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THE STABILITY OF MATTER: 
FROM ATOMS TO STARS 

ELLIOTT H. LIEB 

Why is ordinary matter (e.g., atoms, molecules, people, planets, 
stars) as stable as it is? Why is it the case, if an atom is thought to 
be a miniature solar system, that bringing very large numbers of 

30 

atoms together (say 10 ) does not produce a violent explosion? 
Sometimes explosions do occur, as when stars collapse to form 
supernovae, but normally matter is well behaved. In short, what is 
the peculiar mechanics of the elementary particles (electrons and 
nuclei) that constitute ordinary matter so that the material world 
can have both rich variety and stability? 

The law of motion that governs these particles is the quantum 
(or wave) mechanics discovered by Schrödinger [SE] in 1926 (with 
precursors by Bohr, Heisenberg, Sommerfeld and others). Every­
thing we can sense in the material world is governed by this theory 
and some of its consequences are quite dramatic, e.g., lasers, tran­
sistors, computer chips, DNA. (DNA may not appear to be very 
quantum mechanical, but notice that it consists of a very long, 
thin, complex structure whose overall length scale is huge com­
pared to the only available characteristic length, namely the size 
of an atom, and yet it is stable.) But we also see the effects of 
quantum mechanics, without realizing it, in such mundane facts 
about stability as that a stone is solid and has a volume which 
is proportional to its mass, and that bringing two stones together 
produces nothing more exciting than a bigger stone. 

The mathematical proof that quantum mechanics gives rise to 
the observed stability is not easy because of the strong electric 
forces among the elementary constituents (electrons and nuclei) of 
matter. The big breakthrough came in the mid sixties when Dyson 
and Lenard [DL] showed, by a complicated proof, that stability 

Received by the editors August 15, 1989. 
1980 Mathematics Subject Classification (1985 Revision). Primary 81H99, 

81M05, 85A15; Secondary 81C99, 82A15. 
This paper was presented as the Sixty-Second Josiah Willard Gibbs Lecture on 

January 11, 1989 at the 95th annual meeting of the American Mathematical Society 
in Phoenix, Arizona. 

Work partially supported by U.S. National Science Foundation grant PHY-85-
15288-A03. 

© 1990 American Mathematical Society 
0273-0979/90 $1.00+ $.25 per page 

1 



2 E. H. LIEB 

is, indeed, a consequence of quantum mechanics. (Part of their 
motivation came from earlier work by Van Hove, Lee and Yang, 
van Kampen, Wils, Mazur, van der Linden, Griffiths, Dobrushin, 
and especially Fisher and Ruelle who formulated the problem and 
showed how to handle certain well chosen, but unrealistic forces.) 
This was a milestone but there was room left for improvement 
since their results had certain drawbacks and did not cover all 
possible cases; for instance, it turns out that quantum mechanics, 
which was originally conceived to understand atoms, is also crucial 
for understanding why stars do not collapse. Another problem 
was that they proved what is called here stability of the second 
kind while the existence of the thermodynamic limit (Theorem 3 
below), which is also essential for stability, required further work 
[LL]. The full story has now, two decades later, mostly been sorted 
out, and that is the subject of this lecture. The answer contains 
a few surprises, some of which are not even discussed in today's 
physics textbooks. 

No physics background will be assumed of the reader, so Part I 
reviews some basic facts. Part II contains a synopsis of the aspects 
of quantum mechanics needed here. Part III treats the simplest 
system—the hydrogen atom, and Part IV introduces the strange 
Pauli exclusion principle for many electrons and extends the dis­
cussion to large atoms. Part V deals with the basic issue of the 
stability of matter (without relativistic effects) while Part VI treats 
hypothetical, but interesting, matter composed of bosons. Part VII 
treats the problems introduced by the special theory of relativity. 
Finally, Part VIII applies the results of Part VII to the structure 
of stars. 

PART I. THE PHYSICAL FACTS AND THEIR 
PREQUANTUM INTERPRETATION 

While it is certainly possible to present the whole story in a 
purely mathematical setting, it is helpful to begin with a brief dis­
cussion of the physical situation. 

The first elementary constituent of matter to be discovered was 
the electron (J.J. Thomson, 1897). This particle has a negative elec­
tric charge (denoted by -e ) and a mass, m . It is easy to produce 
a beam of electrons (e.g., in a television tube) and use it to mea­
sure the ratio e/m quite accurately. The measurement of e alone 
is much trickier (Millikan 1913). The electron can be considered 
to be a point, i.e., it has no presently discernible geometric struc­
ture. Since matter is normally electrically neutral (otherwise we 
would feel electric fields everywhere), there must also be another 
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constituent with positive charge. One of the early ideas about this 
positive object was that it is a positively charged ball of a radius 

o 

about equal to the radius of an atom, which is approximately 10 
cm. (This atomic radius is known, e.g., by dividing the volume of 
a solid, which is the most highly compressed form of matter, by 
the number of atoms in the solid.) The electrons were thought to 
be stuck in this charged ball like raisins in a cake; such a struc­
ture would have the virtue of being quite stable, almost by fiat. 
This nice picture was destroyed, however, by Rutherford's classic 
1903 experiment which showed that the positive entities were also 
essentially points. (He did this by scattering positively charged 
helium nuclei through thin metal foils and by showing that the 
distribution of scattering angles was the same as for the Kepler 
problem in which the trajectories are hyperbolas; in other words, 
the scatterers were effectively points—not extended objects.) 

The picture that finally emerged was the following. Ordinary 
matter is composed of two kinds of particles: the point electrons 
and positively charged nuclei. There are many kinds of nuclei, each 
of which is composed of positively charged protons and chargeless 
neutrons. While each nucleus has a positive radius, this radius 
(about 10 _ 1 cm) is so small compared to any length we shall 
be considering that it can be taken to be zero for our purposes. 
The simplest nucleus is the single proton (the nucleus of hydro­
gen) and it has charge +e . The number of protons in a nucleus 
is denoted by z and the values z = 1, 2, . . . , 92, except for 
z = 43, 61, 85, are found in nature. Some of these nuclei, e.g., 
all 84 < z < 92, are unstable (i.e., they eventually break apart 
spontaneously) and we see this instability as naturally occurring 
radioactivity, e.g., radium. Nuclei with the missing z values 43, 
61, 85, as well as those with 92 < z < 109 have all been produced 
artificially, but they decay more or less quickly [AM]. Thus, the 
charge of a naturally occurring nucleus can be +e up to +92e 
(except for 43, 61, 85), but, as mathematicians often do, it is in­
teresting to ask questions about "the asymptotics as z —• oo " of 
some problems. Moreover, in almost all cases we shall consider 
here, the physical constraint that z is an integer need not and will 
not be imposed. The other constituent—the neutrons—will be of 
no importance to us until we come to stars. They merely add to 
the mass of the nucleus, for they are electrically neutral. For each 
given z several possible neutron numbers actually occur in nature; 
these different nuclei with a common z are called isotopes of each 
other. For example, when z = 1 we have the hydrogen nucleus 
(1 proton) and the deuterium nucleus (1 proton and 1 neutron) 
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which occur naturally, and the tritium nucleus (1 proton and 2 
neutrons) which is artificial and decays spontaneously in about 12 
years into a helium nucleus and an electron, but which is important 
for hydrogen bombs. Isolated neutrons are also not seen naturally, 
for they decay in about 13 minutes into a proton and an electron. 

Finally, the nuclear mass, M, has to be mentioned. It satisfies 
zM < M < 3zM where Mp = 1837m is the mass of a proton. 
Since the nuclear mass is huge compared to the electron mass, 
m, it can be considered to be infinite for most purposes, i.e., the 
nuclei can be regarded as fixed points in R3, although the location 
of these points will eventually be determined by the requirement 
that the total energy of the electron-nucleus system is minimized. 
A similar approximation is usually made when one considers the 
solar system; to calculate the motion of the planets the sun can be 
regarded as fixed. 

The forces between these constituents of matter (electrons and 
nuclei) is given by Coulomb's inverse square law of electrostatics: 
If two particles have charges q{ and q2 and locations xx and x2 

in R3 then F{—the force on the first due to the second—is minus 
F2—the force on the second due to the first—and is given by 

(Later on, when stars are discussed, the gravitational force will 
have to be introduced.) If q{q2 < 0 then the force is attractive; 
otherwise it is repulsive. This force can also be written as minus 
the gradient (denoted by V ) of a potential energy function 

(1.2) W(x{, x2) = qxq2 _x | , 

that is 

(1.3) FX=-VXW and F2 = -V2W. 

If there are TV electrons located at 2L — (x{, . . . , xN) with 
xi G R , and k nuclei with positive charges Z_ = (z{, ... , zk) 
and located at R = (R{, . . . , Rk) with R. e R3, the total-potential 
energy function is then 

( 1.4) W(X) = -A(X) + B(X) + U 
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with 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

A(X) = e2J2V(*l) 
k 

V(x) = Y^zj\x-Rj\-
1 

7 = 1 

B(X) = e2 £ \Xi-xfx 

\<i<J<N 

U = e2 Yl ^j\Ri-Rj\ 
l<i<j<k 

The A term is the electron-nucleus attractive potential energy, 
with eV(x) being the electric potential of the nuclei. B is the 
electron-electron repulsive energy and U is the repulsive energy 
of the nuclei. A, B, U and V depend on R and Z_, which are 
fixed and therefore do not appear explicitly in the notation. It is 
then the case that the force on the i th particle is 

(1.9) F^-VtW. 

In the case of an atom, k — 1 by definition. The case k > 1 will 
be called the molecular case, but it includes not only the molecules 
of the chemist but also solids, which are really only huge molecules. 

So far this is just classical electrostatics and we turn next to 
classical dynamics. Newton's law of motion is (with a dot denoting 
j - t , where t is the time) 

(1.10) mxi = Fr 

This law of motion, which is a system of second order differential 
equations, is equivalent to the following system of first order equa­
tions. Introduce the Hamiltonian function which is the function on 
the phase space R6N = ( R 3 x R 3 f given by 

(1.11) //(Z,X) = ̂ f > ? + ^Q0. 

The notation P_ = (p{, . . . , pN) with p. in R3 is used, and the 
quantity 

1=1 
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is called the kinetic energy. The equations of motion (1.10) are 
equivalent to the following first order system in R 

dH 

(1.13) " < „ 
Pi = dx/ 

The velocity of the / th electron is v. and p. is called its momen­
tum: p. = mvi by the first equation in (1.13). 

From (1.13) it will be seen that H{P_, X) is constant throughout 
the motion, i.e., dH(P{t)9 X_(t))/dt = 0. This fixed number is 
called the energy and is denoted by E ; it depends, of course, on 
the trajectory, and it is important to note that it can take all values 
in (—00, oo ) . 

Another interesting fact about the flow defined by (1.13), but 
one which will not be important for us, is that it preserves Lebesgue 
measure dxx • • • dxNdpx • • • dpN on R N ; this is Liouville's theo­
rem and it follows from the fact that the vector field that defines the 
flow, (dH/dp{, . . . , dH/dpy, -dH/dx{, . . . , -dH/dxN), is di­
vergence free. This theorem is one important reason for introduc­
ing the Hamiltonian formalism, for it permits a geometric inter­
pretation of classical mechanics and is crucial for ergodic theory 
and statistical mechanics. The analogue in quantum mechanics 
turns out to be that quantum mechanical time evolution is given 
by a one parameter unitary group in Hubert space (see (2.18))— 
but time evolution will not concern us here. 

Consider the simplest possible case, neutral hydrogen, with z = 
1 (a proton) and one electron ( JV = 1 and k = 1 ). With 
the proton fixed at the origin (i.e., R{ = 0) the Hamiltonian is 
p /2m - Ze \x\~l and classical bound orbits (i.e., orbits which 
do not escape to infinity) of the electron are well known to be the 
ellipses of Kepler with the origin as a focus. These can pass as 
close as we please to the proton. Indeed, in the degenerate case 
the orbit is a radial line segment and in such an orbit the electron 
passes through the nucleus. One measure of average closeness of 
the electron to the nucleus in an orbit is the energy E, which is 
always negative for a bound orbit. Moreover E can be arbitrarily 
negative because the electron can be arbitrarily close to the nucleus 
and also have arbitrarily small kinetic energy T. A consequence 
of this fact is that the hydrogen atom would be physically unstable; 
in a gas of many atoms another particle or atom could collide with 
our atom and absorb energy from it. After many such collisions 
our electron could find itself in a tiny orbit around the nucleus 
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and our atom would no longer be recognizable as an object whose 
radius is supposed to be 10 ~8 cm. Each atom would be an infinite 
source of energy which could be transmitted to other atoms or to 
radiation of electromagnetic waves. 

The problem was nicely summarized by Jeans [J] in his 1915 
textbook. 

"There would be a very real difficulty in supposing that the 
(force) law 1/r2 held down to zero values of r . For the 
force between two charges at zero distance would be infinite; 
we should have charges of opposite sign continually rushing 
together and, when once together, no force would be ade­
quate to separate them... Thus the matter in the universe 
would tend to shrink into nothing or to diminish indefinitely 
in size." 
The inability to account for stable atoms in terms of classical 

trajectories of pointlike charged particles was the major problem of 
prequantum physics. Since the existence of atoms and molecules 
was largely inferential in those days (nowadays we can actually 
"see" atoms with the tunneling electron microscope), the inability 
to account for their structure even led some serious people to ques­
tion their existence—or at least to question the nice pictures drawn 
by chemists. The main contribution of quantum mechanics was 
to provide a quantitative theory that "explains" why the electron 
cannot fall into the nucleus. In brief, when the electron is close to 
the nucleus its kinetic energy—which could be zero classically—is 
forced to increase in such a way that the total energy (1.11) goes 
to -foo as the average distance \x\ goes to zero. This property is 
known as the uncertainty principle. 

PART II. QUANTUM MECHANICS IN A NUTSHELL 

Schrödinger's answer to the problem of classical mechanics was 
the following. While an electron is truly a point particle, its state 
at any given time cannot be described by a point x e R3 and a 
momentum p e R3 (or velocity v = -^p ) as in the classical view. 
Instead the state of an electron is a (complex valued) function y/ 
in L (R ) . Any y/ will do provided it satisfies the normalization 
condition 

(2.1) | |Hl2= ƒ Mx)\2dx=l. 
JR3 

(Actually, this statement is not accurate; an electron has a prop­
erty called spin, and the mathematical expression of this fact is 
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that y/ is really in L 2 (R 3 ;C 2 ) , i.e., y/(x) is a two-component 
spinor, y/(x) - (y/x(x), y/2(x)) with each y/i e L2(R3). This 
complication—which does not affect the present discussion very 
much—will frequently be ignored here.) Thus, the state of an elec­
tron is a point y/ in an infinite dimensional Hilbert space instead 
of a point (p, x) in R6. 

The interpretation of y/ , due to M. Born [BM] (Jammer's book 
[JM] can be consulted for historical details) is that 

(2.2) p¥(x) = \ys(x)\2 

is the probability density for finding the electron at x . The expected 
value of the potential energy W{x) in the state y/ of one electron 
is then 

(2.3) W¥= (p¥{x)W{x)dx. 
J R 

To localize an electron at a point xn would require \y/\ = <5 , 
where SY is Dirac's delta measure, but this is obviously not the 

square of an L2(R3) function. Thus, it no longer makes sense to 
speak of an electron unambiguously located at a single point xQ . 

What about the kinetic energy T = p2/2ra? To define T we 
first consider the Fourier transform of y/ scaled by the number h 
and defined by 

(2.4) y?(p) = h 3/2 f ^(x)exp 
2ni ( ' 

•JT{P>X) dx. 

Usually h is taken to be 1 or 2n in textbooks but any h can 
be used. Although y) depends on the choice of h, Plancherel's 
formula is always the following: 

(2.5) f W(p)\2dp=l. 

The constant h relevant for quantum mechanics is Planck's con­
stant; it is not arbitrary and has to be determined experimentally 
in order to satisfy the following physical interpretation of | y/(p)\ . 
In view of (2.5), \y/{p)\2 can be regarded as a probability density 
- it is the probability density of the electron having a momentum 
p . With this interpretation, the kinetic energy of the electron in 
the state y/ is 

(2-6) ^ = in L l ^ l 2 ^ = ^h2L W>|2**. 
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where, in a customary notation, h = h/2n. The role of h in 
the definition (2.4) is brought into focus by the right side of (2.6). 
Numerically h = 1.05 x 10~27 erg seconds. 

Another way to formulate (2.3) to (2.6) is to think of L2(R3) 
as a Hubert space with inner product (y/, 0) = ƒ F M ^ M dx so 
that 

(2.7) W¥ = (yt9Wy,). 

The momentum p is replaced by the self adjoint operator 
2 2 

p - -ihV and p = -h A 
with A being the Laplacian d2/dx2+ d2/dy2+ d2/dz2 . Then the 
kinetic energy is (after integrating by parts) 

(2.8) 2mT¥ = (py/, py/) = h2\\Vy/\\2
2 = (y/, p2y/) 

These concepts can be generalized to the many-body case of TV 
electrons by replacing R3 by R3N. Then y/(x) is replaced by 
y/(X) = y(x{ ,...,xN) in <g)f L2(R3) « L2{R3N). (If spin is 

included then we use <g)f L2(R3, C2) « L2(R3N ; C2").) A differ­
ent generalization that might leap to the reader's mind would be 
to replace y/(x) by an Af-tuple of functions on R3 ; that would 
lead to a nonlinear theory and would be wrong. The normalization 
condition is 

(2.9) f Jxi/{X)\dxx---dxN = \ 
J R 

and \y/(K)\ is the joint probability density for finding the elec­
trons at x{, ... , xN . The potential and kinetic energies are given 
by 

(2.10) W¥ = ƒ W(X)MX)\2dxx •••dxN 
J R 

(2.11) T¥ = 2 ^ 2 E / R 3 „ K V ^ U O I 2 ^ , -dxN. 

The energy of y/ is then 

(2-12) EV = T¥ + W¥. 

The problem that will concern us here is to find a lower bound to 
the ground state energy 

(2.13) E = E(N,k,Z_, R) = infEw , 
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because the boundedness of E precludes the kind of collapse that 
Jeans was worried about. (Recall that E depends on N, k, Z 
and R since W(X) does.) In (2.13) y/ is required to satisfy the 
normalization condition (2.9). It will also be required to satisfy 
another condition—the Pauli exclusion principle—which will be 
explained later. 

The absolute ground state energy is 

(2.14) E(N9 k,Z) = infE(N,k9Z9 R) 
R 

and it is the ground state energy when the nuclei are placed in the 
most favorable locations. 

There are two notions of stability 
(A) STABILITY OF THE FIRST KIND. E(N, k,Z_,R) is 

finite for every N, k , Z_ and R . 
(B) STABILITY OF THE SECOND KIND. There is a nonneg-

ative function z \-+ A(z) such that for all N and k 

(2.15) E(N, k9Z_)> -A(z)(N + k) 

provided each z, < z. Recall that z. < 92 in nature. The 
significance of the linear law (2.15) will be discussed later in Part 
V. 

The infimum in (2.13) may or may not be attained by some y/ . 
If it is, a minimizing y/, which may not be unique, is called a 
ground state. It satisfies the linear Euler-Lagrange equation (also 
known as the time independent Schrodinger equation) 

(2.16) Hy/ = Ey/ 

where H is the Schrodinger Hamiltonian, namely the self adjoint 
second order elliptic differential operator 

(2.17) #=__Lfi2£AX; + »m 

In the previous Hubert space notation, E = (y/, H y/). 
Quantum mechanics is the study of the eigenvalues of H, i.e., 

solutions of Hy/ = Xy/ with y/ in L , and also the associated 
(time dependent) Schrodinger equation of the time evolution 

(2.18) Hy/ = -ih^ 

which is important in several contexts, especially in the subject of 
scattering theory. The eigenvalues X are called energy levels and 
differences between any two, Xt - X., is the energy carried away or 
absorbed by a photon when the system makes a "quantum jump" 
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from eigenstate i//{ to eigenstate y/2. The fact that the system 
"jumps" from one eigenstate to another is a mysterious axiom of 
quantum mechanics (more precisely, quantum measurement the­
ory) that need not concern us here, but it has the following impor­
tant physical implication. According to Einstein, the frequency 
v of a photon of energy e is always v = e/h. Thus, by en­
ergy conservation the photon emitted or absorbed has frequency 
v = (A. _ Xj)/h. Since the k. 's are discrete, the frequencies (or 
spectral lines) are also discrete. With classical mechanics we would 
expect to find all frequencies, and the experimental existence of 
discrete spectral lines is regarded in many textbooks as being the 
crucial problem that classical physics could not explain. However, 
Jeans's question about the existence of stable atoms capable of 
emitting these discrete spectral lines can evidently be regarded as 
a question of higher priority. 

In this lecture we shall be interested only in the lowest eigenvalue 
of H, which is E. Equation (2.18) is therefore irrelevant here. 
Also (2.16) will not be invoked because we shall deal directly with 
the minimization problem (2.13) which, incidentally, avoids the 
technically difficult question of the selfadjointness of H. 

PART III. THE HYDROGENIC ATOM 
AND SOBOLEV'S INEQUALITY 

In Parts III-VI we shall use units in which h /2m = h /Sn m = 
1 and e = 1. This can always be done by changing the length scale 
x —• (h2j2me2)x. The original energy E is related to the new 
energy E' (which will henceforth be denoted simply as E ) by 
E = (2me2/h2)E'. 

The problem for hydrogen is to minimize 

(3.1) E¥ = T¥ + W¥ = j ^ \Vy(x)\2dx - z j Mx)\2\xfldx 

with ƒ \y/\2 = 1. We can take y/ to be real, as is true in all the 
problems considered here, because the real and imaginary parts of 
y/ appear independently in (3.1) and (2.1). Of course z = 1 for 
hydrogen but it will be useful later to consider (3.1) with arbitrary 
z > 0 . 

The fact that T controls W , thereby making E finite, is 
most clearly seen with the Sobolev inequality 

(3.2) T¥ = \\W\\2
2>S\\iif\\l = s y p¥(x)3dx^ =S\\pv\\3 
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1 1 

for any y/ e L (R ) (not necessarily normalized). Here S = 
3(7r/2)4/ « 5.5 and we recall (2.2). The important point about 
(3.2) is that it bounds T in terms of p¥ ; the derivatives have 
been eliminated. The ground state energy can be bounded from 
below using (3.2), and only the fact that f p = 1, by 

(3.3) E > inf ls\\p\\3 - z f \x\~X p{x)dx\ 

where the infimum is over all nonnegative p with ƒ p = 1. This 
minimization problem is an easy exercise and the answer is 

(3.4) E ^ - \ z l ' 

This is a remarkably good bound since the correct answer, which 
is obtained by solving (2.16), is E — -z2/4. 

Before moving on, it is important to understand heuristically 
why (3.1) leads to E « - z . If i// is some nice function with 
|| y ||2 = 1 anc* whose width is about L (for example, the Gaussian 
y/(x) = (const.) exp[-x2 /L2]), then T is roughly L~ . On the 
other hand, W is roughly -zL~{ . Therefore, the problem of 
minimizing E is roughly the same as 

(3.5) 2^min{i,4} 

The minimizing L is L = 2/z and the minimum in (3.5) is 
- z 2 / 4 , 
(3.1) is 
- z 2 / 4 , which is the right answer. Indeed, the minimizing y/ for 

(3.6) (j){x) = (const.)* zM/2 

which shows that the width of y/ is, in fact, about z~l. From this 
calculation, and recalling that |^(x)|2 is the probability density 
for the electron, we learn that the size of a one-electron atom with 
nuclear charge z decreases with z like z _ 1 . 

There is another version of (3.2) that is technically weaker, but 
more transparent and eventually more useful. Since ƒ pw = 1, a 
simple application of Holder's inequality to the right side of (3.2) 
yields 

(3-7) TV>K1JR3P¥(X)5 

with Kl = S. The constant Kl can be 
but that is conceptually unimportant. Instead of (3.3) we then 
with Kl = S. The constant Kl can be improved from S to 9.57, 
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have 

(3.8) E > inf | f [Kl p(xf3 - \x\~l p(x)]dx\ 

and this yields a result only slightly worse than (3.4), namely 
-0.35z2 with Kl = 9.57. The important point is that (3.7) (with 
K or with S ) is just as good for our purposes as (3.3) because it 
yields the z2 law, but the important advantage of (3.7) over (3.3) 
is that the integral comes with the exponent 1 in (3.7) instead of 
the exponent 1/3 in (3.2). This gives (3.7) the form of the integral 
of an energy density /? (x)5 / 3 . Independent "bumps" in p give 
additive contributions to the right side of (3.7); in (3.2), by con­
trast, we have to take the cube root—which spoils the additivity. 

The inequality (3.7) can be stated poetically as follows. An 
electron is like a rubber ball, or a fluid, with an energy density 
proportional to p^3. It costs energy to squeeze it and this accounts 
for the stability of atoms. 

PART IV. LARGE ATOMS AND THE 
PAULI EXCLUSION PRINCIPLE 

Suppose that N — z and z is large, say z = 50. Since N > 1, 
W has two terms which come from -A and B in (1.4). The 
constant U is zero since there is only one nucleus. The B term is 
positive but it turns out to be small compared to the A term and, 
for a preliminary orientation, can be neglected. We would then try 
to minimize 

(4.1) Ë¥ = J2 f3N {IV ^CaOl2 - z\xi\-
1\(y,(X)\2}dxl---dxN 

The minimum with ||t^||2 = 1 is then achieved by 

(4.2) v>Q0 = l W ; ) > 

where <j>(x) is the minimizer for (3.1) and is given in (3.6). This 
leads to 

(4.3) E = inf Ew = -Nz2/4 = - z 3 / 4 . 

From this calculation we would be led to two conclusions: (1) 
The energy of an atom is finite (stability of the first kind) but it 
grows like z . (ii) Because the scale of 0 is z , the size of a 
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large atom decreases with z like z" 1 . Conclusion (ii) is especially 
troublesome: large atoms are smaller than small atoms. 

Both conclusions are false because of an additional axiom in­
troduced by Pauli [P] in 1925 (and interpreted in the context of 
Schrödinger's wave mechanics by Dirac and Heisenberg in ( 1926)), 
namely the exclusion principle. This states that the allowed y/ 's in 
the minimization problem (2.13) are the antisymmetric functions 
in L2(R3N) « <g)*L2(R3). (The reason for the word exclusion 
will be explained shortly.) In other words y/ e f\N L2(R3), the 
antisymmetric tensor product of L2(R3). More explicitly 

Y\X\ 9 • • • 9 Xj 9 • • • 9 Xj 9 * * • 9 Xfl) = = 

Y\X\ 9 • * * 9 Xj 9 • • • 9 Xj 9 • • • 9 Xfl) 

for every ƒ ^ j . If spin is taken into account then the condition 
is y/ G A ^ £ (R 3 ;C 2 ) . (Equivalently, y/ is an antisymmetric 

2 3 2^ 

function in L (R , C ).) The physical significance of this pecu­
liar antisymmetry restriction will not be discussed here, but it is 
related to the fact that electrons are indistinguishable. 

A function in f\N L2(R3 ; C2) may be hard to think about—in 
which case the reader should ignore the complication of spin and 
think instead about f\N L2(R3) without any essential loss. The 
following remarks may be useful, however. Elementary manipu­
lations with the symmetric (or permutation) group SN show that 
our minimization problem (2.13) (or even the Schrödinger equa­
tion (2.16) or (2.18)) in /\N L2(R3; C2) is equivalent to solving 
the problem in a subset of the more familiar space L2(R3N). This 
is the subset consisting all function y/ = y/(xl, . . . , xN) with the 
property that there is some integer I < J < N such that y/ is an­
tisymmetric in the variables xx, . . . , x3 and also antisymmetric 
in the variables xJ+l, . . . , xN if J < N. No assertion is made 
about permuting variables x{ and x. when i < J < j . Thus, it is 
as though there are two species of spinless particles ( J of one kind 
and N-Jof the other kind), each of which satisfies the Pauli 
exclusion principle for spinless particles. The terminology that is 
employed to describe these "two kinds" of electrons is "electrons 
with spin up" and "electrons with spin down". 

Particles such as electrons, protons and neutrons (and some, but 
not all nuclei) that satisfy the Pauli exclusion principle are called 
fermions. They always have spin. There is another kind of particle 
in nature—bosons. These have the restriction that y/ is symmetric 
(there is only L2(R3) this time, not L2(R3 ; C2) ). Every elemen­
tary particle is either a boson or a fermion. Fortunately, there are 
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no negatively charged bosons which do not decay rapidly, for mat­
ter composed of negative bosons and positive bosons is not stable 
of the second kind—as will be seen later in Part VI. 

It is a very general fact that the infimum in (2.13) over the full 
tensor product ®^L2(R3) is the infimum over symmetric ^ ' s , 
i.e., bosons. To prove this fact, first replace y/ (which is real 
and normalized) by \y/\, which does not increase E because 

\y/\ and |Vy/| remain the same. Next, for any function O(Z) 
we can construct a symmetric function 0>o(X_) by summing over 
permutations, i.e., 

nesN 

One easily checks that OCT is automatically orthogonal in (g)NL (R3) 
to the function Oa = O - O^ . For the same reason (symmetrizing 
the integrand in (2.10), (2.11)) Zs0 splits as E^ = E^ + 2?0 . 
Applying this construction to our y/ we easily conclude that 

IIWIl2 = (M)"2 E (MM.IvK*-)) 
ju, 7t€SN 

> (AH)"2 J2 INI ' = {N\)~1\\V\\1 = (M)"'-
n€SN 

Let E be the unrestricted infimum and let Ea denote the infimum 
restricted to symmetric functions. Then Ea - E > 0 and 

(4.4) 
E = ™fE* = ™fE\r\ = y&Wl + EW\) 

>inf{ | | k | J | 2
2 ^+ 111^11^} 

= inm-\\W\X2)E + \mat2E°}>E + {N\)-\Ea-E]. 

Hence E = E° as claimed. 
In brief, the imposition of the Pauli exclusion principle raises 

E. The miracle is that it raises E enough so that stability of the 
second kind holds. While it is easy to state that i// must be anti­
symmetric (here we return to /\N L (R ) for simplicity) it is not 
easy to quantify the effect of antisymmetry. Even the experts have 
difficulty, for it is not easy to think of an antisymmetric function 
of a large number of variables. 

The most dramatic effect of antisymmetry concerns T¥. In 
Part III we used the Sobolev inequality to bound T in terms of 
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2 

Py/(x) = IVC*)I a n d w e would like now to find a similar bound in 
the TV-particle case. It is not useful to define p (X) = \y/(2Q\ be­
cause this is a function of N variables and is quite unmanageable. 
A more useful definition is the one-particle density p : R —• R+ 

given by 

(4.5) p (x) = N \y/(x,x2, . . . , xN)\2dx2 ...dxN, 
JR3(/V_1) 

from which it follows that JR3 p = N and p (x) is the density of 

electrons at x e R . (Note that, since y/ is antisymmetric, \y/\ 
is symmetric and therefore it is immaterial which variable is set 
equal to x in (4.5).) 

It is an easy exercise using Minkowski's inequality to deduce 
from (3.2) that 

(4.6) 7 V > 5 | | ^ | | 3 

in the TV-particle case, but this inequality is not very useful; it 
does not distinguish the fact that y/ is antisymmetric instead of 
symmetric. The right side of (4.6) has the following property. 
Suppose p is a smooth nonnegative function on R3 with ƒ p = 1 
and suppose also that p for an N particle y/ is Np. Then the 
right side of (4.6) is proportional to N . Without the imposition of 
antisymmetry nothing more can be asserted, but with it 7^ grows 

like 7V5/3, as Theorem 1 below shows. 
Let us return to (3.7), the weakened form of Sobolev's inequality 

for one variable. Again, Minkowski's inequality can be used to 
translate (3.7) into an inequality for TV variables: 

(4.7) TV>N~2I'KX f)Pl//(xf3dx. 
J R 

The right side of (4.7) also shows a linear dependence on TV when 
py = Np. But antisymmetry comes to the rescue in the form of 
the following inequality of Lieb and Thirring [LT1, LT2, LI, L2]. 

Theorem 1 (The 5/3 law for the kinetic energy of fermi­
ons). There is a universal constant K such that for all N and 
all antisymmetric (complex) y/ e L2(R37V) with ||^||2 = 1 

(4.8) T¥>22/iK f p¥(x)$/3dx. 
J R 

If y/ is an antisymmetric function in L (R ; C ) then 

(4-9) Tm>K I p9(xf3dx. 
J R 

V 

K = (2.7709)2"2/3 = 1.7455 will do. 
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Contrast (4.9) with (4.7); the N~2,2> is gone. The poetic remark 
at the end of Part III is still correct for many fermions, but p 
is now the total density which, very heuristically, is TV times the 
density of one particle. 

Remarks. (1) The sharp K is not known; it is conjectured [LT2] 
to be Kc = 3(3TT2)2 / 3 /5 = 5.7425 . This number is the "classical" 
value of K and it arises in the following way. Take a cube TL c R3 

of length L and then compute x{n, L), the minimum of T over 
all antisymmtric «-particle y/ 's with support in (TL)n . The best 
y/ has the form (4.10) below in which each </>. satisfies -A(/>/ = 
Àj(f)j in TL and <\>{ = 0 on the boundary of tL. One finds, for 
large n, that x{n, L) « 22/3A:c (resp. Kc ) times n5/3/L2 and 
Py/(x) ~ nII? f° r x € TL and p (x) = 0 for x qL YL. These 
values of T^ = r(n, L), p and Kc then give equality in (4.8) 
and (4.9). 

(2) Theorem 1 is stated above for the case in which n (the 
dimension of each variable) is 3. A similar theorem holds for all 
n > 1 (unlike Sobolev's inequality which holds only when n > 3 ) 
if 5/3 is replaced by 1 + 2/n and if K is replaced by a constant 
Kn depending on n (but not on N). See [LT2 and L2]. 

To explore the significance of Theorem 1, and also the sig­
nificance of the word "exclusion", let us examine the simplest 
kind of antisymmetric y/, namely a determinantal function. Let 
(j){, . . . , (j)N be any set of N orthonormal functions in L (R ) 
and let 

(4.10) y/(X) = (^! ) - | / 2 det{^(^ . )}^- = 1 . 

This y/ is antisymmetric and has ||^||2 = 1. The word "exclu­
sion" comes from the fact that the (j>i 's have to be distinct—in fact 
orthogonal to each other. The right side of (4.10) is the closest 
we can come to thinking in terms of "one L2(R3) function for 
each electron". When a physicist or chemist uses a determinan­
tal y/ in calculations the 07 's are called orbitals, and one says 
that "only one electron can be in each orbital". (In the case of 
L2(R3 ; C2) one says that it is possible to have "at most two elec­
trons in each orbital".) In fact it was on the basis of this simple 
heuristic applied to Bohr's "old quantum mechanics" that Pauli [P] 
was able to explain the periodic table of the elements in 1925— 
before Schrödinger invented his equation and hence before the 
relation between antisymmetry and "exclusion" was understood. 
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For the y/ given by (4.10), the p in (4.5) and T are easily 
computed to be 

(4-11) ' ; ' /=1 

For each <f>., (3.7) says that 

(4.12) f \V^(x)\2dx > K{ f \4>.(x)\mdx. 
JR3 JR3 

As an illustration of Theorem 1, consider the case that I^C*)!2 = 
p(x) for each i, where p is a given nonnegative function with 
ƒ p = l . We could take <j>x(x) = p(x){/2, but then the remaining 
(j)j 's would have to be <j>Ax) = p(x)l/2 exp[/ö .(JC)] , with the 0 's 
real and chosen to insure orthogonality. As N increases, the 6. 's 
have to "wiggle" more and more to insure this orthogonality, so 
that 7^ increases with j . How fast? According to Theorem 1, 
with p = Np in this case, 

(4.13) T¥>KN5IZ J p(x)5,3dx 

and this shows that 7^ increases with j like j 2 / 3 , on the average. 

Armed with Theorem 1, let us return to the question of finding 
a lower bound to E ; this time the B term will not be ignored. 
Using (4.9) we have for any admissible y/ , 

( 4 . 14 )^ > K j ^ Py(xf3dx + j W{X)MX)\2dx{ •••dxN 

(4.15) =K ( p¥{xf3dx - z f \xflp¥(x)dx 
J R JR 

+ JB(X)\y/(X)\2dxr--dxN. 

Note that the A term of (1.4) is simply expressible in terms of 
p , as in (4.15). The B term is more complicated. One would 
guess by analogy with a fluid of density p that roughly 
(4.16) 

J B{X_)\y/{X_)\1dxl ••
dxN=2jiJi P¥(

x)P¥(y)\x -y\~ldxdy. 
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This is not exactly correct, of course, but it can be proved [LO] that 
for every normalized y/ (with or without the Pauli exclusion prin­
ciple), the left side minus the right side of (4.16) is bounded below 
by—(1.68) ƒ p4J3(x)dx. This error term is small; in any case it 
can be bounded using the Schwarz inequality by Nl/2(f p5J3)1^2 

and this can easily be controlled by the kinetic energy term ƒ p5J3. 
Therefore, up to controllable errors 

E¥>*TF(p¥), 

where 

(4.17) 
f (p) = K p(x) dx - z \x\ p{x)dx 

iR3 JR3 

2 / 3 / 3 p{-x">p{y^x ~ y\~ldxdy-+ 2 

This functional, ê?TF , which is defined for all nonnegative p in 
L5/3(R3) n L !(R3), is called the Thomas-Fermi energy functional. 
It was introduced independently by Thomas [T] and Fermi [FE] 
shortly after Schrödinger's discovery, but with the constant K re­
placed by Kc = 3(3TT2)2 / 3 /5 which, as remarked above, is conjec­
tured to be the sharp constant in Theorem 1. They were, of course, 
unaware of Theorem 1 which was proved only in 1975, but they 
proposed that the Thomas-Fermi ground state energy 

(4.18) ETF = ETF(N,z) = inf{gTF{p): f p = N\ 

should be a good approximation to E. We have seen that, apart 
from minor errors, ETF < E when K is used instead of Kc. 

The minimization problem (4.18) is an interesting problem in 
itself and has been analyzed in great detail [LS, L3]. Note that it 
is defined for all N > 0, not just integral N. A simple scaling 
p(x) —• z2p(zl^3x) replaces z by 1, N by N/z and ETF(N, z) 
= z ' E (N/z, 1). It turns out that the absolute minimum of 
ë?TF(p) without regard to the value of N always occurs when 
N = z, i.e., for the neutral atom. There is a unique minimizing 

T F 

p for (4.18) if Af < z and there is no minimizer if N > z. In 
either case 
(4.19) ETF(N, z) > ETF(z, z) = -(const.)z7/3 

with (const.) = -ETF{\, 1) > 0. 
The remarks in the preceding paragraph apply only to the TF 

T F 

energy and not to the Schrödinger energy but, since E > E 
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(with K ) to within small errors, we have that the energy of a large 
atom is bounded below by -(const.)z7/3. That this is indeed the 
correct power law was shown by Lieb and Simon [LS]. See also 
[L3], where a simpler proof is given. 

Theorem 2 (TF Theory is asymptotically exact). Fix any 0 < X < 1 
and let zN = N/X for N = 1 , 2 , 3 , . . . . Let E(N, zN) be the 
Schrödinger ground state energy (2.13) for an atom with nuclear 
charge zN and N electrons and let pN{x) in (4.5) be the density 

T F T F 

for any ground state y/N. Let E (JV, zN) and pN be the corre­
sponding Thomas-Fermi energy and density with K = Kc {not the 
smaller K of Theorem 1). Then 

lim E(N,zN)/ETF(N,zN) 
(4 20) "~,0° 

= Jim E(N,zN)/[zyiETF(X, 1)]=1. 
1 -3 

In the sense of weak L (R ) convergence on compact sets, 

(4.21) Jim z~2pN(z~l/3x) = Jim z'2pT/(z'i,3x) = p(x) 
where p is the TF minimizer for z = 1 and N = X. 

If X > 1 is fixed and zN = N/X then (4.20) and (4.21) hold 
with the following replacements: 

ETF{N, zN)-*ETF{zN, zN)9 

T?TFC\ 1 \ T?TFt\ 1 \ TF TF 

E {X, l)-+E (1 , 1), pN -+ pZN 

and p is the minimizer for z = 1 and X = 1. In other words, 
the Schrödinger quantities for an atom with net negative charge 
converge to the corresponding TF quantitites for a neutral atom. 

From these considerations we can conclude 
(1) The energy of a large, neutral atom grows with z like z7 '3 . 

This is significantly different from the earlier result (4.3) without 
the Pauli exclusion principle because it means that the average 
energy of each electron is —z ' instead of -z . 

(2) For large z almost all of the electrons are located at a dis­
tance z~1/3 from the nucleus. The average electron density in this 
ball of radius z~ I / 3 is z2 . Without the Pauli exclusion principle 
we found the distance to be z - 1 and the electron density to be 
z 4 . 

Conclusion (2) is that even with the Pauli exlcusion principle 
a large z atom is smaller than a small z atom. This seems to 
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contradict the experimental fact that "The large range of atomic 
masses is not accompanied by a correspondingly large or system­
atic variation in size. Atomic radii all lie between 0.5 x 10"8 cm 
and 2.5 x 10~8 cm, with no marked increase from the lightest to 
the heaviest [FR]." While it is not possible to give an unambigu­
ous definition of the radius of something as fuzzy as an atom, it 
appears [AI] that the largest atom is cesium (z = 55) and not 
uranium (z = 92). 

The paradox can be resolved by a closer examination of the 
meaning of "atomic size". If we define the radius to be the ra­
dius of the ball in which most of the electrons reside then z _ 1 / 3 

is, indeed, the correct answer. But that is not the radius that the 
chemist sees or the distance between atoms in a solid. This "chem­
ical radius" can be defined, for example, as the radius R such that 

(4.22) ƒ p¥(x)dx = \ 
\x\>R 

for a ground state y/. In Thomas-Fermi theory this radius is 
T F 

independent of z for large z (because for large |JC| , p (x) — 
C|x|~6 when z = N, with C independent of z ) . Theorem 2 
(4.21) tells us what pN looks like on distance scales of order z~1/3 

where pN is of the order z , but it says nothing about distance 
scales of order one where pN is presumably of order one. Noth­
ing is known rigorously about this latter distance scale (and even 
numerical calculations are uncertain here), but it is surely the case 
that the true density pN in an atom with z = N and with z large 
looks like that shown very schematically in Figure 1. Also shown 
in Figure 1 is the innermost region of radius z~ . Thomas-Fermi 
theory states that p (x) = (const.) z when |JC| = z and 

TF 

p (0) = oo. It is unproved, but undoubtedly true, that when 
z is large p(x) = Cz3[l - 0(z|x|)] for 0 < \x\ < z~ l , and there 
is even a conjecture about the precise value of C . The investiga­
tion of the inner and outer parts of large atoms is now a subject 
of active research. 

Using poetic license again, we can say: 
A large atom is like a galaxy. It has a small, high density, ener­

getic core in which most of the electrons are to be found and whose 
size decreases with z like z~1^3. The electron-electron electrostatic 
repulsion always manages to push a few electrons out to a distance 
of order one which is roughly independent of z ; this is the radius 
one observes if one tries to "touch" an atom. 
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FIGURE 1. 

The electron density p(x) for a large z atom is crudely plotted 
as a function of |JC| , the distance from the nucleus. The graph 
is intended to show three regimes, (i) At distances of order 
z - 1 ' 3 , p(x) is of order z2 and most of the electrons are to 
be found here, (ii) At the very short distance z~ , p(x) is 
of order z . (iii) At distances of order 1, p(x) is of order 1 
and chemistry takes place. These last two assertions have not 
yet been established rigorously. 

PART V. BULK MATTER: MANY ELECTRONS 
AND MANY NUCLEI 

The analysis given in Part IV can be applied to the general case 
of N electrons, k nuclei with charges Z_ and locations R, and 
with the full potential energy W(X) in (1.4). The goal is to prove 
stability of the second kind: E(N, k, Z) > -A(z)(N + k) for 
a suitable z-dependent constant A(z), cf. (2.14). This is the 
theorem first proved by Dyson and Lenard [DL, LE], but with 
A(z) unrealistically large—of the order 1014z2. 

Before giving the proof let us discuss the crucial importance of 
this linear law. For simplicity, assume that all the z 's have the 
same value z and that TV = kz, i.e., that the system is neutral. 
First of all, by a suitable choice of a comparison function i// in 
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(2.13) on the one hand, and using the linear lower bound plus 
Newton's theorem on the other hand, Lebowitz and Lieb proved 
the following [LL]. 

Theorem 3 (The existence of the thermodynamic limit). 
There is a a number A'(z) such that 

lim N~lE(N,k = N/z,Z) = -A'(z). 
N—>oo 

The linear law is not just a lower bound it is, indeed, the cor­
rect asymptotic law. This fact is crucial for the following argu­
ment. (There are historical and physical reasons that the words 
thermodynamic limit instead of asymptotic law are used to de­
scribe Theorem 3.) 

Suppose now that we have two large collections of N electrons 
and k = N/z nuclei which are far apart from each other. This 
means that the nuclear coordinates R = (R{, . . . , R2N) satisfy 
\Ri - RN+j\ > d for all z, j e {1, . . . , N} and where d is 
some very large number. Think of two well separated stones. The 
ground state energy would then be nearly 2E(N) where E(N) = 
E(N, k, Z). If the two stones are allowed to come together, the 
ground state energy becomes E(2N) and the energy released is 
ÔE = 2E{N) - E{2N). With the linear law in the form of Theo­
rem 3, ÔE = o(N) ; in fact it turns out that SE ~ N / 3 , which is 
the attractive surface energy that makes the two stones eventually 
adhere to each other. If, on the other hand, E(N) is proportional 
to -Np with p > 1 then ÔE = -(2P-2)E(N). Thus, the released 
energy would be of the order of the energy in each stone which, 
using the actual physical value of E(N), is more than 1000 times 
larger than the energy released in an explosion of TNT of the same 
mass. As we shall see in Part VI, hypothetical matter composed 
solely of bosons would have E(N) « -N7/5. Using this value of 
E(N) instead of the energy in a physical stone enhances the en-
ergy by a factor TV ' ; the energy in a smallish stone, iV = 10 , 
would then be that of a hydrogen bomb [D]. Such "matter" would 
be very unpleasant stuff to have lying around the house. 

A somewhat less dramatic, but more profound way to state the 
importance of the thermodynamic limit, Theorem 3, is that it is 
part of the foundation of thermodynamics [LL]. If this N -> oo 
limit did not exist the argument in the preceding paragraph shows 
that matter would not behave the way we expect it to behave—even 
if stability of the second kind is assumed to hold. 

Returning to the problem of proving stability of the second kind, 
we can use Theorem 1 together with the replacement (4.16) (which 
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yields a controllable error) to deduce that E(N, k, Z , R) > 
ETF(N, k,Z_, R) when ETF is given by (4.18) but now 

gTF(p) = K [ p(xf3dx- [ V(x)p(x)dx 
(5 1) JR' JR' 

Iff - l 
+ J ƒ 2 ƒ 3 ̂ M^ÜOI* " y I ^ ^ + u-

«/R */R 

The Thomas-Fermi functional in (5.1) is like that in (4.17) except 
that z\x\~l is replaced by V(x) and U is added (cf. (1.4)-(1.8)). 
These depend on Z and R. 

TF 
A lower bound for E can be obtained by omitting the con­

dition that ƒ p = N. The absolute minimum occurs [LS, L3] for 
the neutral case 

k 

(5.2) N = T,ZJ> 

as it did for the atom in (4.17). One can struggle with minimizing 
(5.1) or, preferably, one can use a theorem of Teller (see [LS, 
L3]) which states that atoms do not bind in Thomas-Fermi theory. 
For arbitrary N , this means that there are k positive numbers 
Nx,...9Nk with J2k

j=lNj = N such that 

(5.3) ETF(N,k,Z,R)>J2ElL(Nj>zj)> 
7=1 

TF 

where Eatom is the solution to the atomic TF minimization prob­
lem (4.18). In particular, under the assumption of neutrality (5.2), 
the optimum choice is TV = z and thus 

(5.4) ETF (J2zj,k,Z,R, J >f,EZm(Zj,zJ)-

The right side of (5.4) was already computed in (4.19) and there­
fore, assuming (4.16), 

k 

(5.5) E{N,k,Z) > -(const.) J2ZT' 
7 = 1 

This is our desired goal of stability of the second kind with A(z) = 
(const.)z ' . However, errors were made when (4.16) was used. If 
these are included and bounded in a straightforward way, it turns 
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out that 

(5.6) E(N,k,Z)> -(const.) 

which also implies stability of the second kind. The constant in 
(5.6) turns out to be about 5 instead of 1014 as in [DLJ. 

Incidentally, it should not be inferred that instability of the sec­
ond kind is necessarily associated with singularities and/or slow 
fall-off of the potential at infinity - as is the case with the elec­
trostatic potential |x |_ 1 . In other words, seemingly "nice" po­
tentials can fail to produce stability of the second kind. Indeed, 
Thirring [TW, p. 258] shows that if the function \x\~l is re­
placed everywhere in ( 1.4)—( 1.8) by the seemingly harmless func­
tion (l + 2|x|)exp[-|x|] then stability of the second kind does not 
hold for the modified system. 

Having proved stability of the second kind with electrostatic 
forces, we are left with another question which was stated by 
Ehrenfest in a 1931 address to Pauli (quoted in [D]): 

"We take a piece of metal. Or a stone. When we think 
about it, we are astonished that this quantity of matter should 
occupy so large a volume. Admittedly, the molecules are 
packed tightly together, and likewise the atoms within each 
molecule. But why are the atoms themselves so big? 

Consider for example the Bohr model of an atom of lead. 
Why do so few of the 82 electrons run in the orbits close to 
the nucleus? The attraction of the 82 positive charges in the 
nucleus is so strong. Many more of the 82 electrons could 
be concentrated into the inner orbits, before their mutual 
repulsion would become too large. What prevents the atom 
from collapsing in this way? Answer: only the Pauli principle, 
'No two electrons in the same state.' That is why atoms are 
so unnecessarily big, and why metal and stone are so bulky. 

You must admit, Pauli, that if you would only partially 
repeal your prohibitions, you could relieve many of our prac­
tical worries, for example the traffic problem on our streets." 
One simple measure of the "size" of our many-body system in 

a state y/ is the average radius Rp{y/) defined by 

[Rp{w)f ^ ^ j^\x\p pv{x)dx 

(5.7) R , v 

= 7j J2 l*,-lVC£)l dxl • --dxN. 
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Here, p is any convenient fixed, positive number. According to 
our experience with ordinary matter, we should expect Rp{y) to 

grow with N like Nx'*, i.e., the volume grows like N > when y/ 
is taken to be a ground state for N electrons. Indeed this surmise 
is correct—in fact it is correct, as will now be proved, even for 
some y/ 's which are quite far from being ground states [LI] (see 
also [LT2]). 

Assume that the locations of the nuclei and a normalized y/ 
satisfy only the condition 

(5.8) E¥<0, 

which certainly includes the absolute ground states because 
E{N, k, Z) < 0 always. Then 

(5.9) E¥ = \T¥ + EÏ¥ 

where E1 is the energy in (2.12) but with T replaced by \T 
(which amounts to doubling the electron mass). It is easy to see, 
by a simple scaling y/(X) -* 2 3* /V(2£) and R. -> \R. that 
E'(N, k,Z_,2R) = 2E(N,k,Z., R) and therefore E'(N, k,Z) 
= 2E{N, k,Z_). By (5.8) and (5.9) and stability of the second 
kind 

(5.10) T¥ < 4\E(N9k,Z)\ < 4A(z)(N + k). 

An easy general inequality is the existence of a positive constant 
Cp such that 
(5.H) 

y^p(x)5/3dx}y^\x\p
P(x)dx} p>cp{j^p{x)dx} 

for all nonnegative p. Using the basic kinetic energy inequality 
(4.9) together with (5.10) and the fact that ƒ p = N, we conclude 
that 

(5.12) 4A(z)(N + k) >T¥> KCpN
5/3Rp(Wy2. 

We do not want to impose neutrality (5.2) but let us assume 
N < 2^2jZ; ; one can show [L4] that this is the only case that 
needs to be treated. Then (5.12) implies that for each p > 0 

(5.13) Rp(v)>C'pN
l/3 

as required. Here Cp depends on p and on z, the maximum of 
the nuclear charges. 
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In summary, bulk matter is stable, and has a volume proportional 
to the number of particles, because of the Pauli exclusion principle 
for fermions (Le., the electrons). Effectively the electrons behave like 
a fluid with energy density p5J , and this limits the compression 
caused by the attractive electrostatic forces. 

PART VI. BOSONS IN BULK 

The previous paragraph states inter alia that the Pauli exclusion 
principle is essential for stability of the second kind. The verifi­
cation of this assertion and the dependence of the energy on N 
without the Pauli principle is itself an interesting mathematical 
problem. As explained in Part IV, omitting the Pauli principle is 
equivalent to studying the minimization problem (2.13) for sym­
metric functions, i.e., bosons. 

THE N5/3 LAW FOR BOSONS. First, let us see what happens 
if we try to use the Thomas-Fermi energy as a lower bound—as 
was done in Part V. Theorem 1 is not available for bosons and 
(4.7) must be used in place of (4.9). The difference between K 
and K is not important, but the factor N~2,2> is crucial. For 
fixed N, the substitution K —• N~2/3Kl in (5.1) is mathemat­
ically equivalent to replacing the electron mass (which is 1 in 
our units) by m = N2/3K/K{ . By the scaling R -+ R/m and 
V{2Q —• {m)3N/2y/(mfX_) for the Schrödinger theory or p(x) -+ 
m p(mx) in TF theory one easily finds, in both theories, that 
E(N, k,Z)-+ m'E(N, kZ_). Thus, using (5.6), 

(6.1) E(N,k,Z) > -(const.)JV2/3 

for bosons. 
This certainly violates stability of the second kind. If we take 

z. = z and Nk = z as before then E(N) > - (const.)JV5/3. Is this 
result correct or is it simply a bad lower bound? The answer is that 
the N5' law for bosons with fixed nuclei is correct. It can easily 
be proved by the following simple choice [L5] of a comparison 
function y/ for (2.13) and nuclear coordinates R{, . . . , Rk . 

Let ƒ : R1 -+ R be given by f(x) = y/W%\ ~ Ml i f M ^ * 
and f(x) = 0 otherwise. For each X > 0 define §x : R —• R by 

(6.2) (j)x{xx, x , x ) = X ' f(Xxl)f(Xx )f(Xx ) 
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with x = (x1, x2, x3), so that for all X 

(6.3) \\<t>>\\2=
1 a n d T6=M2-

The support of 0A is the cube rA = X l - [ - 1 , l ]3 of volume 8A 3, 
Our comparison function will be 

(6.4) Vx(20 = l[<j>x(xi), 
( = 1 

so that 

(6.5) P¥i(x) = N4>k{xf and 7 ^ = 9JVA2. 

For this y/k , (4.16) turns out to be nearly exact. 

f B(X)y/À(2Q2dxl---dxN 

( 6 l 6 ) IN-l f f - i 
= 2 IT L /R3 ^ W^WI* - y| rf*rfy 

and the last integral is proportional to N jl. Now assume for 
simplicity that N/z is an integer and take k = N/z nuclei of 
charge z. It is possible [L5] to place these nuclei in T (roughly 
in a periodic arrangement) so that the total potential energy, W = 
-A + B + J7, is equal to - C , where C is some positive 
constant. (To understand this, note that in a volume which is 
roughly d — \/kk there is one nucleus and z units of negative 
charge. The total potential energy is then roughly -kz /d .) With 
these favorable locations of the nuclei, 

(6.7) E¥ = 9NX2 - Cz2/3N4/3X. 

When this is minimized with respect to X, one finds X = -^ z ' N ' 
and therefore the upper bound 

r2 

(6.8) E(N,k,Z)<-^z4/3N5/\ 

Thus bosonic matter is not only unstable of the second kind but 
also its radius, X~l, decreases with N like 7V~1/3. We see here 
an example of the fact that lack of stability is intimately connected 
with collapse in the geometric sense. 

THE W7/5 LAW FOR BOSONS. The JV5/3 law, which was 
derived above, is not the end of the story. Observe that it was 
crucially important that the nuclei were fixed points that could be 
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located at will in space. Suppose we dispense with that approxima­
tion and treat the nuclei also as dynamical quantum mechanical 
particles. Of course they will also be assumed to be bosons, for if 
they are fermions then we would merely have a charge reversal of 
the situation described in Part V, i.e., stability of the second kind 
would hold. 

For simplicity we take z = 1 and assume that these positive 
bosons also have unit mass. The Hamiltonian is then, with xt 

denoting the coordinates of the negative bosons and R. denoting 
the coordinate of the positive bosons, 

(6.9) HNk = - 5 > * , -J2ARt + WUL, Jo-
1=1 y= l 

The potential function W{X_,K) is that given in (1.4)-( 1.8) with 
e = 1 ; there it was denoted simply by W(X). The operator 
HN k acts on functions y/(X_> R) = v(*\ > • • • > xN > R\ > • • • > ^ ) 
in 0 N 0 L2(R3). The ground state energy is given by (2.13), 
as usual, with E = (y/, HN ky/). As explained in Part IV, the 
optimum choice for y/ , neglecting symmetry considerations, is al­
ways a function that is symmetric in the xt 's and symmetric in 
the Ri 's. But this is precisely the statement that both kinds of 
particles are bosons. 

It is much more difficult to estimate the ground state energy for 
HN k in (6.9) than for our previous problem which uses the H in 
(2.17). The first person to do this rigorously was Dyson [D] who 
proved the following in 1967. 

Theorem 4 (Upper bound for the energy of bosons). 
Without loss of generality assume that N < k. Then the ground 
state energy, E(N, k), for bosons with the Hamiltonian HN k sat­
isfies 

(6.10) E(N, k) < -1.32 x 10~6AT7/5 

for large N. (It is asserted [D] that this constant can be improved 
substantially.) 

An extended comment is in order here. While the N ' law 
(6.10) may seem superficially to be only a small improvement over 
the N5 / 3 law, the conceptual difference is enormous. The proof 
in Part IV of stability of the second kind for fermions (electrons) 
and fixed positive particles (nuclei) could be understood solely in 
terms of what is called semi-classical considerations, i.e., Thomas-
Fermi theory. In (5.1) we see that the last three terms on the right 
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side are simply the classical electrostatic energy of a charged fluid 
of density p(x) interacting with the fixed nuclei. Once we accept 
the input from quantum mechanics that the kinetic energy is like 
that of a fluid with energy density p(x)5/3, the whole energy has 
a simple classical interpretation—in other words the one-particle 
density p(x) determines the energy with reasonable accuracy. 

On the contrary, Theorem 4 cannot be understood this way. In 
order to achieve an energy as low as -N1,s, intricate correlations 
between the positive and negative particles have to be built into 
a comparison y/{X_, R), and then the potential energy cannot be 
expressed solely in terms of p . A delicate balance between poten­
tial and kinetic energies is needed and, in the end, it is impossible 
to think of (6.10) in a simple way—although Dyson [D] does try 
to give a heuristic explanation of (6.10). Dyson's comparison y/ 
that leads to (6.10) is very complicated and five pages are needed 
just to compute E . This y/ was suggested by work of Bogolubov 
in 1947 on the superfluidity of liquid helium and it is similar in 
many ways to the y/ used by Bardeen, Cooper and Schrieffer in 
their 1957 Nobel prize winning work on superconductivity. There­
fore, if the N1,s law is really correct, and not just an upper bound, 
this kind of highly correlated i// will be validated in some weak 
sense as a good approximation to the true ground state. 

Two decades later the requisite lower bound was proved by Con-
Ion, Lieb and H-T. Yau [CLY]. The proof is too involved to explain 
here, even heuristically, but the main result is the following. 

Theorem 5 (Lower bound for the energy of bosons). 
Without loss of generality assume that N < k. Then the ground 
state energy E(N, k) for bosons with the Hamiltonian HN k sat­
isfies 

(6.11) E{N,k)>-AN7/5 

for some universal constant A. If N = k (neutrality) and N is 
large then A can be taken to be 0.79 in (6.11). 

PART VIL RELATIVISTIC MATTER 

According to Einstein's 1905 special theory of relativity, the 
relativistic kinetic energy as a function of the momentum p e R3 

should be 

(7.1) T(p) = \jp2c2 + m V - mc2 
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instead of p2/2m as in (1.11). Here c is the speed of light. The 
quantity mc2 is called the rest energy and it has been substracted 
off in (7.1). If p2 < mc2 then T(p) & p2/2m as before. Using 
the first part of (1.13) the relation between p and the velocity v 
is 
tn i \ 2 , 2 2 , 2 4 . - 1 / 2 
(7.2) v=pc(pc+mc) . 

2 9 2 

When p <c mc this gives v & p/m as before, but if p —• oo 
then v2 —• c2 . Thus no particle can move faster than the speed of 
light, and a measure of the importance of relativistic effects is the 
ratio \v\/c. 

To gain an understanding of the possible effect of relativistic 
mechanics on atoms it is convenient to introduce the number 
(7.3) a — e /he. 

This is a dimensionless constant whose numerical value is 1/137 
and it is called the fine structure constant. (The reason for this 
appelation is that a also governs certain small effects in atoms 
that are connected with the electron spin and magnetism, and that 
have not been discussed here; these effects cause a small splitting of 
each spectral line into several nearby lines—that experimentalists 
call the fine structure of the line.) 

What is the value of \v\jc for an electron in a hydrogenic atom? 
We can take v2 in a state y/ to be (2/m) times the kinetic energy 
T (which is p2/2m classically). Using the ground state y/ given 
by (3.6), and restoring all units (recall that we took h2/2m = 1 
and e = 1 ), one easily finds from the definition (2.6) that 

(7.4) \v\/c = az. 

For hydrogen (z = 1), \v\/c = 1/137 so relativistic effects are 
unimportant. But when z is large (7.4) correctly gives \v\/c for 
the "innermost" electrons, and we see that it is not small. 

The problem of combining relativistic mechanics with quantum 
mechanics is an old and extremely difficult one. It is not even easy 
at the classical mechanics level. At that level one could do the 
following. Return to the classical Hamiltonian function in (1.11) 
and simply replace p{ /2m by T(j>.) and then use the equations 
of motion (1.13). While such a dynamical theory makes sense 
mathematically, it is not a relativistic theory. The reason is that it 
is not invariant under Lorentz transformations of space-time un­
less W = 0. To remedy this defect it is necessary to give up the 
idea of particles interacting instantaneously by a force (1.9) which 

file:///v/jc
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depends only on their locations in R . Instead, it is necessary to 
invoke the intervention of the full electromagnetic field, to intro­
duce a piece of the Hamiltonian for this field (whose equations of 
motion in the spirit of (1.13) turn out to be Maxwell's equations), 
and to introduce another piece of the Hamiltonian which gives the 
interaction of the particles with the field. All this is very compli­
cated and the final equations of motion do not even make strict 
mathematical sense for point particles. 

The situation is even worse when quantum mechanics is intro­
duced because then the electromagnetic field also has to be "quan­
tized." This is the enormous subject of quantum electrodynamics 
(Q.E.D) which, in turn, is part of an even larger subject—quantum 
gauge field theory. (Then there is superstring theory which is still 
more complicated.) 

When a = 0 (equivalently e = 0 ) Q.E.D. is trivial because 
then the electromagnetic field is decoupled from the particles and 
there are no interactions. This suggests that one can solve prob­
lems in Q.E.D. by making a power series expansion in a since a is 
small. Indeed, such a "perturbation theory" has been investigated 
in great detail and many of its predictions are confirmed incredibly 
well by experiments. At present, however, nobody knows in what 
sense this power series converges, if at all, or how to find any ex­
cept the first few terms in the series, or what a "nonperturbative" 
theory would predict. In particular, what happens when there is a 
very large number of electrons and nuclei, in which case a pertur-
bative treatment is inadequate? Does Q.E.D. predict the stability 
of matter? 

It should be stated that the particle aspect of Q.E.D. is not built 
on the Schrödinger p = -h2A, which is a second order elliptic op­
erator, but instead on the Dirac operator which is a quartet of first 
order operators which acts on four-component spinors. The Dirac 
operator is relativistic (i.e., it is invariant under Lorentz transfor­
mations), but if we simply add the potential energy term W(X_) 
to it the theory will still not be relativistic for the same reason as 
before (i.e., instantaneous interactions are not Lorentz invariant). 
Nevertheless, this kind of "mixed" theory is often used instead of 
the Schrödinger Hamiltonian because it presumably takes account 
of most of the relativistic corrections. However, from our point 
of view the Dirac Hamiltonian has a much more serious defect: 
the ground state energy is not given by a minimization problem as 
in (2.13). In fact the spectrum of the Dirac Hamiltonian is not 
bounded below and Dirac had to introduce an extra axiom in order 
to decide which of the many eigenvalues should be considered as 
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the ground state energy. (This axiom is known as "filling the nega­
tive energy sea;" unfortunately, it is ambiguous in the many-body 
case. The axiom also led to the prediction of certain kinds of ele­
mentary particles called antimatter, the first one to be discovered 
was the positron (antielectron) by Anderson in 1932.) 

In order to investigate the stability of matter with relativistic ki­
netic energy, T(p), in a mathematically rigorous way, we are led to 
study the following theory which uses a "relativistic" modification 
of the Schrödinger energy. This theory is a caricature of the proper 
theory, but it will have the advantage of being a well-posed min­
imization problem as before, and one which is tractable—unlike 
Q.E.D. At present it is the best that can be done to analyze the 
stability of matter question rigorously. 

With y/ as before, replace the kinetic energy of (2.11) by 

(7-5) ^-D^^(p» 

where Top(p) is given by (7.1), but with p. = -ihVx as before. 
In other words, Top is the operator 

(7.6) Top = \J-h2c2A + rn2c4 - mc2 

which is perfectly respectable although, unlike the operator 
-h2A/2m, it is not local, i.e., (Topy/)(x) is not determined by 
y/ in an infinitesimally small neighborhood of x. In terms of the 
Fourier transform y/ given by (2.4) for one particle, 

(7.7) T¥ = J j ^ / p V + m V - mc2 J \Ç{p)\2dp 

replaces (2.6). The definitions (2.12)-(2.14) for the energy are 
unaltered. 

For the purpose of investigating stability, a simplification can 
be made, and will be made in this part but not in the next. Since 

(7.8) c\p\ - mc1 < T(p) < c\p\ 

the difference of the operators Top and ch\f^R is a bounded 
operator. Therefore, for both stability of the first and second kind 
it suffices to replace Top by the operator chyf^R, i.e., we can set 
m = 0. Then T becomes, for one particle, 

(7.8) Tw = c (\p\W{p)\2dp. 
«/R 
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The advantage of this replacement is a scaling invariance that 
will become apparent in (7.14) and (7.15). It also brings into focus 
the essential feature of any theory of relativistic quantum mechan­
ics (Q.E.D. or the Dirac equation or the Klein-Gordon equation or 
whatever) which can be stated as follows. The central fact about 
quantum mechanics is that p2 becomes the operator -ft2A and 
this can be thought of heuristically (as in (3.5)) as the reciprocal 
of a length squared—the length being essentially the width of a 
function y/. In nonrelativistic quantum mechanics this operator 
is also the kinetic energy and it handily controls the potential en­
ergy which is proportional to the reciprocal of the same length. 
In relativistic quantum mechanics, on the other hand, the kinetic 
energy is essentially c\/-ft2A and this is only the reciprocal of 
the length—not the length squared. Thus, both the potential and 
kinetic energies are on the same footing in a relativistic quantum 
theory, and we therefore have what would usually be termed "the 
critical case". 

A word about constants is required here. In the nonrelativistic 
case we used scaling, as stated at the beginning of Part III, to 
eliminate all constants except for the nuclear charge numbers z.. 
This cannot be done now because T and W scale in the same 
way. We can, however, use units in which he = 1. Then the 
energy becomes 

(7-9) E¥ = T¥ + aW¥ 

where W is given by (2.10) and (1.4) with e set equal to one 
there. T is given by 
(7.10) 

N r N 

1=1 JR 1=1 

with ip being the R3N Fourier transform. The Hamiltonian that 
replaces (2.17) is 

(7.11) H = f^^A^i+aW(X). 
i=i 

Thus there are now two constants in the problem: the fine structure 
constant a and z, the maximum nuclear charge. 
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Let us begin by analyzing the hydrogenic atom. In this case only 
the combination za enters because U = 0. Heuristic considera­
tions, like those in Part III, would lead us to investigate (cf. (3.5)) 

< 7 1 2 > mr{î-r} 
as an approximation to E. This quantity is zero if za < 1 and 
-oo if za > 1. Indeed this conclusion is qualitatively correct 
becuase of an inequality of Kato [K] and Herbst [H] (see also 
[LY1]) 

(7.13) f \p\\ys(p)\2dp >lf \x\~lMx)\2dx 

in which 2/n is the sharp constant. Consequently, the hydrogenic 
atom has the following ground state energy 

(7.14) E = °> * Za^f 
= -oo if za> i 

and stability of the first kind holds if and only if za < 2/n, i.e., 
z < 87 with a= 1/137. 

Relativistic quantum mechanics stabilizes an atom only if za is 
small enough. 

It is to be noted that a similar catastrophe occurs with the Dirac 
Hamiltonian for an atom [KS]. Again, only za enters and there is 
a critical value za = 1, instead of 2/n. For za < \fi>/2 this op­
erator is essentially selfadjoint on C?° , the infinitely differentiate 
functions of compact support. When za > \/3/2 the deficiency 
indices are (+1 , +1) and so there is a selfadjoint extension, but 
only for y/3/2 < za < 1 is there a distinguished, physical selfad­
joint extension. It is distinguished either by analytic continuation 
from the za < N/3/2 case or by finiteness of the potential energy; 
in other words, when za > 1 the kinetic and potential energies 
cannot be defined separately. When za = 1 the hydrogenic ground 
state energy "falls into the negative energy sea" and the Dirac op­
erator then ceases to make good physical sense. The underlying 
reason for the catastrophe is the same in both cases: the kinetic 
energy is \/L instead of \/L . 

The next step is to investigate large atoms, as in Part VI. Clearly, 
stability of the first kind holds here if and only if za < 2/n because, 
as a simple comparison function y/(2Q demonstrates, the positive 
electron-electron repulsion B(2Q of (1.7) cannot overcome the 
-oo energy to be gained by letting one electron "fall into the nu­
cleus" when za > 2/n . 
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In fact conclusion (7.14) holds in the large atom case as well. 
This is where the nice scaling property of yf^K and |x |_ 1 come 
in. To jump ahead for the moment, we can always say, when 
m = 0, that in the general case of many electrons and many nuclei 
there are precisely two alternatives: 

(7.15) either E(N,k,Z_) = 0 or E(N, k9 Z) == -oo , 

which tells us that stability of the first kind is equivalent to stability 
of the second kind for relativistic matter. The proof of (7.15) is 
a simple one: If E < 0 for some i// then, by setting y/x(K) = 

X~w,2y/(XJQ , we have that E = XE^ , and this can be driven to 
-oo by letting X —• oo. If, on the other hand, E > 0 then we 
can drive E to 0 by letting A —• 0. 

Apart from the stability question we can also ask about the struc­
ture of large atoms—as in Part IV. Is there an appropriate Thomas-
Fermi theory in this case? The answer is No and it is instructive 
to understand why. 

We can start by asking for an analogue of Theorem 1, which 
is the basic kinetic energy estimate for fermions. There is one— 
as discovered by Daubechies [DA]: Theorem 1 holds for the yf^K 
kinetic energy if 5/3 is replaced everywhere by 4/3, if 2 '3 is 
replaced by 21/3 in (4.8) and if K is changed. (K = 1.26 will 
do.) 

So far, so good. Next we form the Thomas-Fermi functional as 
in (4.17): 

(7.16) 
% (p) = K I p(x) dx - za / \x\ lp(x)dx 

JR3 JR3 

+ ïa , lp(x)p(y)\x-y\~ldxdy. 
z ./R3 ./R3 

This, unfortunately, is unbounded below for any choice of N = 
ƒ p. (The reader can easily verify that ƒ />4y/3 cannot control the 
\x\~{ singularity, and the last term in (7.16) does not save the 
situation.) The conclusion is that Thomas-Fermi theory is useless 
for large atoms (and hence also for the case of many electrons 
and many nuclei), but in Part VIII we shall see that it is useful for 
describing the relativistic matter interacting by gravitational forces 
in a star. 

Finally, we turn to bulk matter as in Part V. Now, however, even 
stability of the first kind is problematic for one electron and many 
nuclei; it already is problematic even for one electron (N = 1) 
and one nucleus (k = 1 ) . The following additional concern now 



THE STABILITY OF MATTER: FROM ATOMS TO STARS 37 

presents itself. Suppose there are two nuclei with za = 3/2n, lo­
cated at R{ and R2 in R , and suppose there is but one electron. 
If the two points are coincident, say R{ = R2 = 0, we have a 
"bomb." While each nucleus is subcritical the combined nucleus 
is supercritical, za = 3/n , and the electron can fall into it, releas­
ing an infinite energy (7.15). What prevents this from happening? 
Answer: the nucleus-nucleus repulsive energy 

(7.17) U = az2\R} - RJ~l = ^-\R, - R,fl, 
a 

which goes to +oo as R{ —• R2 and which is one part of 
E(l, 2, Z_, R). There are now genuinely two parameters in the 
problem, which can conveniently be taken to be za and a. By 
length scaling, all the energies are proportional to |7?1 — 7?2|

—1, so 
E (1, 2, Z , £) = C\RX - R2\~

l. If za is fixed at 3/2n, is the 
constant \/a in (7.16) large enough so that the repulsion U wins, 
i.e., so that C > 0 ? 

This exercise with N = 1 and k = 2 tells us that stability will 
require not only an upper bound on z a of 2/n for each nucleus 
but also an upper bound, ac, for a. This is clarified in Theorem 
6 below. Furthermore, we might fear that this ac goes to zero as 
za —• 2/n . Here, z = max .{z.} as before. It might also happen 
that ac depends on Af and/or k. Fortunately, neither of these 
two fears materializes. 

The first result on this problem was by Daubechies and Lieb 
[DAL] who proved stability for one electron and arbitrarily many 
nuclei, namely, 

(7.18) £ ( l , f c , Z ) = 0 

provided z.a < 2/n for each j and provided a < l/3n . 
The big breakthrough was by Conlon [CO] who proved for all 

N and k that 

(7.19) E{N,k,Z) = 0 

provided z. = 1 for all j and provided a < 10~200 [sic] and 
provided that spin is omitted, i.e., y/ e f\N L2(R3) instead of y/ e 
A*L 2 (R 3 ;C 2 ) . This was vastly improved by Fefferman and de la 
Llave [FD] to a < 1/2.067T with the other conditions remaining 
the same. 

The results of Conlon, Fefferman and de la Llave fall short of the 
critical case za = 2/n . They also do not include all i// 's because 
the inclusion of spin is not as easy as it was in the nonrelativistic 
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case. The matter was finally settled by Lieb and H-T. Yau [LY1] 
who treated a slightly more general problem. The method of proof 
in [LY1] is very different from that in [C] and [FD]. 

Theorem 6 (Stability of relativistic matter up to za = 2/n ). Let 
N and k be arbitrary and let z.a < 2/n for each j = 1, . . . , k. 
Let Eq(N, k, Z) be the infimum of the energy (7.9) as in (2.11) 
and (2.14), but with y/ e /\" L2(R3 ; C*). (q = 1 is the simple 
antisymmetric case, q = 2 is the physical case and q > 2 is for 
fun.) Then E (N 9 k, Z) = 0 if qa < 1/47. In particular, stability 
holds in the physical case: a = 1/137. 

Is this limitation on a (especially the 1 /q dependence) merely 
an artifact of the proof in [LY1]? What about the stability of 
relativistic bosonic matter? These questions are answered in the 
following two theorems [LY1]. Roughly, the proof of Theorem 7 
uses the same elementary ideas as in the proof of (6.7) and (6.8). 

Theorem 7 (Instability of bulk matter for large a ). With the defi­
nition of Eq as in Theorem 6, assume there are N electrons and 
k nuclei, each with the same charge z > 0. 

(1) q and z independent bound. If a> 128/157T, if N > 1 and 
if k > 1 + 1/z then there is collapse for all q, i.e., Eq(N, k, Z) = 
-oo . 

(2) q and z dependent bound. If a > 36#~1/3z2/3, if N > q 
and if k> q/z then Eq(N, k, Z) = -oo . 

Thus, if a is large one electron can cause collapse no matter 
how small z is, provided enough nuclei are used in order to make 
the system approximately neutral. When q is large the critical a 
decreases with q at least as fast as <7 3 . This contrasts with 
the q~l dependence of Theorem 6; the exact dependence of the 
critical a on q is not known. 

One reason for mentioning the q dependence is that the choice 
q = N is equivalent to omitting the Pauli exclusion principle alto­
gether. The interested reader can easily deduce this from the dis­
cussion of symmetry in Part IV. This means that the case q = N 
includes the boson case, and as a corollary of Theorem 7 we have 

Theorem 8 (Instability of relativistic bosons with fixed nuclei). Let 
a > 0 and assume that all nuclei have a common charge z > 0. 
If the dynamic, negative particles are bosons instead of fermions, 
and if the nuclei are fixed as before, then collapse always occurs for 
sufficiently large N and k, i.e., E(N, k, Z_) — -oo . The choice 
N > (36)VcT 3 and k > (36)3zcT3 suffices. 
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PART VIII. THE STABILITY AND INSTABILITY 
OF COLD STARS 

Stars shine because they are a vast, continuous nuclear explo­
sion. Nevertheless, the effect of attractive gravitational forces in 
such a huge body is not negligible—a fact that can easily be appre­
ciated by noting that the sun maintains a spherical shape despite 
the nuclear violence. The byproducts of the nuclear reactions are 
light, heat and various kinds of particles, all of which produce an 
internal pressure that keeps the star expanded before these byprod­
ucts can leak out through the surface. 

After the nuclear reactions are finished, in what can be called 
the post-twinkle phase, the star eventually cools, and it might be 
supposed that it would then collapse because of the gravitational 
attraction. Sometimes this does happen with great rapidity—for 
that is what a supernova is; the enormous gravitational energy is 
then converted into the production of a vast amount of light and 
numerous particles, mostly neutrinos. But sometimes the cold star, 
or the remnant of a supernova explosion, which is also a cold star, 
merely attains a new, much smaller radius and is quite stable— 
although lightless. (Another conceivable final state of a supernova 
is a black hole, in which case the collapse might be silent because 
black holes do not permit light to escape; I thank F. Dyson for this 
observation.) 

The determining factor for total collapse or stability is the stellar 
mass; the dividing line is several solar masses. What mechanism 
is available, in the stable case, to provide the internal pressure that 
prevents the gravitational attraction from crushing the cold star? 
Answer: The quantum mechanical kinetic energy of fermions. 

Actually there are two kinds of cold stars: neutron stars and 
white dwarfs. The latter kind will be discussed at the end. The 
former kind, which are remnants of supernovae, are composed 
mostly of chargeless neutrons. (In Part I it was stated that a free 
neutron decays into a proton and an electron in about 13 min­
utes, but in the very dense interior of such a star the decay ceases 
for several reasons.) With X_ = (xx, . . . , xN) denoting the coor­
dinates of N neutrons, the classical potential energy is given by 
Newton's gravitational formula (cf. (1.2) and (1.9)) 

(8.1) W(X) = -K J2 I*/-*;!"1-
l<i<j<N 

Here, K = GM2
n , with G being Newton's gravitational constant 

and Mn being the neutron mass (which is just a little bigger than 
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the proton mass, Mp ). There is no electrostatic potential energy 
since the neutron has no electric charge. 

Neutron stars were mentioned as a possibility by Landau in 
1932, after the discovery of the neutron by Chadwick in the same 
year [B, ST]. In 1934 Baade and Zwicky proposed their connec­
tion with supernovae. Their actual existence was "established" 
by the 1968 discovery of pulsars (which mostly emit accurately 
timed pulses of radio waves) and Gold's identification of them as 
rotating neutron stars. The supposed facts about these stars are 
amazing [B, ST]. Their mass is a few solar masses (about 1057 

neutrons) but their radius is only about 10 km. Thus the gravi-
11 tational force at their surface is about 10 times that on Earth. 

The internal structure of such an object is hard to guess, because 
at these densities—especially the central density—neutrons will 
cease to look like individual particles and might become some sort 
of quark soup. Moreover, this large mass in such a small volume 
will cause space to be "curved" in accordance with the principles 
of Einstein's general theory of relativity. These complications will 
be ignored here and we shall suppose that a neutron star is just 
a collection of N particles with the gravitational potential energy 
function of (8.1). 

The model to be discussed here is standard and it is built along 
the lines of Part VII. With an abuse of history we shall call it 
the Chandrasekhar model, for a reason that will become clear at 
the end. Since the neutron star is cold we can suppose that it is 
in its quantum mechanical ground state. The energy of a wave 
function y/ is given, as usual, by E^ = T + W^ with T defined 
in (7.5) with m = Mn and W defined in (2.10) with W(X_) 
given by (8.1). Adopting henceforth units in which h = c = 1, the 
Hamiltonian is 

(8.2) HN = jhiy-AXi + m2-m}-K £ \xt-xf\ 

with K = GMn and m = Mn. The problem is to compute 

(8.3) E(N) = inf E¥ = inf(^, HNy/) 

and to delineate the properties of the density p for a minimizing 
y/. 

Two things are to be noticed. One is that the neutrons are 

being treated (special) relativistically with T(p) = yp2c2 + m2c4-

mc . This is obviously important to do since \v\/c will turn out 
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to be quite large at these densities. As in Part VII, the question 
of collapse or no collapse can be decided by the simpler choice 
T(p) = c\p\, but if we want to compute the density p in the 
stable phase it is essential to keep the full expression (8.2). 

The second point is that W(X_) has the same form as the 
electron-electron repulsion term B(X) in (1.7) except for one 
thing—the minus sign. For the repulsive case we were able to 
approximate this energy in terms of p as in (4.16), because, 
as discussed there, the left side of (4.16) minus the right side is 
bounded below [LO] by— (1.68) ƒ p4J3. But because of the minus 
sign in W(X_) we now require an upper bound for the difference 
in (4.16) in order to achieve a lower bound to E . Unfortunately 
the only upper bound is +oo. Therefore, controlling W by T 
is not at all a simple matter in this case. 

Nevertheless, there is a simple, well-defined Thomas-Fermi ap­
proximation to this problem, as in Part IV, that is obtained us­
ing (4.16). Whether it is correct or not remains to be seen. Its 
construction requires approximating the relativistic kinetic energy 
(7.5) in terms of p in analogy with Theorem 1 or Theorem 2. 
Imitating the discussion in Remark 1 after (4.9), we place n par­
ticles in a cube of size L and compute the minimum of T . With 
p = n/L and r\ = (6n p/q) ' it turns out to be (for large n ) 
equal to the volume L3 times the quantity 

(8.4) j(p) = JL [\{p
2 + m

2 ) 1 / 2 - m}p2dp. 
2n Jo 

(Recall that q = 1 for y/ e /\N L2(R3) and q = 2 for the physical 
case y/e Af L2(R3 ;C2).) This j(p) reduces to (2/q)2/3Kcp5/3 

when p is small (corresponding to the nonrelativistic kinetic en­
ergy) and to (3(67T ) / /4ql' )p4' when p is large (correspond­
ing to the relativistic case). It should be remarked that Daubechies 
[DA], who extended Theorem 1 to >/ -S , as noted before (7.16), 
also extended it to V-A + m2 - m . 

We can now form the Thomas-Fermi functional for a neutron 
star. 

(8.5) PTF(p)= [ j(p(x))dx-~ f f p(x)p(y)\x-y\-ldxdy 
JR3 l

 JR3 JR3 

and the Thomas-Fermi energy is 

(8.6) ETF(N) = inf(g{p): [ p = N\ . 
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This problem can also be conveniently reformulated by setting 

(8.7) p(x) = p{Nl/3x) =• f p{x)dx = 1 

so that, with 
(8.8) 

^TF(P)= J(p(x)dx-^KN2/3 I p(x)p(y)\x-y\~ldxdy, 

the energy becomes 

(8.9) ±ETF{N) = inf{?TF(p): ƒ p = l } s eTF{KN2I\ 

The advantage of (8.7)-(8.9) is that it makes clear that the relevant 
parameter in the problem is r = KN2/3 . Numerically, K = GmN

2 

— 38 57 

is about 10 in our units and N « 10 , so that x « 1. This 
suggests that it is an excellent approximation, indeed, to consider 
the limit K —• 0, N —• oo but with /c 7V2/ = x held fixed. 

The first attempt [LT3] relate E(N) to ETF(N) succeeded to 
within a factor of 4. The following theorem of Lieb and H-T. Yau 
[LY2] finally settled the question. 
Theorem 9 (Thomas-Fermi theory is asymptotically exact for cold 
stars). Fix x = KN2/ and let K -» 0 and N —• oo. Then 

(8.10) lim E(N)/N = eTF(x). 
K—>0,N-+oo 

(The error, for finite N, can be bounded.) Furthermore, there is 
a critical number, xc, such that the Thomas-Fermi minimization 
problem (8.8), (8.9) satisfies 

(1) If x <xc then e (r) is finite and there is a unique mini­
mizing pT

x
F. 

(2) If 0 < x < xc and if i//N is a minimizer for the quantum 

mechanical problem with density p then, weakly in L4/3(R3)n 

L'(R3), 

(8.11) lim p (NXIZx) = pT
x
F{x). 

'fane 
decreasing. 

T F T F 

(4) If x > xc then e (r) = -oo , while e (xc) is finite. 
Thus, a neutron star is stable if KN2^3 < xc and it collapses if 

KN2^3 > xc. It is not hard to see from (8.5) that such a collapse 

TF 

(3) The function N v-* E (N), for fixed K , is concave and 
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occurs and, indeed, to infer the value of xc. For large p (which 
is relevant here) j(p) = Cp4/3 with C = 3(6rc2)1 / 3 /V / 3 . The 
sharp inequality 

AI p(x)dx \ / p(x) dx 
(8.12) ^ R 3 > JR3 

- 2 / 3 / 3 PWPW\X " yfldxdy 

is well known, with A = 1.092. Therefore 

(8.13) xc = C/A. 

The Euler-Lagrange equation for the problem (8.8), (8.9) is 

(8.14) j\p(x)) = [t](xf + m2]1 /2 - m = {x\x\~l */>-//}+, 

where rj(x) = (6n p(x)/q){' , * denotes convolution, ju > 0 is 
a Lagrange multiplier (which has to be adjusted so that ƒ p = 1 ) 
and {A}+ = max(A, 0). The optimum solution p is spherically 
symmetric, decreasing and has compact support in a ball BR of 
radius R. The Euler-Lagrange equation can be converted into a 
differential equation by applying the Laplacian, A, to (8.14). 

(8.15) - A 6 = 4TT[02 + 29]3 / 2 in BR 

with 0 = K\X\~ * p and @(x) = 0 when \x\ = R. 
The existence of a solution to (8.14), (8.15) was proved by Auch-

muty and Beals [AB]. The analysis of this equation is, in itself, an 
interesting mathematical problem. The following has been proved 
[LY2]. 

Theorem 10 (Properties of the Thomas-Fermi density). 
There is exactly one nonnegative radial solution to (8.14) for each 
ju > 0 and 0 < r < rc. It has compact support. For r > xc there 
is no solution {even though e (TC) is finite). If x < rc there is 
exactly one p, so that ƒ p = 1. Both p and p are continuous 
functions of x and p(0) is an increasing function of x, while the 
radius R is a decreasing function with R —• 0 as x -+ xc and 
R —• oo as x —• 0. If Tj < T2 < xc then the solutions px and p2 

satisfy p{(x) = p2{x) for exactly one value of \x\. 

These properties show that the star has a unique shape that 
evolves continuously with x, i.e., there are no jumps. 

What would happen if the neutrons, which are fermions, are 
replaced by bosons? Elementary particles that are bosons, and 
that are stable have never been seen, as stated earlier, but they 
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are posited to exist in certain theories in order to account for the 
"missing mass" in the universe. They are called axions and are 
not expected to condense into stars because they cannot get rid of 
their gravitational energy easily, but it is amusing to consider the 
possibility anyway. See [RB]. 

For bosons we might imagine that a simple product function 
y/(2Q = n0(xz) with (/> e L2(R3), as in (4.2), would adequately 
describe the ground state. Then p (x) = N\(f)(x)\ and with 
(f)(x) > 0 (which is the optimum choice), 

(8.16) T¥ = N&, Top4>) = ( V / V Top^) 

(8.17) w¥ = ^ ^ j^j^pv{x)p¥{y)\x-y\-ldxdy. 

Adding these (and supposing N to be large) we obtain a Hartree 
type functional 
(8.18) 

&"(p) = (VP> TOPVP)-J I\ !p{x)P{y)\x-y\-{dxdy 
J R «/ R 

for nonnegative p with ƒ p = N. This differs from the Thomas-
Fermi functional in the replacement of ƒ j(p) by (8.16). As usual, 
we define the Hartree energy to be 

(8.19) EH(N) = mfl&H(p): f p = N\ . 

The scaling p(x) —• Np(x) reduced the problem to one in 
which ƒ p = 1, K -» KN = co and E —• NE. From this we 
learn that the parameter co — KN is the crucial one for bosons, 
not T = KN2/3 . 

The minmization of (8.18) leads now to a genuine differential 
equation for ƒ = ^/p 

(8.20) {Top-co\x\-l*f2}f=-fif 

on all of R3 and with JX chosen so that ƒ f2 = N. It is proved 
in [LY2] that again there is a critical value coc such that when 
co < coc a minimizer exists and it is spherically symmetric and 
decreasing (although not with compact support). If co > coc then 

IT 

E (N) = - oo . If we fix co and let K —• oo and N —• oo with 
co — KN then, as in the previous fermionic case, the solution 
to the quantum problem converges to the solution to the Hartree 
problem, i.e., E(N)/EH(N) - 1 and j^p -±pH^0. 
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Thus, bosonic stars can collapse as well, but whereas in the 
fermionic case the critical number Nc is proportional to /c~3/2 « 
10 , for bosons Nc is proportional to K « K T . The former 
defines an object which is the size of a star, while the latter defines 
only an object as massive as a mountain (assuming that the same 
value is used for the mass of the constituent particles.) 

It is possible to understand this K~ behavior in a simple way— 
which also explains the central difficulty in proving Theorem 9. In 
(7.14) we saw that the kinetic energy of a particle ceases to control 
a —C/\x\ singularity whenever C>2/n. In our bosonic star case 
we have many particles with the tiny constant C = K between each 
pair. Suppose now that (N - \)K exceeds 2/n and that N - 1 
particles come together at a common point. Then the N* particle 
feels an over-critical attraction and "falls in the hole." But then 
every particle is trapped and none can escape. Something like this 
artificial scenario is what happens in the bosonic case and leads 
to collapse if œ = NK is big enough. (It is not claimed that 
coc = 2/n ; in fact it is known only that 4/n < coc < 2.7.) The 
interesting fact about fermions is that the Pauli exclusion principle 
prevents this scenario from happening. Since N « JC3/2 in this 
case, it would require the coalescence of only a tiny fraction of 
the particles (namely 7V2/3/N) in order to form a "trap" for the 
remaining particles—but such a "fluctuation" does not occur with 
any significant probability. 

Now let us return to the second kind of cold star—the white 
dwarf. In 1914 Adams discovered that while the companion star 
of Sirius has a mass about equal to that of the sun (which was 
known from its perturbation of Sirius) its radius had to be very 
small [ST]. He inferred this from the fact that the star is hot (in 
fact its light is whiter than that of most stars—hence the name) 
but it has a very small total luminosity. Many such stars are now 
known and they are thought to be burned out stars consisting of 
ordinary electrons and nuclei such as we discussed in Part VII. 
Their radius is bigger than that of a neutron star—about 5000 
km—for a reason that will soon be apparent, and this means that 
general relativistic effects are not important here. The ones we can 
see optically shine because they have not yet rid themselves of all 
the energy of gravitational collapse. 

For some time it was a real puzzle to explain why this dead 
star did not collapse entirely. We have seen that the quantum me­
chanical kinetic energy provides the requisite "internal pressure", 
and the person who modelled this correctly was Chandrasekhar in 
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1931 [C]. There is, however, a slight twist from the neutron star 
model, which requires some explanation. 

The main force among electrons and nuclei is electrostatic—not 
gravitational. But with a grain of faith we can suppose that the 
electric potential is cancelled locally, i.e., local neutrality is strongly 
enforced. This leaves only the gravitational potential, which is ad­
ditive because there are no ± signs. Ideally we would like to 
incorporate both forces, but we shall retain only the gravitational 
force. The nuclei, as before, can be considered to be almost mo­
tionless but the electrons move with high speeds (because of the 
high density) and therefore have to be treated relativistically. 

With this information we can, with another grain of faith, sup­
pose that the Hamiltonian HN in (8.2) is relevant, but with the 
following identifications. The number of electrons is N and the 
mass m that appears in the kinetic energy, T , is the electron 
mass. On the other hand, the gravitational force comes mostly 
from the nuclei (because of their large mass), and therefore K = 
GM2 with M now being the mass in the star per electron, i.e., 
M = Mnucleus!znucleus > w h i c h i s m u c h bigger than the electron's 
mass and which is typically about twice Mn . It is the presence 
of the very small m in the kinetic energy which make the radius 
bigger for the solution of (8.5), (8.6); by scaling, the radius is pro­
portional to 1/m for a fixed N. The critical r does not change 
(except insofar as M ^ Mn). 

The proper model to analyze, of course, would be one with two 
kinds of particles (electrons and nuclei) and with two kinds of 
forces (electrostatic and gravitational), but this remains an open 
problem. There are some remarks about this problem in [LT3]. 
Another thing one would like to analyze is the effect of positive 
temperature. For nonrelativistic particles, both kinds of modifica­
tions have been achieved, in a certain limit, by Hertel, Narnhofer 
and Thirring [HT, HNT, TW]. See also Messer's book [M]. The 
relativistic case with both kinds of forces is still an open problem. 

Chandrasekhar, of course, did not analyze the Hamiltonian HN 

as we did here. He started instead with the Euler-Lagrange equa­
tion of the Thomas-Fermi approximation, (8.14) or (8.15). In 
fact, it was the following physical interpretation of (8.14) that mo­
tivated Chandrasekhar: If we take the gradient of both sides and 
then multiply by —p{x), the right side becomes the gravitational 
force at a point x in the star. The left side can be interpreted as 
the gradient of the pressure, P, of a "quantum mechanical fluid." 
This fluid has an "equation of state" (i.e., the pressure, P as a 
function of the density, p ) given by the following formula that is 
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valid for all fluids. 

(8.21) P(p) = pj\p) - j(p) = / > 2 ^ ^ . 

This balancing of forces, i.e., the "gravitational-hydrostatic equi­
librium," was Chandrasekhar's starting point. 

From this point of view there is an interesting contrast between 
the bosonic case (well approximated by the Hartree theory (8.18)) 
and the fermionic case (well approximated by the Thomas-Fermi 
theory (8.5)). The latter energy can be thought of as that of a 
simple fluid which has an "equation of state." This is how physi­
cists think of the matter, even though it is quantum mechanics 
that produces the pressure. The bosonic energy (8.18) has no such 
interpretation. Quantum mechanics shows itself to the bitter end 
because the Hartree energy still has gradients in it. The concept 
of an "equation of state" cannot be used for high density bosonic 
matter in its ground state. 

This brings us to the end of the stability of matter story. If one 
more hyperbolic remark be permitted, it can be said that 

Quantum mechanics is a bizarre theory, invented to explain 
atoms. As far as we know today it is capable of explaining ev­
erything about ordinary matter (chemistry, biology, superconduc­
tivity), sometimes with stunning numerical accuracy. But it also 
says something about the occurrence of the most spectacular event 
in the cosmos—the supernova. The range is 57 orders of magnitude! 
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