i =

{
2 if m is even,

0 if m is odd,

we conclude that

Z+
Λ;β,0 = 2|Λ|

∑
n:∂Λn=∅

∏

e∈E b
Λ

βne

ne !
= 2|Λ|eβ|E

b
Λ |P+

Λ;β(∂Λn =∅) ,

where ∂Λn
def= {

i ∈ Λ : Î (i ,n) is odd
}

and, under the probability distribution P+
Λ;β,

n = (ne )e∈E b
Λ

is a collection of independent random variables, each one distributed

according to the Poisson distribution of parameter β. We will call n a current con-
figuration inΛ.

In the same way, one easily derives similar representations for arbitrary corre-
lation functions.

Exercise 3.38. Derive the following identity: for all A ⊂ΛbZd ,

〈σA〉+Λ;β,0 =
P+
Λ;β(∂Λn = A)

P+
Λ;β(∂Λn =∅)

.

The power of the random-current representation, however, lies in the fact that it
also allows a probabilistic interpretation of truncated correlations in terms of var-
ious geometric events. The crucial result is the following lemma, which deals with

a distribution on pairs of current configurations P+(2)
Λ;β (n1,n2)

def= P+
Λ;β(n1)P+

Λ;β(n2).

Let us denote by i
n←→ ∂exΛ the event that there is a path connecting i to ∂exΛ along

which n takes only positive values.

Lemma 3.55 (Switching Lemma). Let Λb Zd , A ⊂Λ, i ∈Λ and I a set of current
configurations inΛ. Then,

P
+(2)
Λ;β (∂Λn1 = A,∂Λn2 = {i },n1 +n2 ∈I )

=P+(2)
Λ;β (∂Λn1 = A M {i },∂Λn2 =∅,n1 +n2 ∈I , i

n1+n2

←→ ∂exΛ) . (3.78)
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Proof. We will use the following notations:

w(n)
def=

∏
e∈EΛ

βne

ne !

and, for two current configurations satisfying n ≤ m (that is, ne ≤ me , ∀e ∈ E b
Λ),

(
m

n

)
def=

∏

e∈E b
Λ

(
me

ne

)
.

We are going to change variables from the pair (n1,n2) to the pair (m,n) where m =
n1 +n2 and n = n2. Since ∂Λ(n1 +n2) = ∂Λn1 M ∂Λn2, n ≤ m and

w(n1)w(n2) =
(

n1 +n2

n2

)
w(n1 +n2) =

(
m

n

)
w(m) ,

we can write

∑
∂Λn1=A
∂Λn2={i }

n1+n2∈I

w(n1)w(n2) =
∑

∂Λm=AM{i }
m∈I

w(m)
∑

n≤m
∂Λn={i }

(
m

n

)
. (3.79)

The first observation is that i
m
6←→ ∂exΛ =⇒ i

n
6←→ ∂exΛ, since n ≤ m. Consequently,

∑
n≤m

∂Λn={i }

(
m

n

)
= 0, when i

m
6←→ ∂exΛ, (3.80)

since i
n←→ ∂exΛwhenever ∂Λn = {i }. Let us therefore assume that i

m←→ ∂exΛ, which
allows us to use the following lemma, which will be proven below.

Lemma 3.56. Let m be a current configuration in Λ b Zd and C ,D ⊂ Λ. If there
exists a current configuration k such that k ≤ m and ∂Λk =C , then

∑
n≤m
∂Λn=D

(
m

n

)
=

∑
n≤m

∂Λn=CMD

(
m

n

)
. (3.81)

An application of this lemma with C = D = {i } yields

∑
n≤m

∂Λn={i }

(
m

n

)
=

∑
n≤m
∂Λn=∅

(
m

n

)
, when i

m←→ ∂exΛ. (3.82)

Using (3.80) and (3.82) in (3.79), and returning to the variables n1 = m−n and n2 =
n, we get

∑
∂Λn1=A
∂Λn2={i }

n1+n2∈I

w(n1)w(n2) =
∑

∂Λm=AM{i }
m∈I

i
m←→∂exΛ

w(m)
∑

n≤m
∂Λn=∅

(
m

n

)

=
∑

∂Λn1=AM{i }
∂Λn2=∅

n1+n2∈I

w(n1)w(n2)1
{i

n1+n2
←→ ∂exΛ}

,

and the proof is complete.
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Proof of Lemma 3.56. Let us associate to the configuration m the graph Gm with
verticesΛ∪∂exΛ and with me edges between the endpoints of each edge e ∈ E b

Λ. By
assumption, Gm possesses a subgraph Gk with ∂ΛGk = C , where ∂ΛGk is the set of
vertices ofΛ belonging to an odd number of edges.

The left-hand side of (3.81) is equal to the number of subgraphs G of Gm sat-
isfying ∂ΛG = D , while the right-hand side counts the number of subgraphs G of
Gm satisfying ∂ΛG =C M D . But the application G 7→G MGk defines a bijection be-
tween these two families of graphs, since ∂Λ(G MGk) = ∂ΛG M ∂ΛGk and (G MGk)M
Gk =G .

As one simple application of the Switching Lemma, let us derive a probabilistic
representation for the truncated 2-point function.

Lemma 3.57. For all distinct i , j ∈ΛbZd ,

〈σi ;σ j 〉+Λ;β,0 =
P
+(2)
Λ;β (∂Λn1 = {i , j },∂Λn2 =∅, i

n1+n2

6←→ ∂exΛ)

P
+(2)
Λ;β (∂Λn1 =∅,∂Λn2 =∅)

. (3.83)

Proof. Using the representation of Exercise 3.38,

〈σi ;σ j 〉+Λ;β,0 =
P+
Λ;β(∂Λn = {i , j })

P+
Λ;β(∂Λn =∅)

−
P+
Λ;β(∂Λn = {i })

P+
Λ;β(∂Λn =∅)

P+
Λ;β(∂Λn = { j })

P+
Λ;β(∂Λn =∅)

=
P
+(2)
Λ;β (∂Λn1 = {i , j },∂Λn2 =∅)−P+(2)

Λ;β (∂Λn1 = {i },∂Λn2 = { j })

P
+(2)
Λ;β (∂Λn1 =∅,∂Λn2 =∅)

.

Since the Switching Lemma implies that

P
+(2)
Λ;β (∂Λn1 = {i },∂Λn2 = { j }) = P

+(2)
Λ;β (∂Λn1 = {i , j },∂Λn2 = ∅, i

n1+n2

←→ ∂exΛ) ,

we can cancel terms in the numerator and the conclusion follows.

Observe that (3.83) implies that 〈σi ;σ j 〉+Λ;β,0 ≥ 0, which is a particular instance of

the GKS (or FKG) inequalities. However, having such a probabilistic representation
also opens up the possibility of proving nontrivial lower and upper bounds.

Among the numerous fundamental applications of the random-current rep-
resentation, let us mention the proof that m∗(βc(d)) = 0 in all dimensions d ≥
2 [3, 7, 8], the proof that, for all β < βc(d) and all d ≥ 1, there exists c = c(β,d) > 0
such that 〈σ0σi 〉+β,0 ≤ e−c‖i‖2 [5], the fact that 〈σ0σi 〉βc(d),0 ' cd‖i‖2−d

2 in all large

enough dimensions [292] and the determination of the sign of all Ursell functions
in [306]. Additional information can be found in the references given above.

3.10.7 Non-translation-invariant Gibbs states and interfaces.

In this subsection, we briefly discuss the existence or absence of non-translation-
invariant Gibbs states describing coexistence of phases. The first proof of the ex-
istence of non-translation-invariant Gibbs states in the Ising model on Zd , d ≥ 3,
at sufficiently low temperatures, is due to Dobrushin [81]; the much simpler argu-
ment we provide below is due to van Beijeren [338].
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Figure 3.14: In d = 2, with Dobrushin boundary condition, a configuration
always has a unique open contour (called interface in the text, the thickest
line on the figure) connecting the two vertical sides of the box.

We require the parameters of the model to be such that the system is in the non-
uniqueness regime. So, for the rest of the section, we always assume that d ≥ 2,
h = 0 and β>βc(d).

A natural way to try to induce spatial coexistence of the + and − phases in a
system is to use non-homogeneous boundary conditions. Let us therefore consider
the Dobrushin boundary condition ηDob, defined by (see Figure 3.14)

ηDob
i

def=
{
+1 if i = (i1, . . . , id ) with id ≥ 0,

−1 otherwise.

Let us then define the sequence of boxes to be used for the rest of the section,
more suited to the use of the Dobrushin boundary condition,

Λd (n)
def= {

i ∈Zd : −n ≤ i j ≤ n if 1 ≤ j < d , −n ≤ id ≤ n −1
}

,

If i = (i1, i2, . . . , id−1, id ) ∈Zd , we denote by ī = (i1, i2, . . . , id−1,−1−id ) ∈Zd its reflec-
tion through the plane

{
x ∈Rd : xd =− 1

2

}
.

The non-homogeneity of the Dobrushin boundary condition can be shown to
have a significant effect in higher dimensions:

Theorem 3.58. Assume d ≥ 3. Then, for all β > βc(d −1), there exists a sequence of
integers nk ↑∞ along which

〈·〉Dob
β,0

def= lim
k→∞

〈·〉Dob

Λd (nk );β,0

is a well-defined Gibbs state that satisfies

〈σ0〉Dob
β,0 > 0 > 〈σ0̄〉Dob

β,0 .

In particular, 〈·〉Dob
β,0 is not invariant under vertical translations.
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The states constructed in the previous theorem are usually called Dobrushin states.
The proof of this result relies on the following key inequality:

Proposition 3.59. Let d ≥ 2. Then, for all i ∈Bd (n) such that id = 0,

〈σi 〉Dob

Bd (n);β,0
≥ 〈σi 〉+Bd−1(n);β,0

, (3.84)

where the expectation in the right-hand side is for the Ising model in Zd−1.

Proof of Proposition 3.59. We use an argument due to van Beijeren [338]. To sim-
plify notations, we stick to the case d = 3, but the argument can be adapted in a
straightforward way to higher dimensions. To show that

〈σ0〉Dob

B3(n);β,0 ≥ 〈σ0〉+B2(n);β,0 , (3.85)

the idea is to couple the two-dimensional Ising model in the box B2(n) with the

layer B3,0(n)
def= {

i ∈ B3(n) : i3 = 0
}

of the three-dimensional model. It will be con-
venient to distinguish the spins of the three-dimensional model and those of the
two-dimensional one. We thus continue to denote by σi the former, but we write

τi for the latter. We then introduce new random variables. For all i ∈ B3,+(n)
def={

i ∈B3(n) : i3 > 0
}
, we set

si
def= 1

2 (σi +σi ) , ti
def= 1

2 (σi −σi ) ,

where , for i = (i1, i2, i3), we have set i
def= (i1, i2,−i3). Moreover, for all i ∈B3,0(n), we

set
si

def= 1
2 (σi +τi ) , ti

def= 1
2 (σi −τi ) .

These random variables are {−1,0,1}-valued and satisfy the constraint

si = 0 ⇔ ti 6= 0, ∀i ∈B3,+(n)∪B3,0(n) . (3.86)

Observe now that (3.85) is equivalent to

〈t0〉 ≥ 0, (3.87)

where the expectation is with respect to µDob

B3(n);β,0
⊗µ+

B2(n);β,0
. The conclusion thus

follows from Exercise 3.39 below.

(3.87) is actually a particular instance of a set of GKS-type inequalities, origi-
nally studied by Percus.

Exercise 3.39. Prove (3.87). Hint: Expand the numerator of 〈t0〉 according to the
realization of A = {

i ∈B3,+(n)∪B3,0(n) : si = 0
}
. Observe that, once A is fixed, there

remains exactly one nontrivial {−1,1}-valued variable at each vertex. Verify that you
can then apply the usual GKS inequalities to show that each term of the sum is non-
negative (you will have to check that the resulting Hamiltonian has the proper form).

Proof of Theorem 3.58. The construction of 〈·〉Dob
β,0 along some subsequence Λd (nk )

can be done as in Exercise 3.8. Observe that, by symmetry,

〈σ0〉Dob

Λd (nk );β,0
=−〈σ0̄〉Dob

Λd (nk );β,0
, (3.88)
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Figure 3.15: A typical configuration of the low-temperature three-
dimensional Ising model with Dobrushin boundary condition. For conve-
nience, in this picture, − spins are represented by balls and + spins by empty
space. The interface is a perfect plane with only local defects.

which gives, after k →∞,
〈σ0〉Dob

β,0 =−〈σ0̄〉Dob
β,0 . (3.89)

Observe that, by the FKG inequality, applying a magnetic field h ↑ ∞ on the
spins living in Bd (nk ) \Λd (nk ) yields

〈σ0〉Dob

Λd (nk );β,0
≥ 〈σ0〉Dob

Bd (nk );β,0
.

Using (3.84), we deduce that

〈σ0〉Dob

Λd (nk );β,0
≥ 〈σ0〉+Bd−1(nk );β,0

.

The limit k →∞ of the right-hand side converges to the spontaneous magnetiza-
tion of the (d −1)-dimensional Ising model, which is positive when β > βc(d −1).
The claim thus follows from (3.89).

The interface. Whether non-translation-invariant infinite-volume Gibbs states
exist in d ≥ 3 is in fact closely related to the behavior of the macroscopic interface
induced by the Dobrushin boundary condition.

Let ω ∈ΩDob

Λd (n)
and consider the set

B(ω)
def=

⋃
{i , j }∈E

Zd
ωi 6=ω j

πi j ,

where eachπi j
def= Si ∩S j (remember (3.31)) is called a plaquette. By construction,

B contains a unique infinite connected component (coinciding with the plane
{

x ∈
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Rd : xd = − 1
2

}
everywhere outside Λd (n)). We call this component the interface

and denote it by Γ= Γ(ω).

It turns out that, in d ≥ 3, Γ is rigid at low temperature: in typical configura-
tions, Γ coincides with {xd = − 1

2 } apart from local defects; see Figure 3.15. This
can be quantified very precisely using cluster expansion techniques, as was done
in Dobrushin’s original work [81]. The much simpler description given below pro-
vides substantially less information, but still allows to prove localization of Γ in a
weaker sense.

Theorem 3.60. Assume that d ≥ 3. There exists c ′(β) > 0 satisfying limβ→∞ c ′(β) = 0

such that, uniformly in n and in i ∈ {
j ∈Λd (n) : jd = 0

}
,

µDob

Λd (n);β,0
(Γ⊃πi ī ) ≥ 1− c ′(β) .

Proof of Theorem 3.60. We first decompose

〈σiσī 〉Dob

Λd (n);β,0
= 〈σiσī 1{Γ⊃πi ī }〉Dob

Λd (n);β,0
+〈σiσī 1{Γ6⊃πi ī }〉Dob

Λd (n);β,0
. (3.90)

On the one hand, σiσī =−1 whenever Γ⊃ πi ī . On the other hand, when Γ 6⊃ πi ī , i
and ī belong to the same (random) component of Λd (n) \Γ, with constant (either
+ or −) boundary condition. More precisely, to a fixed interface Γ we associate
a partition of Λd (n) into connected regions D1, . . . ,Dk . The Dobrushin boundary
condition, together with Γ, induces a well-defined constant boundary condition #i

on each region Di , either + or −. Γ 6⊃ πi ī means that the edge {i , ī } is contained
inside one of these components, say D∗. We can therefore write

〈σiσī 1{Γ6⊃πi ī }〉Dob

Λd (n);β,0
=

∑
Γ6⊃πi ī

〈σiσī 〉#∗
D∗;β,0µ

Dob

Λd (n);β,0
(Γ(ω) = Γ) . (3.91)

Assume that #∗ =+. Then the GKS inequalities (see Exercise 3.12) imply that

〈σiσī 〉+D∗;β,0 ≥ 〈σiσī 〉+Λd (n);β,0
≥ 〈σiσī 〉+β,0 .

When #∗ = −, the same holds since, by symmetry, 〈σiσī 〉+D∗;β,0 = 〈σiσī 〉−D∗;β,0 and

〈σiσī 〉+β,0 = 〈σiσī 〉−β,0. Thus,

〈σiσī 1{Γ6⊃πi ī }〉Dob

Λd (n);β,0
≥ 〈σiσī 〉+β,0µ

Dob

Λd (n);β,0
(Γ 6⊃πi ī ) .

Collecting the above and rearranging the terms, we get

µDob

Λd (n);β,0
(Γ⊃πi ī ) ≥ 1−

1+〈σiσī 〉Dob

Λd (n);β,0

1+〈σiσī 〉+β,0

.

Let us consider the numerator in the right-hand side. Using Jensen’s inequality, we
can write

〈σiσī 〉Dob

Λd (n);β,0
= 1− 1

2

〈
(σi −σī )2〉Dob

Λd (n);β,0 ≤ 1− 1
2

(〈σi −σī 〉Dob

Λd (n);β,0

)2 .

But 〈σī 〉Dob

Λd (n);β,0
=−〈σi 〉Dob

Λd (n);β,0
and so, by Proposition 3.59,

〈σi −σī 〉Dob

Λd (n);β,0
= 2〈σi 〉Dob

Λd (n);β,0
≥ 2〈σ0〉+β,0;d−1 ,
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from which we conclude that

µDob

Λd (n);β,0
(Γ⊃πi ī ) ≥ 1−2

1− (〈σ0〉+β,0;d−1

)2

1+〈σiσī 〉+β,0

≥ 1−2
1− (〈σ0〉+β,0;d−1

)2

1+ (〈σ0〉+β,0

)2 .

This lower bound is uniform in n and i and converges to 1 as β→∞.

Of course, Theorem 3.58 only shows the existence of non-translation-invariant
Gibbs states when β>βc(d −1), and one might wonder what happens for values of
β in the remaining interval (βc(d),βc(d −1)]. It turns out that this problem is still
open. The conjectured behavior, however, is as follows: [5]

• When d = 3, there should exist a value βR ∈ (βc(3),βc(2)] such that the exis-
tence of Gibbs states which are not translation invariant holds for all β> βR,
but not for β < βR. At βR, the system is said to undergo a roughening tran-
sition. At this transition the interface is supposed to lose its rigidity and to
start having unbounded fluctuations. [6]

• When d ≥ 4, Dobrushin’s non-translation-invariant Gibbs states are believed
to exist (with a rigid interface) for all β>βc(d).

Two-dimensional model. The behavior of the interface in two dimensions is very
different and, from a mathematical point of view, a rather detailed and complete
picture is available.

Consider again a configurationω ∈ΩDob
Λn

and, in particular, the associated inter-

face Γ. Let us denote byωΓ the configuration inΩDob
Λn

for which B(ωΓ) = {Γ}. We can

then define the upper and lower “envelopes” Γ± :Z→Z of Γ by

Γ+(i )
def= max

{
j ∈Z : σ(i , j )(ωΓ) =−1

}+1,

Γ−(i )
def= min

{
j ∈Z : σ(i , j )(ωΓ) =+1

}−1.

Note that Γ+(i ) > Γ−(i ) for all i ∈ Z. One can show [60] that, with probability close
to 1, Γ− and Γ+ remain very close to each other: there exists K = K (β) < ∞ such
that, with probability tending to 1 as n →∞,

max
i∈Z

|Γ+(i )−Γ−(i )| ≤ K logn . (3.92)

Let us now introduce the diffusively-rescaled profiles Γ̂± : [−1,1] →R. Given y =
(y1, . . . , yd ) ∈Rd , let us write byc def= (by1c, . . . ,byd c). We then set, for any x ∈ [−1,1],

Γ̂+(x) = 1p
n
Γ+(bnxc) ,

and similarly for Γ−. Observe that, thanks to (3.92), we know that

lim
n→∞µ

Dob
Λn

(
sup

x∈[−1,1]
|Γ̂+(x)− Γ̂−(x)| ≤ ε)= 1, for all ε> 0.

Since the interfaceΓ is squeezed betweenΓ+ andΓ−, studying the limiting behavior
of Γ̂+ suffices to understand the asymptotic behavior of the interface under diffu-
sive scaling. This is the content of the next theorem, first proved by Higuchi [161]
for large enough values of β and then extended to all β > βc(2) by Greenberg and
Ioffe [141].
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Figure 3.16: A typical configuration of the low-temperature two-dimensional
Ising model with Dobrushin boundary condition. Once properly rescaled,
the interface between the two phases converges weakly to a Brownian Bridge
process.

Theorem 3.61. For all β > βc(2), there exists κβ ∈ (0,∞) such that Γ̂+ converges
weakly to a Brownian bridge on [−1,1] with diffusivity constant κβ.

(The Brownian bridge is a Brownian motion (Bt )t∈[−1,1] starting at 0 at t = −1 and
conditioned to be at 0 at t = +1; see [251].) It is also possible [141] to express the
diffusivity constant κβ in terms of the physically relevant quantity, the surface ten-
sion, but this is beyond the scope of this book.

Theorem 3.61 shows that, in contrast to what happens in higher dimensions,
the interface of the two-dimensional Ising model is never rigid (except in the trivial
case β = +∞); see Figure 3.16. Moreover, in a finite box Λn , Γ undergoes vertical
fluctuations of order

p
n. A consequence of this delocalization of the interface is the

following: when n becomes very large, the behavior of the system near the center
of the boxΛn will be typical of either the + phase (if Γ has wandered far away below
the origin) or the − phase (if Γ has wandered far away above the origin), and the
probability of each of these two alternatives converges to 1

2 as n →∞. In particular,
in this case, the infinite-volume Gibbs state resulting from Dobrushin boundary
condition is translation invariant and given by 1

2µ
+
β,0 + 1

2µ
−
β,0. More details and far-

reaching generalizations are discussed in Section 3.10.8.

3.10.8 Gibbs states and local behavior in large finite systems

When introducing the notion of Gibbs state in Section 3.4, we motivated the def-
inition by saying that the latter should lead to an interpretation of Gibbs states as
providing approximate descriptions of all possible local behaviors in large finite
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systems, the quality of this approximation improving with the distance to the sys-
tem’s boundary. It turns out that, in the two-dimensional Ising model, this heuristic
discussion can be made precise and rigorous.

Let us consider an arbitrary finite subset Λ b Zd and an arbitrary boundary
condition η ∈ Ω. We are interested in describing the local behavior of the Gibbs
distribution µη

Λ;β,0 in the vicinity of a point i ∈Λ. Since Λ and η are arbitrary, there

is no loss of generality in assuming that i = 0.

The case of pure boundary conditions. Let us first consider the simpler case of
constant boundary conditions, which we will assume to be + for the sake of con-
creteness. We know from the definition of 〈·〉+

β,0 that, for any local function f ,

〈 f 〉+Λ;β,0 →〈 f 〉+β,0 asΛ ↑Zd .

We will now state a result, first proved by Bricmont, Lebowitz and Pfister [49], that
says that 〈·〉+

β,0 actually provides an approximation for the finite-volume expecta-

tion 〈·〉+
Λ;β,0 with an error exponentially small in the distance from the support of f

to the boundary of the box. Let

R
def= max{n : B(n) ⊂Λ}

denote the distance from the origin to boundary ofΛ and let r
def= bR/2c.

Theorem 3.62 (Exponential relaxation). Assume that β > βc(2). There exists c1 =
c1(β) > 0 such that the following holds. Let ΛbZ2. Then, uniformly in all functions
f with supp( f ) ⊂B(r ),

∣∣〈 f 〉+Λ;β,0 −〈 f 〉+β,0

∣∣≤ 1
c1
‖ f ‖∞e−c1R .

The same holds for the − boundary condition.

This fully vindicates the statement that the Gibbs state 〈·〉+
β,0 (resp. 〈·〉−

β,0) provides

an accurate description of the local behavior of any finite-volume Gibbs distribu-
tion with + (resp. −) boundary condition, in regions of size proportional to the dis-
tance to the boundary of the system.

The case of general boundary conditions. Let us now turn to the case of a Gibbs
distribution with an arbitrary boundary condition η, which is much more delicate.
For Λb Zd , take R as before, but this time define r as follows: fix some small ε ∈
(0,1/2) and set

r
def= bR1/2−εc . (3.93)

We call circuit a set of distinct vertices (t0, t1, . . . , tk ) of Z2 with the property that
‖tm − tm−1‖∞ = 1, for all 1 ≤ m ≤ k, and ‖tk − t0‖∞ = 1. Let Cε be the event that there
is a circuit surrounding B(2r ) inΛ∪∂exΛ and along which the spins take a constant
value. We decompose Cε = C +

ε ∪C −
ε according to the sign of the spins along the

outermost such circuit. The main observation is that the event Cε is typical when
β>βc(2), a fact first proved by Coquille and Velenik [73].
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Figure 3.17: A (square) box Λ with a non-constant boundary condition. The
boundary condition induces open Peierls contours inside the system. With
probability close to 1, none of them intersect the box B(2r ) located in the
middle (represented by the dark square). Left: A realization of the open
Peierls contours. The event C −

ε occurs. The relevant − spins, the value of
which is forced by the realization of the open contours, are indicated (and
shaded). Right: The induced random box with − boundary condition. The
box B(r ), represented by the small white square in the middle, is located at a
distance at least r from the boundary of this box.

Theorem 3.63. Assume that β>βc(2). For all ε> 0, there exists c2 = c2(β,ε) > 0 such
that

µ
η

Λ;β,0(Cε) ≥ 1− c2R−ε ,

uniformly inΛbZ2 and η ∈Ω.

Therefore, neglecting an event of probability at most c2R−ε, we can assume that
one of the events C +

ε or C −
ε occurs. For definiteness, let us consider the latter case

and let us denote by π the corresponding outermost circuit. Observe now that,
conditionally on C −

ε and π, any function f with supp( f ) ⊂ B(r ) finds itself in a
box (delimited by π) with − boundary condition (see Figure 3.17). Moreover, its
support is at a distance at least r from the boundary of this box. It thus follows from
Theorem 3.62 that its (conditional) expectation is closely approximated by 〈 f 〉−

β,0.

This leads [73] to the following generalization of Theorem 3.62.

Theorem 3.64. Assume that β>βc(2). There exist constants α=α(Λ,η,β) and c3 =
c3(β) such that, uniformly in functions f with supp( f ) ⊂B(r ), one has

∣∣∣〈 f 〉η
Λ;β,0 −

(
α〈 f 〉+β,0 + (1−α)〈 f 〉−β,0

)∣∣∣≤ c3 ‖ f ‖∞ R−ε . (3.94)

The coefficients α and 1−α in (3.94) are given by

α=µη
Λ;β,0(C +

ε |Cε) , 1−α=µη
Λ;β,0(C −

ε |Cε) ,

that is, by the probabilities that the box B(R) (in which one measures f ) finds itself
deep inside a +, resp. −, region (conditionally on the typical event Cε).
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Again, the statement (3.94) fully vindicates the interpretation of Gibbs states as
describing all possible local behaviors of any finite-volume system, with an accu-
racy improving with the distance to the system’s boundary. This requires however,
in general, that the size of the observation window be chosen small compared to
the square-root of the distance to the boundary. We will explain the reason for this
restriction at the end of the section.

Note that (3.94) also shows that, in the two-dimensional Ising model, the only
possible local behaviors are those corresponding to the + and − phases, since the
approximation is stated in terms of the two Gibbs states 〈·〉+

β,0 and 〈·〉−
β,0. In other

words, looking at local properties of the system, one will see behavior typical of the
+ phase with probably close toα, and of the − phase with probability close to 1−α.
Actually this can be made a little more precise, as we explain now.

What are the possible Gibbs states? Let us consider a sequence of boundary con-
ditions (ηn)n≥1 and a sequence of boxes Λn ↑ Z2. We assume that the correspond-
ing sequence of Gibbs distributions (µηn

Λn ;β,0)n≥1 converges to some Gibbs state 〈·〉.
Then, applying (3.94) with f =σ0, we conclude that

lim
n→∞

∣∣∣〈σ0〉ηn

Λn ;β,0 −
(
αn 〈σ0〉+β,0 + (1−αn)〈σ0〉−β,0

)∣∣∣= 0.

Since, by assumption, limn→∞〈σ0〉ηn

Λn ;β,0 = 〈σ0〉, this implies the existence of

α
def= lim

n→∞αn =
〈σ0〉−〈σ0〉−β,0

〈σ0〉+β,0 −〈σ0〉−β,0

.

Applying again (3.94) to arbitrary local functions, we conclude that

〈·〉 = lim
n→∞〈·〉ηn

Λn ;β,0 =α〈·〉+β,0 + (1−α)〈·〉−β,0 ,

and thus all possible Gibbs states are convex combinations of the Gibbs states 〈·〉+
β,0

and 〈·〉−
β,0. This is the Aizenman–Higuchi theorem, originally derived by Aizen-

man and Higuchi [160] directly for infinite-volume states; see also [135] for a self-
contained, somewhat simpler and more general argument.

A more general formulation of the previous derivation will be presented in
Chapter 6, once we have introduced the notion of infinite-volume Gibbs measures.

As we have seen in Section 3.10.7, when d ≥ 3 and β is large enough, there exist
Gibbs states which are not translation invariant. In particular, this implies that the
Aizenman–Higuchi theorem does not extend to this setting. Nevertheless, it can
proved that all translation-invariant Gibbs states of the Ising model on Zd , d ≥ 3
are convex combinations of 〈·〉+

β,h and 〈·〉−
β,h . This result is due to Bodineau [27],

who completed earlier analyses started by Gallavotti and Miracle-Solé [129] and by
Lebowitz [218].

Why this constraint on the size of the observation window? In the case of pure
boundary conditions, it was possible to take an observation window with a radius
proportional to the distance to the boundary. We now explain why one cannot, in
general, improve Theorem 3.64 to larger windows. Let us thus consider an obser-
vation window B(r ), with now an arbitrary radius r .
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The reason is to be found in the probability of observing some “pathological”
behavior in our finite system. Namely, we have seen above that, typically, the event
Cε is realized. It turns out that, for some choices of the boundary condition η, the
probability of not observing Cε is really of order r /

p
R and thus small only when

r ¿
p

R.
A simple example consists in considering the box Λ=B(n) with the Dobrushin

boundary condition ηDob, as introduced in Section 3.10.7. As explained there, in
that case the open Peierls contour has fluctuations of order

p
n and its scaling limit

is a Brownian bridge. This implies that the probability that this contour intersects
B(2r ) is indeed of order r /

p
n; note that, when this occurs, the event Cε becomes

impossible.

Remark 3.65. In the uniqueness regime, quantitative estimates are easier to obtain.
Consider an Ising model either at β < βc(2) and h = 0, or at h 6= 0 and arbitrary β,
and let 〈·〉β,h denote the associated (unique) Gibbs state. Then it can be shown [49,
95] that there is again exponential relaxation: there exists a constant c4 = c4(β,h)
such that ∣∣〈 f 〉η

Λ;β,h −〈 f 〉β,h
∣∣≤ c ‖ f ‖∞ e−R/c4 ,

uniformly in functions f satisfying supp( f ) ⊂B(r ), r = bR/2c. ¦

3.10.9 Absence of analytic continuation of the pressure.

From the point of view of complex analysis, the properties of the pressure of the
Ising model that we have obtained raise natural questions, that will turn out to
have physical relevance, as explained in Chapter 4, in particular in the discussion
of Section 4.12.3. Since we are interested in fixing the temperature and studying
the analyticity properties with respect to the magnetic field, in this section, we will
denote the pressure by

h 7→ψβ(h) .

For the sake of concreteness, let us consider only positive fields (by the identity
ψβ(−h) =ψβ(h), everything we say here admits an equivalent for negative fields).
Although the pressure was first shown to exist on the real axis, we have seen in
Theorem 3.42 that it can actually be extended to the whole half-plane H+ = {Reh >
0} as an analytic function ψβ : H+ → C. We will also see in Section 5.7.1 how to

obtain the coefficients of the expansion ofψβ(h) in the variable e−2h , with the latter
being convergent for all h ∈ H+. Unfortunately, these results do not provide any

information on the behavior of the pressure on the boundary of H+, ∂H+ def= {Reh =
0}. In function-theoretic terms, the most natural question is whether ψβ can be
analytically continued outside H+. We will thus distinguish two scenarios.

Scenario 1: Analytic continuation is possible. Analytic continuation means that
there exists a strictly larger domain H ′ ⊃ H+ and an analytic map ψ̃β : H ′ → C,
which coincides with ψβ on H+, as depicted in Figure 3.18. This scenario is seen,
for example, in the one-dimensional Ising model: the exact solution (3.10) guaran-
tees that ψβ can be continued analytically through h = 0, at all temperatures. Of
course, since it can be defined as an analytic function on the whole real line, the
analytic continuation ψ̃β obtained when crossing h = 0 is nothing but the usual
pressure: for h < 0, ψ̃β(h) =ψβ(h) (see Figure 3.4).
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Reh

Imh

H−

H ′

H+

Figure 3.18: In Scenario 1, there exists an interval of the imaginary axis
through which the pressure can be continued analytically.

Another example where analytic continuation is possible is provided by the
Curie–Weiss model. Indeed, we have already seen in Exercise 2.4 that starting from

ψCW
β (h) = max

m
{hm − f CW

β (m)} ,

a more explicit expression can be obtained for the pressure:

ψCW
β (h) =−

βmCW
β

(h)2

2
+ logcosh

(
βmCW

β (h)+h
)+ log2.

Although this function is not differentiable at h = 0 when β is large, it possesses an
analytic continuation across h = 0. Namely, remember that mCW

β
(h) is the largest

solution (in m) of the mean-field equation

tanh(βm +h) = m . (3.95)

A look at Figure 2.4 shows that the map h 7→ mCW
β

(h), well-defined for h > 0, can

obviously be continued analytically through h = 0, to small negative values of h,
see Figure 3.19. The continuation m̃CW

β
(·), for small h < 0, is still a solution of (3.95),

but corresponds only to a local maximum of m 7→ hm − f CW
β

(m), and thus does not

represent the equilibrium value of the magnetization.
As a consequence, the pressure ψβ(h) can also be continued analytically

through h = 0, h 7→ ψ̃CW
β

(h), as depicted in Figure 3.19.

Remark 3.66. If the analytic continuation can be made to reach the negative real
axis {h ∈R : h < 0}, as in Figure 3.19 above, then the analytically continued pres-
sure at such (physically relevant) values of h < 0 can acquire an imaginary part,
and some (non-rigorous) theories predict that this imaginary component should
be related to the lifetime of the corresponding metastable state. See [206]. ¦

Scenario 2: Analytic continuation is blocked by the presence of singularities. In
the second scenario, there exist no analytic continuation across the imaginary axis.
This happens when the singularities form a dense subset of the imaginary axis, see
Figure 3.20. In such a case, {Reh = 0} is called a natural boundary for ψβ.

Which scenario occurs in the Ising model on Zd , d ≥ 2? With the exception of
the (trivial) one-dimensional case, the results concerning the possibility of analyti-
cally continuing the pressure of the Ising model across ∂H+ are largely incomplete.
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h

mCW
β

(h)

h

ψCW
β

(h)

ψ̃CW
β

(h)

Figure 3.19: Left: the analytic continuation (dotted) of the magnetization of
the Curie–Weiss model, across h = 0, along h → 0+. Right: the corresponding
analytic continuation of the pressure. Whenβ>βc, the analytic continuation
differs from the values of the true pressure for small h < 0: ψ̃CW

β
(h) <ψCW

β
(h).

Reh

Imh

H+

Figure 3.20: In Scenario 2, {Reh = 0} is a natural boundary of the pressure:
any path crossing the imaginary axis “hits” a singularity, which prevents an-
alytic continuation.

In the supercritical regime β< βc(d), the pressure is differentiable at h = 0 and
analytic continuation is expected to be possible, through any point of the imaginary
axis. (Analyticity at h = 0 for the two-dimensional Ising model at any β < βc is
established in [231].) For sufficiently large temperatures, a proof will be provided
in Chapter 5 using the cluster expansion technique (see Exercise 5.8).

In the subcritical regime β> βc(d), the only rigorous contribution remains the
study of Isakov [174], who considered the d-dimensional Ising model (d ≥ 2) at low
temperature and studied the high-order derivatives of the pressure at h = 0. Before
stating his result, note that Theorem 3.42 allows one to use Cauchy’s formula to
obtain that, for all h0 ∈ H+,

dkψβ

dhk
(h0) = k !

2πi

∮

γ

ψβ(z)

(z −h0)k+1
dz , (3.96)

where γ is a smooth simple closed curve contained in H+, surrounding h0, oriented
counterclockwise. Choosingγ as the circle of radius |Reh0|/2 centered at h0, we get
the upper bound

∣∣∣
dkψβ

dhk
(h0)

∣∣∣≤C k k ! . (3.97)

The constant C being proportional to 1/|Reh0|, this upper bound provides no in-
formation on the behavior near the imaginary axis.
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Isakov showed that, for all k, the kth one-sided derivative at h = 0 6,
dkψβ

dhk
+

(0),

exists, is finite and equals

dkψβ

dhk
+

(0) = lim
h0↓0

dkψβ

dhk
(h0) ,

where the limit h0 ↓ 0 is taken along the real axis. This implies that the pressure, al-
though not differentiable at h = 0, has right-derivatives of all orders at h = 0. There-
fore, the Taylor series for the pressure at h = 0 exists:

a0 +a1h +a2h2 +a3h3 + . . . , where ak = 1

k !

dkψβ

dhk
+

(0) . (3.98)

But Isakov also obtained the following remarkable result:

Theorem 3.67. (d ≥ 2) There exist β0 <∞ and 0 < A < B <∞, both depending on β,
such that, for all β≥β0, as k →∞,

Ak k !
d

d−1 ≤ lim
h0↓0

∣∣∣
dkψβ

dhk
(h0)

∣∣∣≤ B k k !
d

d−1 . (3.99)

Since d
d−1 > 1, (3.99) shows that the high-order derivatives at 0 ∈ ∂H+ diverge much

faster than inside H+, as seen in (3.97). This implies in particular that the se-
ries (3.98) diverges for all h 6= 0, and therefore does not represent the function in
a neighborhood of 0 [7]. In other words, the pressure has a singularity at h = 0
and there exist no analytic continuation ofψβ through the transition point. We will
study this phenomenon in a simple toy model in Exercise 4.16.

Although this result has only been established at very low temperature, it is ex-
pected to hold for all β > βc. Observe that, since e(h+2πki)σ j = ehσ j , the pressure is
periodic in the imaginary direction, with period 2π. The singularity at h = 0 there-
fore implies the presence of singularities at each of the points 2πki ∈ ∂H+.

Isakov’s result was later extended to other models (see the references at the end
of Section 4.12.3). But the problem of determining whether there exists some an-
alytic continuation around the singularity at h = 0, across some interval on the
imaginary axis as on Figure 3.18, is still open.

3.10.10 Metastable behavior in finite systems.

As explained in Section 3.10.9, the spontaneous magnetization of the Ising model
at low temperatures cannot be analytically continued from negative values of h to
positive values of h. Of course, this only applies in the thermodynamic limit, since
the magnetization is an analytic function in a finite system. It is thus of interest
to understand what happens, in finite systems, to the − phase when h becomes
positive.

To discuss this issue, let us consider the low-temperature d-dimensional Ising
model in the box B(n) with a magnetic field h and − boundary condition. When
h ≤ 0 and β is large enough, typical configurations are given by small perturbations

6For k = 1, the one-sided derivative is the same as encountered earlier in the chapter:
dψβ
dh+ (0). For

k ≥ 2, the kth one-sided derivative is defined by induction.
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of the ground state η−: they consist in a large sea of − spins with small islands of +
spins (see Exercises 3.18 and 3.19). The − boundary condition is said to be stable
in B(n). The situation is more interesting when h > 0. To get some insight, let
us consider the two configurations ω−,ω+ ∈ Ω−

B(n)
, in which all the spins in B(n)

take the value −1, resp. +1. Then, HB(n);β,h(ω−)−HB(n);β,h(ω+) = −2β|∂exB(n)| +
2h|B(n)| . We thus see that ω− and ω+ have the same energy if and only if

h =β |∂exB(n)|
|B(n)| = 2dβ

|B(n)|1/d
.

We would thus expect that, provided that h > 0 satisfies

h|B(n)|1/d < 2dβ , (3.100)

the − boundary condition should remain stable inB(n) even though there is a posi-
tive magnetic field, in the sense that typical low temperature configurations should
be small perturbations of ω−, as on the left of Figure 3.21. In contrast, when h sat-
isfies

h|B(n)|1/d > 2dβ , (3.101)

one would expect the + phase to invade the box, with only a narrow layer of −
phase along the boundary of B(n), as on the right of Figure 3.21. In this case, the −
boundary condition is unstable.

Of course, the previous argument is very rough, taking into account only con-
stant configurations insideB(n), and one should expect the above claims to be valid
only for extremely low temperatures. Nevertheless, in a more careful analysis [296],
Schonmann and Shlosman have showed that the above remains qualitatively true
for the two-dimensional Ising model at any β> βc(2): there exists c = c(β) ∈ (0,∞)
such that the − boundary condition is stable as long as h < c|B(n)|−1/2, while it
becomes unstable when h > c|B(n)|−1/2. In the latter case, the macroscopic shape
of the region occupied by the + phase can be characterized precisely (showing, in
particular, that macroscopic regions remain occupied by the − phase near the four
corners of B(n) as long as h is not too large). In particular, these results show that
the magnetization at the center of the box satisfies, for large n and small |h|,

〈σ0〉−B(n);β,h
∼=

{
−m∗ if h < c|B(n)|−1/2 ,

+m∗ if h > c|B(n)|−1/2 .

In this sense, the negative-h magnetization can be “continued” into the positive-
h region, but only as long as h < c|B(n)|−1/2. The fact that the size of the latter
interval vanishes as n →∞ explains why the above discussion does not contradict
the absence of analytic continuation in the thermodynamic limit.

3.10.11 Critical phenomena.

As explained in this chapter, a first-order phase transition occurs at each point of
the line

{
(β,h) ∈R≥0 ×R : β>βc(d), h = 0

}
, whereβc(d) ∈ (0,∞) for all d ≥ 2. One of

the manifestations of these first-order phase transitions is the discontinuity of the
magnetization density at h = 0:

lim
h↓0

{
m(β,h)−m(β,−h)

}= 2m∗(β) > 0
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Figure 3.21: Typical low-temperature configurations of the two-dimensional
Ising model in a box of sidelength 100 with − boundary condition and mag-
netic field h > 0. Left: For small positive values of h (depending on β and the
size of the box), typical configurations are small perturbations of the ground
state η−, even though the − phase is thermodynamically unstable, the cost
of creating a droplet of + phase being too large. Right: For larger values of
h, the + phase invades the box, while the unstable − phase is restricted to a
layer along the boundary, where it is stabilized by the boundary condition.
Partial information on the size of this layer (in a slightly different geometrical
setting) can be found in [346].

for all β > βc(d). It can be shown [352, 7, 8] (for d = 2, remember (1.51) and Fig-
ure 1.10) that β 7→ m∗(β) is decreasing and vanishes continuously as β ↓βc. There-
fore, since m∗(β) = 0 for all β≤ βc(d), the magnetization density m(β,h) (and thus
the pressure) cannot be analytic at the point (βc(d),0). The corresponding phase
transition, however, is not of first order anymore: it is said to be continuous and
the point (βc(d),0) is said to be a critical point.

As we had already mentioned in Section 2.5.3, the behavior of a system at a crit-
ical point displays remarkable features. In particular, many quantities of interest
have singular behavior, whose qualitative features depend only on rough proper-
ties of the model, such as its spatial dimensionality, its symmetries and the short-
or long-range nature of its interactions. Models can then be distributed into large
families with the same critical behavior, known as universality classes.

Among the characteristic features that are used to determine the universality
class to which a model belongs, an important role is played by the critical expo-
nents. The definitions of several of the latter have been given for the Curie–Weiss
model in Section 2.5.3 and can be used also for the Ising model (using the corre-
sponding quantities). For the Ising model, we have gathered these exponents in
Table 3.1:
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d = 2 d = 3 d ≥ 4
α 0 0.110(1) 0
b 1/8 0.3265(3) 1/2
γ 7/4 1.2372(5) 1
δ 15 4.789(2) 3

Table 3.1: Some critical exponents of the Ising model. The exponents given
are rigorously only known to hold when d = 2 [259, 352, 59] and when d ≥
4 [318, 4, 9, 7]. The values given for d = 3 are taken from the review [267];
much more precise estimates are now available [194].

Observe that the exponents become independent of the dimension as soon as

d ≥ 4. The dimension du
def= 4, is known as the upper critical dimension. Above du,

the exponents take the same values as in the Curie–Weiss model (see Section 2.5.3),
in line with the interpretation of the mean-field approximation as the limit of the
model as d →∞ (see Section 2.5.4). Such a behavior is expected to be general, but
with a value of du depending on the universality class.

At a heuristic level, the core reason for this universality can be traced back to the
divergence of the correlation length at the critical point. The latter measures the
range over which spins are strongly correlated. In the Ising model, the correlation
length ξ is such that

〈σ0;σi 〉+β,h
def= 〈σ0σi 〉+β,h −〈σ0〉+β,h〈σi 〉+β,h ∼ e−‖i‖2/ξ ,

for all i for which ‖i‖2 is large enough. More precisely,

ξ(β,h)(n)
def= lim

k→∞
−k

log〈σ0;σ[kn]〉+β,h

,

where n is a unit-vector in Rd and we have written [x]
def= (bx(1)c, . . . ,bx(d)c) for any

x = (x(1), . . . , x(d)) ∈Rd .
In the Ising model, it is expected that the correlation length is finite (in all di-

rections) for all (β,h) 6= (βc(d),0). This has been proved when d = 2 [239]; in higher
dimensions, this is only known when either β<βc(d) [5] or when β is large enough
(we will prove it in Theorem 5.16), while it is known to diverge as β ↑βc(d) [238].

Under the assumption that there is only one relevant length scale close to the
critical point, the divergence of the correlation length implies the absence of any
characteristic length scale at the critical point: at this point, the system is expected
to be invariant under a change of scale. Based on such ideas, physicists have devel-
oped a non-rigorous, but powerful framework in which this picture can be substan-
tiated and which allows the approximate determination of the critical behavior: the
renormalization group.

Let us briefly describe the idea in a simple case. We define a mapping T :Ω→Ω

as follows: given ω ∈Ω, ω′ def= T (ω) is defined by

ω′
i

def=
{
+1 if

∑
j∈3i+B(1)ω j > 0,

−1 if
∑

j∈3i+B(1)ω j < 0.

In other words, we partition Zd into cubic blocks of sidelength 3, and replace the
3d spins in each of these blocks by a single spin, equal to +1 if the magnetization in
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the block is positive, and to −1 otherwise. This transformation is called a majority
transformation.

One can then iterate this transformation. Figure 3.22 shows the first two it-
erations starting from 3 different initial configuration, corresponding to the two-
dimensional Ising model at h = 0 and at three values of β: slightly subcritical (β <
βc(2)), critical (β=βc(2)) and slightly supercritical (β>βc(2)). At first sight, it looks
as though the transformation corresponds to decreasing β in the first case, keeping
it critical in the second and increasing it in the third. Of course, the situation cannot
be that simple: the probability distribution describing the transformed configura-
tion clearly does not correspond to an Ising model anymore. Nevertheless, it might
correspond to a model with additional interactions. One could then consider the
action of this transformation in the space of all Hamiltonians. The idea is then the
following: this transformation has two stable fixed points corresponding to infinite
and zero temperatures, which attracts all initial states with β < βc(d), respectively
β > βc(d). In addition it has an unstable fixed point corresponding to the criti-
cal point. This can, heuristically, be understood in terms of the correlation length:
since each application of the transformation corresponds roughly to a zoom by a
factor 3, the correlation length is divided by 3 at each step. As the number of it-
erations grows, the correlation length converges to 0, which corresponds to β = 0
or β = ∞, except if it was initially equal to infinity, in which case it remains infi-
nite; this case corresponds to the critical point. An analysis of the behavior of the
transformation close to the unstable fixed point then provides information on the
critical behavior of the original system.

These ideas are compelling but, at least in this naive form, the above proce-
dure is known to be problematic from a mathematical point of view; see [343] for
a detailed discussion or the comments in Section 6.14.2. Nevertheless, more so-
phisticated versions do allow physicists to obtain remarkably accurate estimates
of critical exponents. Moreover, the philosophy of the renormalization group has
played a key role in several rigorous investigations (even outside the realm of criti-
cal phenomena).

From a rigorous point of view, the analysis of critical systems is usually done us-
ing alternative approaches, limited to rather specific classes of models and mostly
in two situations: systems above their upper critical dimensions and two-dimen-
sional systems. Since research in these fields is still very actively developing, we will
not discuss them any further. Instead, we list several good sources where these top-
ics are discussed at length; these should be quite accessible if the reader is familiar
with the content of the present book.

A first approach to critical phenomena in lattice spin systems and (Euclidean)
quantum field theory, based on random walk (or random surfaces) representations,
is exposed in considerable detail in the monograph [102] by Fernández, Fröhlich
and Sokal; it provides a thorough discussion of scaling limits, inequalities for criti-
cal exponents, the validity of mean-field exponents above the upper critical dimen-
sion, etc.

A second approach is described in the books by Brydges [57] and Mastropi-
etro [234]. It is based on a rigorous implementation of a version of the renormal-
ization group. These books cover both the perturbative and nonperturbative renor-
malization group approaches from the functional-integral point of view and cover
a broad spectrum of applications.

A third approach is presented in the book [315] by Slade. The latter provides an
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β<βc :

T−→ T−→

β=βc :

T−→ T−→

β>βc :

T−→ T−→

Figure 3.22: Two iterations of the majority transformation at different tem-
peratures.

introduction to the lace expansion, a powerful tool allowing one to obtain precise
information on the critical behavior of systems above their upper critical dimen-
sion, at least for quantities admitting representation in terms of self-interacting
random paths.

A fourth approach, at the base of many of the recent developments of this field,
is based on the Schramm–Löwner evolution (SLE). This approach to critical phe-
nomena is restricted to two-dimensional systems, but yields extremely detailed and
complete information when it is applicable. An introduction to SLE can be found
in the book [210] and in lecture notes by Werner [349] and Lawler [208]. Combined
with discrete complex analytic methods and specific graphical representations of
spin systems, this approach yields remarkable results, such as the conformal in-
variance of the scaling limit, explicit expression for the critical exponents, etc. Good
references on this topic are the books by Werner [350] and Duminil-Copin [91, 92],
as well as the lecture notes by Duminil-Copin and Smirnov [94].

3.10.12 Exact solution

A remarkable feature of the planar Ising model is that many quantities of interest
(pressure, correlation functions, magnetization, etc.) can be explicitly computed
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when h = 0. The insights yielded by these computations have had an extremely im-
portant impact on the development of the theory of critical phenomena. There ex-
ist today many different approaches. The interested reader can find more informa-
tion on this topic in the books by McCoy and Wu [239], Baxter [17] or Palmer [261],
for example.

3.10.13 Stochastic dynamics.

Another topic we have only barely touched upon is the analysis of the stochastic
dynamics of lattice spin systems. In the latter, one considers Markov chains on
Ω, whose invariant measures are given by the corresponding Gibbs measures. We
made use of such a dynamics in Section 3.10.3 in the simplest case of the finite-
volume Ising model. The book [225] by Liggett and the lecture notes [232] by Mar-
tinelli provide good introductions to this topic.



Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook


