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We theoretically investigate the dependence of the surface charge developed on charged spherical colloids
upon several environmental parameters: the ionic strength of the monovalent added electrolyte, acidity
(stabilized by a pH buffer solution), and colloid concentration. In the framework of the mean-field Poisson-
Boltzmann spherical cell model, we include the charged colloid-microion correlations into the buffer
equation, and we allow for the specific binding of ions to the ionizable groups on the colloid surface.
Theoretical predictions are compared to the results obtained under the planar-symmetry Gouy-Chapman
approximation and analyzed for the experimental conditions of an aqueous dispersion of the phospholipid
dimyristoyl phosphatidylglycerol (DMPG). Experimental measurements of the partition ratio of an aqueous
soluble cationic spin label on buffered dispersions of polyanionic unilamellar vesicles of DMPG in the
presence of added monovalent salt are theoretically interpreted in terms of ion partition due to electrostatic
interactions. We show that the specific binding of the probe must be admitted to explain the experimental
results.

I. Introduction

Electrostatic interactionsareubiquitous in thebiological
realm1-3 because virtually all biomolecules are charged
in their aqueous environment. These include poly-
nucleotides (DNA and RNA), proteins (inhomogeneously
charged polypeptides), and charged membranes (lipid
bilayers carrying ionizable groups).

Amphiphilic molecules, like surfactants and phospho-
lipids, aggregate in supramolecular structures above a
certain critical concentration.4 This aggregation reduces
the unfavorable contact between the solvent (usually
water) and the apolar hydrocarbon tails. Whereas single-
tailed surfactants form micelles with a dehydrated core,
double-tailed phospholipids, because of geometric con-
straints, usually aggregate into bilayers. These, in turn,
may form uni- or multilamellar vesicles enclosing an
aqueous compartment. In both cases, the polar heads may
carry ionizable groups that dissociate upon contact with
water, releasing neutralizing counterions that shield the
electrostatic interactions between different aggregates.
Electrostatic screening may also result from the ionic
dissociation of the added electrolyte in the suspension.
Therefore, electrostatic effects are expected to play an
important role in the formation, phase behavior, and
stability of aqueous suspensions of charged phospholipid
vesicles.

In particular, aqueous dispersions of dimyristoyl phos-
phatidylglycerol (DMPG) form polyanionic unilamellar
vesicles, which constitute model systems for biological

membranes because phosphatidylglycerol (PG) is the most
abundant anionic phospholipid headgroup present in
prokaryotic cell membranes. Because of the presence of
an ionizable phosphate group, the thermostructural
properties of PG lipids not only depend on the hydrocarbon
chain length, but also strongly rely on the pH of the
medium and on the presence of ions. DMPG, a saturated
lipidwith14Catoms ineachhydrophobic chain,wasshown
to present a rather complex thermal behavior.5 In a range
of sodium salt concentration (below ∼100 mM) and pH
values (above ∼6), DMPG shows a broad gel-fluid
transition region, accompanied by unusually low turbidity
and high viscosity and conductivity.6 The latter property
indicates that charge dissociation may be an important
effect. This transition region was named the “intermediate
phase”, even though it is not yet clear to what extent it
can be described as a different lipid phase. Different
approaches have been proposed to explain the peculiar
thermotropic phase behavior of DMPG suspensions:
polydispersity might play an important role,7,8 the oc-
currence of rather fluid and hydrated domains, possibly
high-curvature regions or perforations, coexisting with
more rigid and hydrophobic bilayer patches is another
possibility,9,10 or the transition region could correspond to
an extended bilayer network.11 More evidence needs to be
gathered to properly assess these different proposals. In
any case, the role of explicit charge has not been analyzed
in theoretical modeling,7-11 except in ref 12. This study
constitutes a more detailed investigation of the electro-
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static effects for a given phase (fixed form and size), with
particular interest in their dependence on spherical
geometry and finite lipid concentrations, which was not
previously considered in ref 12.

II. The Cell Model
Our focus is on the electrostatic effects on a mono-

disperse aqueous suspension of charged spherical colloids.
The system is treated in the framework of the cell model,13

which has been successfully used in the description of
polyelectrolyte systems.14-16 In the spherical cell model,
the suspension is subdivided into spherical cells, each
containing a spherical polyionsfor example, a micelle, a
vesicle, or a polystyrene microspheresand an amount of
solvent and electrolyte related to the average concentra-
tions in the system. This allows us to estimate the polyion-
microion correlations, which arise from the polarization
of the small mobile ions in the vicinity of the polyions:
microions of opposite sign (counterions) are attracted to
them, whereas like-sign microions (coions) are repelled.
In this simplified framework, the mesoscopic charged
polyions act as a boundary condition for the electrostatic
problem. Therefore, we neglect the entropy associated with
the polyion mobility and the electrostatic contributions
arising from the polyion-polyion and microion-microion
correlations,17 which can be important for multivalent
microions. We consider a single spherical polyion of radius
r0 that is concentric to a unitary spherical cell of total
volume v ) 4πR3/3, as depicted in Figure 1. Therefore, the
total volume of the cell (v) is determined by the polyion
density, v ) V/Np, in which Np is the total number of
polyions occupying the total volume of the aqueous
suspension V.

The charged spherical colloid is modeled by a solid
sphere of radius r0 < R that is concentric to the unitary
spherical cell. We assume a continuous (smeared) and
uniform surface charge density on its surface,

in which Z . 1 represents the polyion valence (number

of sites actually ionized on the polyion surface), q is the
proton elementary charge, and δ3 is the tridimensional
Dirac delta distribution. Without loss of generality, we
consider a polyanionic (negatively charged) spherical
colloid, with a surface charge that is counterbalanced by
the release of Z positively charged counterions (per cell,
in the external region) into the suspension. In the case of
vesicles, we assume that the average concentrations of
the charged species inside and outside the aqueous
compartment are equal,18 preserving the overall charge
neutrality in each region separately. Therefore, there is
no entrapment of microions in the hydrocarbonic hydro-
phobic interior (micelle cores or phospholipidic bilayer
shells). With these assumptions, the analysis is simplified
because the mathematical solution to the electrostatic
problem in the external and internal regions is decoupled.

The electrostatic potential Ψ(r) and the local volumetric
charge densities F((r) of positive and negative microions
satisfy the Poisson equation

in which E(r) ) -∇Ψ(r) is the electric field at the point
r, the solvent is modeled as a continuous and homogeneous
medium of dielectric constant ε, and NA ) 6.022 × 1023

particles/mol (Avogadro’s number). We have written the
volumetric charge densities in terms of molar concentra-
tions (measured in M ) mol/liter) to simplify further
calculations. Henceforth, we assume that the microion
densities are spherically symmetricsthat is, they depend
only on the distance from the center of the cell r ≡ |r|s
which is based on the fact that the polyion surface and the
cell boundary are concentric.

For the convenience of later calculations, we have chosen
to distinguish positive, Xi

+, and negative, Yj
-, microions so

that the overall local densities are given by

in which [s]r denotes local molar concentration of the
chemical species s at a distance r from the center of the
cell. The anionic species Y1

- is reserved to denote the
charged groups on the colloid surface (see eq 17) and are
thus not included in eq 4.

We use a canonical-ensemble treatment to describe the
microion concentrations in which the amount of added
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to the microions, and their average concentrations n( ) n(
in ) n(

out are
determined during the vesicle creation when a prepared aqueous buffer
solution is poured onto a dehydrated phospholipidic film. In this case,
the lipid bilayer isolates the intravesicular fluid from the external
medium. On the other hand, if the vesicle bilayer is permeable to the
charged species, then an electrochemical equilibrium is established
between the two sides of the bilayer. In this case, the activities of the
charged species inside and outside the vesicle are equal; γj

in nj
in )

γj
out nj

out in which γj
k is the activity coefficient of the species j in the

regionk. These conditions imply the continuity of the local concentrations
of the charged species across the bilayer. Within the framework of the
cell model, the activity coefficients taking the polyion-microion
correlations into account are given by γ(

k ) 〈e-ψ〉k
-1 (see section III).

Figure 1. The cell model for a monodisperse aqueous suspen-
sion of unilamellar vesicles. The vesicle suspension is subdivided
into identical spherical cells, each containing a single vesicle.
The inset in the center depicts the bilayer composition, showing
the ionizable polar headgroups (black circles) and the apolar
hydrocarbon double tails. The rightmost sketch displays the
geometry of the cell model. The spherical vesicle of total charge
-Zq, distributed uniformly on its surface, is represented by the
solid sphere of radius r0 concentric to the spherical unitary cell
of radius R. The vesicle occupies a volume fraction φ ) (r0/R)3

of the total volume of the cell v ) 4πR3/3. The mobile microscopic
ionsscounterions (x), cations (+), and anions (-)sare free to
move in the spherical shell r0 < |r| < R.

Fp(r) ) - Zq
4πr0

2
δ3(|r| - r0), (1)

∇2Ψ(r) ) -∇‚E(r) ) - 4π
ε

{Fp(r) +

[F+(r) - F-(r)]103NA}, (2)

F+(r) ) q∑
i

[Xi
+]r, (3)

F-(r) ) q∑
j*1

[Yj
-]r, (4)
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monovalent electrolyte is known a priori. This is the correct
approach for the finite concentration of the colloid disper-
sion.19 At the mean-field level of approximation, the local
molar densities of microions are given by the Boltzmann-
weighted profiles20 for each species,

in which ψ(r) ≡ âqΨ(r) is the dimensionless electrostatic
potential at a distance r from the center of the cell, and
1/â ) kBT corresponds to the thermal energy at absolute
temperature T. The concentrations [Xi

+]R and
[Yj

-]R are the local molar densities of the microions on the
cell surface (r ) R) where the electrostatic potential was
chosen to vanish (ψ(R) ) 0). This is an arbitrary choice,
but one can generally choose any radial coordinate to gauge
the zero of the electrostatic potential. The local charge
densities F((R) on the cell surface (r ) R) can be determined
by the conservation of charge in the effective volume, veff
≡ (4π/3)(R3 - r0

3), which is available to the microions
outside the polyion (see Figure 1),

or, for each species,

in which we introduced the volumetric averages in the
region that is external to the polyions,

and the notation n( stands for the average molar
concentrations of the charged species in the solution at
equilibrium. If one assumes that dissociation is complete,
both for the polyion surface and for the added monovalent
electrolyte of ionic strength n, then the average molar
concentration of counterions [ct] ≡ Z/(103NAveff) is known
a priori. It should be noted that the ionic strength n does
not include the counterions released by the ionization of
the polyion surface.

The assumption of complete dissociation holds for
aliphatic chains associated with strong acids, such as, for
example, sulfonic groups when all ionizable surface sites
are indeed charged. However, in most cases we need to
consider the surface chemistry of the spherical colloids.
Although there are several distinct chemical mechanisms
leading to charge regulation, which have been investigated
at different levels of approximation using different
theoretical models,21 to our knowledge, a self-consistent
treatment of the bulk chemical equilibria of a buffer
solution and the colloid surface chemistry has not been

performed. This self-consistent treatment, which is de-
scribed in the next section, is important, for example, in
the determination of titration curves in concentrated
colloidal suspensions. The standard titration curves
obtained with the assumption of an absence of charged
colloids are shifted with the addition of ionizable surfaces.

After substituting the Boltzmann-weighted profiles (eqs
5 and 6) into the Poisson equation (eq 2), the differential
equation satisfied by the dimensionless electrostatic
potential ψ can be cast in the form

with the boundary conditions ψ′(1) ) ZlB/r0 )
103NA[ct]vefflB/r0 and ψ′(φ-1/3) ) 0, written in terms of the
volume fraction φ ) (r0/R)3 occupied by the colloidal
particles. Here, we introduce the dimensionless radial
coordinate ê ≡ r/r0; the prime (′) in the above equation
denotes differentiation with respect to the argument, and
the Bjerrum length, lB ≡ âq2/ε, measures the strength of
the electrostatic interactions in the suspension, corre-
sponding to the distance at which the electrostatic energy
between two electrons equals the thermal energy kBT.
The inverse Debye screening length κ and the so-called
Donnan potential22 ψD read

Here the Donnan potential ψD is introduced as a Lagrange
multiplier conjugate to the charge-neutrality constraint.19

Finally, the nonlinear second-order differential (eq 10)
can be solved numerically by recasting the two-point
boundary value problem into a one-point boundary value
problem23 by assigning an a priori value for the Donnan
potential ψD.

For the sake of clarity, we compare our approach with
the more common treatment, which is adequate for very
dilute systems, in which the polyion suspension may be
considered to be in electrochemical equilibrium with an
infinite electrolyte reservoir of bulk molar density cb. In
this semigrand canonical approach, the inverse Debye
screening length reduces to the standard definition κ )

x8πlB103NAcb, and the Donnan potential is related to the
difference ∆p between the osmotic pressure in the colloidal
suspension and that in the infinite reservoir,16,22

There is a simple relation involving the average molar
concentrations of the charged species in the colloidal
suspension n(, the average molar concentration of coun-
terions [ct], and bulk molar concentration of the infinite
reservoir cb,

(19) Tamashiro, M. N.; Schiessel, H. EPAPS Document E-JCPSA6-
119-516326. http://www.aip.org/pubservs/epaps.html. Complement to
J. Chem. Phys. 2003, 119, 1855.
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Netherlands, 2001; pp 27.
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[Xi
+]r ) [Xi

+]Re-ψ(r), (5)

[Yj
-]r ) [Yj

-]Reψ(r), (6)

F((R) )
qn(

〈e-ψ〉
, n+ ≡ [ct] + n, n- ≡ n, (7)

[Xi
+]R )

[Xi
+]

〈e-ψ〉
, [Yj

-]R )
[Yj

-]

〈eψ〉
, (8)

〈e(ψ〉 ≡ 1
veff

∫r0e|r|eR
d3r e(ψ(r), (9)

ψ′′(ê) + 2
ê

ψ′(ê) - κ
2r0

2 sinh[ψ(ê) - ψD] ) 0, (10)

κ ) x8πlB103NA( n+n-

〈eψ〉〈e-ψ〉)1/4

, (11)

ψD ) 1
2

ln( n+〈eψ〉

n-〈e-ψ〉). (12)

10-3NA
-1â∆p ) 1

q
[F+(R) + F-(R)] - 2cb )

4cb sinh2[12ψ(φ-1/3) - 1
2

ψD]. (13)

n( ) 1
2x[ct]2 + (2cb)

2〈eψ〉〈e-ψ〉 ( 1
2

[ct]. (14)
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These indeed yield n( ) cb in the limit of the infinite
dilution of polyions when [ct]/cb f 0 and 〈e(ψ〉 f e(ψ(R).
Using the above relations between the canonical and
semigrand canonical treatments, the Poisson-Boltzmann
equation can be written in its standard form,

with the boundary conditions r̂‚3ψ|r)r0 ) ZlB/r0
2 and

r̂‚3ψ|rf∞ ) 0. Note that, in the standard form of the
Poisson-Boltzmann equation, the gauge is chosen such
that the Donnan potential vanishes (ψD ≡ 0) which does
not correspond to the gauge in which the electrostatic
potential at the cell surface or in the infinite reservoir
vanishes. Clearly, in the semigrand canonical treatment,
the Debye screening length depends only on the bulk molar
concentration (cb) of the infinite reservoir. We note,
therefore, that, unlike the above canonical treatment (cf.
eq 11), the semigrand canonical treatment should not
include the average concentration of counterions [ct] in
the ionic strength to compute κ.

III. Surface Charge Regulation
The Poisson-Boltzmann eq 10 can be used to obtain

the electrostatic potential if the number Z of actually
ionized sites on the colloid surface is known a priori.
However, our interest lies in analyzing the case in which
the dissociation on the colloid surface is only partial. Note
that, in this case, the ionic strength n and the counterion
molar density [ct] appearing in eq 7 are no longer a priori-
known quantities, but rather must be calculated from the
surface chemistry of the spherical colloids. Thus, we
rewrite eq 7 as

in which the bracket notation [c(] for the equilibrium molar
concentrations of the charged species indicates that they
are unknown a priori and must be found from charge
regulation. We use the notation nXiYj for initial (known a
priori) molar concentrations and [Xi

+], [Yj
-] for unknown

molar concentrations, which must be determined from
charge-neutrality and mass-conservation conditions to be
derived below. For example, if the neutral monovalent
electrolyte XiYj of molar concentration nXiYj undergoes
complete ionization in water (XiYj f Xi

+ + Yj
-) and there

is no association of the conjugated charged species Xi
+ and

Yj
- to the colloid surface, then their equilibrium molar

concentrations, denoted by [Xi
+] and [Yj

-], are known a
priori and simply given by nXiYj ) [Xi

+] ) [Yj
-]. However,

for the general case of partial ionization in water and/or
association to the colloid surface, the equilibrium molar
concentrations have to be determined by the conditions
of chemical equilibrium.

Henceforth, we consider, for simplicity, only ionogenic
surfaces containing monovalent weak acidic groups in a
salt form, Jh+Jsurf

- , which can partially dissociate to yield
an aqueous soluble cationic counterion Jh+ in the solution,
leaving negatively charged sites Jsurf

- on the colloid
surface. Here the subscript “surf” stands for chemical
species on the colloid surface, and the bar notation on the
free cationic species Jh+ indicates that it is conjugated to
the anionic species Jsurf

- , which is attached to the colloid
surface. Furthermore, we allow for the specific binding of

ions to the ionizable groups on the colloid surface. For
negatively charged surfaces, the chemical binding of
anions is electrostatically unfavorable and can be ne-
glected, but the specific adsorption of the cations to the
anionic surface groups must be included in the model.
Therefore, the surface charge density developed on the
spherical polyanions may depend on the local volumetric
molar densities at the colloid surface [Xi

+]r0 of the protons
(local surface pH) or any other positive microions present
in the system. Like the protons (H+) and the strict
counterions (Jh+) released by the dissociation of the surface
groups on the colloids, all positively charged species may
act as potential determining ions; that is, the polyion
surface charge is determined by the specific binding of
the cationic species Xi

+ to the acidic surface groups Jsurf
- .

A.DissociationConstants.Toestablish theconditions
of chemical equilibrium, one has to consider all of the
chemical reactions that occur in the colloidal suspension.
Let us first consider the partial dissociation of the weak
acidic groups on the colloid surface, which gives origin to
the conjugated cationic/anionic pair (X1

+, Y1
-),

To stabilize the proton molar concentration [H+] of the
solutionsideally to keep it constantsa buffer solution is
employed, which consists of a weak acid, HA, characterized
by the dissociation equilibrium constant KA and an initial
total molar concentration nHA, which is adjusted by the
addition of strong bases of molar concentrations nXiOH (i
* 2). These solutes are immersed in water, characterized
by its ionic product KW. The relevant chemical reactions
for the buffer solution are the water autoprotolysis, the
partial ionization of the weak acid HA, and the complete
dissociation of the strong bases XiOH,

It should be noted that the indexes (i, j) of the charged
species (Xi

+, Yj
-) label the chemical components and not

the chemical reactions. According to the above notation,
for example, the weak acid HA is represented thus by
X2Y3. In Appendix A we present the standard treatment
of a buffer solution as a homogeneous electrolyte neglecting
activity coefficients. In the presence of charged colloids,
however, the buffer solution must be treated self-
consistently in the framework of the Poisson-Boltzmann
spherical cell model. To be consistent with the inclusion
of the polyion-microion correlations in the cell model, it
is necessary to use the strict definition of the dissociation
equilibrium constants in terms of the activities,

in which the activity coefficient of the undissociated weak
acid γHA ) 1, γ ) xγ+γ- is the mean activity coefficient
(for monovalent microions), and γ( ≡ 〈e-ψ〉-1 is the activity
coefficient for the positive and negative microions. These
are based on the definition of the activities of the charged

(23) Trizac, E.; Bocquet, L.; Aubouy, M.; von Grünberg, H. H.
Langmuir 2003, 19, 4027.

∇2ψ ) κ
2 sinh ψ, (15)

F((R) )
q[c(]

〈e-ψ〉
, [c+] ≡ [ct] + [c-], (16)

JhJsurf h Jh+ + Jsurf
- , X1

+ ≡ Jh+, Y1
- ≡ Jsurf

- . (17)

H2O h H+ + OH-, X2
+ ≡ H+, Y2

- ≡ OH-, (18)

HA h H+ + A-, Y3
- ≡ A-, (19)

XiOH f Xi
+ + OH-, for i * 2. (20)

KW ≡ aH+ aOH- ) γ2[H+][OH-], (21)

KA ≡ aH+ aA-

aHA
) γ2[H

+][A-]
[HA]

) γ2 [H+][A-]

nHA - [A-]
, (22)
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species, aj ) eâµj/Λj
3 ) 103NAγjnj, in which âµj )

ln(103NAnjΛj
3) - ln〈e-ψ〉 is the corresponding electro-

chemical potential for the positive/negative microions, in
unities of kBT, and Λj is the associated thermal de Broglie
wavelength. If the contribution of the microion-microion
and polyion-polyion correlations to the activity coef-
ficients γ( can be neglected, then the equilibrium constants
KW and KA, as given by eqs 21 and 22, should coincide
with their values in a colloid-free buffer aqueous solution.

Monovalent salts (assumed to be strong) may be added
to the system and undergo complete ionization in the
aqueous suspension,

Finally, in addition to the partial surface charge
dissociation involving the strict counterion Jh+ (eq 17),
reversible chemical binding of cations Xi

+ (i g 2) to the
weak acidic surface groups Jsurf

- may also take place on
the colloid surface,

The partial dissociation of the surface charged groups
Jsurf

- may be described in terms of the association con-
stants Ki (measured in M-1 ) liter/mol) of the acidic groups
Jsurf

- on the polyion surface to the generic cationic species
Xi

+,

in which Xi
+ stands for protons or any other cations,

including the released strict counterions X1
+ ) Jh+, the

notation [‚‚‚]r0 represents a volumetric molar concentration
at the polyion surface (r ) r0), and aj denotes the chemical
activity of the species j. In a mean-field (ideal-gas)
approximation, the associated surface activities are given
by their surface molar densities, yielding

which results from the charge-neutrality constraint
because [Jsurf

- ] ) [ct], and [ct] is the equilibrium molar
concentration of counterions (now unknown a priori),
which has to be determined by the conditions of chemical
equilibrium.

The local molar concentrations of the cationic species
at the polyion surface [Xi

+]r0 that appear in eq 26 can then
be determined by taking into account their partial
contributions to the average concentration of positive
microions at equilibrium from eqs 3 and 5,

in which ψ0 ≡ ψ(ê ) 1) is the dimensionless electrostatic
potential at the polyion surface, the value of which depends
on the choice of the gauge. Thus, eq 26 can be rewritten
as

B. Charge Neutrality and Mass Conservation.
Charge neutrality and mass conservation allow us to write
some additional equations to characterize the chemical
equilibrium.

The global concentration of surface-forming acidic salt,
nJhJ, is known from experimental conditions,24 so summing
up dissociating and associated groups on the colloid surface
leads to a mass-conservation equation,

in which the expression on the right-hand side is based
on eq 28. Note that the sum in eq 29 includes the strict-
counterion contribution (i ) 1).

The equilibrium concentration of the strict counterions
[Jh+], apart from the colloid surface partial ionization nJhJ
- [JhJsurf], may have contributions from added strong salts
and/or strong base, denoted by JhYj (j * 1), which undergo
complete dissociation in the aqueous suspension (JhYj f

Jh+ + Yj
-). Its mass conservation is thus written as

The expression on the right is based on eq 29 and the fact
that [JhJsurf] ) [X1Jsurf] ) K1[ct][X1

+]r0 (from eq 26). It is
noteworthy that the sums in eq 30 do not include the
contributions from the strict counterions (i ) 1) nor those
from the acidic surface groups (j ) 1).

Mass conservation of the Xi
+ counterions (i g 3)sthus

excluding strict counterions (i ) 1) and protons (i ) 2)s
reads

because the total concentration of a particular cationic
species Xi

+ can be split into ions in solution plus ions
chemically bound to the colloid surface. The latter must
balance the total concentrations of the fully dissociating
added salts and bases that involve that particular species.
By using eq 28 we obtain

Now we may write mass-conservation equations for the
positive and negative ions in solution,

From the mass-conservation conditions above (eqs 29,
30, and 32-34), we may now write two equations: (1) one

nJhJ ) [Jsurf
- ] + ∑

i

[XiJsurf] ) [ct](1 + ∑
i

Ki[Xi
+]

e-ψ0

〈e-ψ〉),
(29)

[Jh+] ) nJhJ - [JhJsurf] + ∑
j*1

nJhYj
)

[ct](1 + ∑
i*1

Ki[Xi
+]

e-ψ0

〈e-ψ〉) + ∑
j*1

nJhYj
. (30)

[Xi
+] + [XiJsurf] ) ∑

j*1

nXiYj
, for i g 3, (31)

[Xi
+] )

∑
j*1

nXiYj

1 + Ki[ct]e-ψ0/〈e-ψ〉
, for i g 3. (32)

[c+] ) ∑
i

[Xi
+] ) [Jh+] + [H+] + ∑

ig3

[Xi
+], (33)

[c-] ) ∑
j*1

[Yj
-] ) [OH-] + [A-] + ∑

i*2
∑
jg4

nXiYj
. (34)

XiYj f Xi
+ + Yj

-, for i * 2 and j g 4. (23)

XiJsurf h Xi
+ + Jsurf

- , for i * 1. (24)

Ki ≡
aXiJsurf

aJsurf
- [Xi

+]r0

, (25)

Ki )
[XiJsurf]

[Jsurf
- ][Xi

+]r0

)
[XiJsurf]

[ct][Xi
+]r0

, (26)

[Xi
+]r0

) [Xi
+] e-ψ0

〈e-ψ〉
, (27)

Ki )
[XiJsurf]

[Jsurf
- ][Xi

+]r0

)
[XiJsurf]

[ct][Xi
+] e-ψ0/〈e-ψ〉

. (28)
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equation for the concentration of surface-forming acidic
salt,

in which KJh ) K1, KH ) K2, and the second equality is
based on eq 32 and (2) an equation for the equilibrium
molar concentration of counterions, [ct] ) [c+] - [c-], using
eq 21 for [OH-], 22 for [A-], and 32 for [Xi

+],

in which the second equality is obtained by using eq 30
for [Jh+]. The latter equation can be rewritten as

Equations 35 and 37 constitute a set of equations that
must be solved for the equilibrium molar concentration
of counterions [ct] and the equilibrium molar concentration
of protons [H+]. This set can be solved, provided the
association constants {K1, K2, ‚‚‚} for cationic association
to the colloid surface are established from independent
experimental measurements.

Equation 37 may be compared to the colloid-free buffer
eq A3, which neglects activity coefficients, derived in
Appendix A. Unlike the colloid-free case, it is not possible
to simplify the coupled system in the limit ∑i*2 nXiOH .
[H+] and ∑i*2 nXiOH . [OH-] because of the coupling
introduced by the average counterion concentration at
equilibrium [ct].

To determine the surface electrostatic potential of the
colloidal particles, Ψ0 ) ψ0/(âq), in the gauge where the
potential at the cell boundary vanishes, Ψ(R) ) 0, one has
to solve the Poisson-Boltzmann-like eq 10 simultaneously
and self-consistently with eqs 35 and 37, with the molar
density of coions given by

and eqs 11 and 12 are evaluated with the replacements
n( f [c(].

C. Partition Ratios. Now, it may be of interest to find
the partition ratios of the microions. In general, one may
distinguish three populations: chemically bound (dehy-
drated, specifically adsorbed) microions on the colloid
surface, physically bound (hydrated, electrostatically
associated) ions near the polyion surface and free ions
away from the colloid surface. To describe the two latter
populations, we need to find the ionic distribution as a
function of the distance from the charged surface. The
integrated charge of positive microions (excluding those
specifically adsorbed) from the polyion surface at r ) r0
to the position rj ) êhr0 reads

The integrand of the latter expression, ê2 e-ψ(ê), can be
interpreted as a probability density to find a positive
microion at the position r and has a minimum at êh that
satisfies the relation ψ′(êh) ) 2/êh (see Figure 2). Therefore,
we might use the distance rj as a cutoff to classify the
positive ions: cations located at r < rj would be electro-
statically associated to the charged colloid, whereas those
located at r > rj would be free.

This leads to the partition ratio Pi of the cationic species
Xi

+, defined as the fraction of ions that are either
specifically adsorbed onto or electrostatically associated
in the vicinity of the colloid surface, compared to their
total number,

IV. Results and Comparison with Experiments
We now analyze and compare our theoretical results

with several experimental measurements and previous
calculations for aqueous DMPG suspensions.12

The general model for charge regulation, outlined in
the preceding section, is applied for the system under study
when the negative surface charge density σPG- )
veff[Jsurf

- ]/(4πr0
2) developed on the DMPG vesiclesor al-

ternatively, the associated equilibrium average counterion
density [ct] ) Z/(103NAveff)sdepends on the local concen-
trations of positive microions at the vesicle surface.

Fromtheexperimental side, theaqueoussoluble cationic
spin label dCAT1+ (in the form of the iodide salt 4-tri-
methylammonium-2,2,6,6-tetramethyl-piperidine-d17-1-
oxyl iodide), of known initial concentration ndCAT1I, can be

(24) For unilamellar phospholipid vesicles, for example, nJhJ ) Zmax/
(103NAveff), in which the bare polyion valence Zmax represents the total
number of polar headgroups in the outer bilayer leaflet, which is known
a priori for a given vesicle size and area per lipid headgroup.

[c-] ) [c+] - [ct] ) ∑
i*2

∑
j*1

nXiYj
+ [H+](1 + KH[ct]

e-ψ0

〈e-ψ〉),
(38)

Q+(rj) ) 4πr0
3F+(R)∫1

êh
dê ê2 e-ψ(ê). (39)

Pi )
1

veff∑
j*1

nXiYj

(veff[XiJsurf] +
4πr0

3

〈e-ψ〉
[Xi

+]∫1

êh
dê ê2e-ψ(ê))

)
[Xi

+]

veff eψ0〈e-ψ〉∑
j*1

nXiYj

(veffKi[c
+] +

4πr0
3eψ0∫1

êh
dê ê2e-ψ(ê)). (40)

nJhJ ) [ct]
e-ψ0

〈e-ψ〉[KJh∑
j*1

nJhYj
+ (eψ0〈e-ψ〉 +

KJh[ct])(1 + ∑
i*1

Ki[Xi
+]

e-ψ0

〈e-ψ〉)]
) [ct]

e-ψ0

〈e-ψ〉[KJh∑
j*1

nJhYj
+ (eψ0〈e-ψ〉 +

KJh[ct])(1 + KH[H+]
e-ψ0

〈e-ψ〉
+ ∑

ig3

Ki∑
j*1

nXiYj

eψ0〈e-ψ〉+Ki[ct]
)], (35)

[ct] ) [Jh+] + [H+] -
KW

γ2[H+]
-

nHA

1 + γ2[H+]/KA

-

∑
jg4

nJhYj
+ ∑

ig3

nXiOH - [ct]∑
ig3

Ki[Xi
+]

e-ψ0

〈e-ψ〉

) [H+] -
KW

γ2[H+]
-

nHA

1 + γ2[H+]/KA

+ ∑
i*2

nXiOH +

[ct](1 + KH[H+]
e-ψ0

〈e-ψ〉), (36)

KWKA ) (KA + γ2[H+])γ2[H+]2KH[ct]
e-ψ0

〈e-ψ〉
+ γ4[H+]3 +

(KA + γ2∑
i*2

nXiOH)γ2[H+]2 - {KW + KA(nHA -

∑
i*2

nXiOH)}γ2[H+]. (37)
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used to monitor the negatively charged DMPG vesicle
surface. The nitroxide group incorporated into this probe
yields different electron spin resonance spectra according
to its microenvironment. The experimentally measured
composite spectra could be split into two components12

that differ in the mobility of the spin labels. These distinct
components can be attributed to regions where the
strength of the electrostatic field differs drastically. Close
to the charged vesicle surface, the cationic probes are
strongly attracted to the oppositely charged phosphate
groups, whereas, in the bulk, the Coulomb interactions
are much weaker. Label partition between the charged
lipid surface and the aqueous medium could then be used
to infer the electrostatic potential at the vesicle surface.

In a previous study,12 this task was undertaken under
three simple assumptions:

(1) no specific binding of the probe to the phosphate
surface groups (KdCAT1 ) 0 M-1);

(2) partition was associated with a two-population model
of physically bound and free probes under a common
chemical potential. To develop calculations for the surface
potential ψ0, an arbitrary thickness for the region of bound
probes had to be adopted; and

(3) the results for the surface potential ψ0 that were
obtained from assumptions (1) and (2) were compared to
Poisson-Boltzmann calculations based on planar geom-
etry (the Gouy-Chapman model).

Here, we propose to remove the arbitrariness in the
definition of the partition regions. Also, we check on the
role of geometry in the calculation of the surface potential
under the circumstances of this particular experiment as
well as on the consistency of hypothesizing null probe
binding with experimental findings.

In the first subsection (IV-A), we compare the surface
electrostatic potentials obtained from theory under the
spherical and planar geometries, under the experimental
conditions, and on the assumption of no specific binding
of the probe to the phosphate surface groups.

In the second subsection (IV-B), we compare the
experimental results for the spin-label partitioning with
our theoretical predictions, showing that they cannot be
reconciled unless some specific binding of the probe is
assumed.

A. Surface Electrostatic Potential.First, we present
our theoretical predictions of the surface electrostatic
potential of spherical vesicles for the range of parameters

relevant to the experiments performed on aqueous DMPG
suspensions.12

The general equations of section III must be applied for
the single acidic surface phosphate group Y1

- ) PGsurf
- on

DMPG vesicles. Because the sodium salt of DMPG was
used in the experiments, the sodium cation represents
the strict counterion X1

+ ) Na+. The pH of the suspension
was adjusted with the strong base X1OH ) NaOH, and
the ionic strength was varied by the addition of the
monovalent salt X1Y4 ) NaCl. The aqueous soluble cationic
spin label represents an added monovalent salt, X3Y5 )
dCAT1I, which ionizes neither into protons nor strict
counterions (sodium cations).

Aside from the deprotonated charged groups (PGsurf
- ),

three different neutral species of phosphate groups on
the vesicle surface must be considered: protonated
(HPGsurf) groups and those chemically bound to
either sodium cations (NaPGsurf) or cationic spin labels
(dCAT1PGsurf).Because thesodiumsalt of thephospholipid
DMPG was used in the experiments, the average con-
centration of sodium cations [Na+] can be determined by
the sodium mass conservation (eq 30),

The average proton concentration [H+] is determined by
the charge-neutrality constraint, allowing one to obtain
a coupled system that is satisfied by the equilibrium values
of the counterion density [ct] and the proton concentration
[H+] (eqs 35 and 37),

To obtain the surface electrostatic potential ψ0, the
Poisson-Boltzmann-like eq 10 is then solved simulta-
neously and self-consistently with eqs 42 and 43, with the
molar density of coions given by

and eqs 11 and 12 are evaluated with the replacements
n( f [c(].

The experiments were performed at a temperature of
T ) 25 °C (298.15 K), at which the measured dielectric
constant of the water is ε ) 78.38,25 which leads to a
Bjerrum length of lB ) 7.15 Å. By using an estimate of 60
Å2 for the area of the polar headgroup, a bilayer thickness
of t ) 50 Å, and monodisperse vesicles of radius r0 - t/2

(25) Archer, D. G.; Wang, P. J. Phys. Chem. Ref. Data 1990, 19, 371.
These values of the water dielectric constant were obtained at the
pressure p ) 0.1 MPa.

Figure 2. Linear-log plot of the probability function ê2e-ψ(ê) as
a function of ê, showing the minima at ê ) êh, which are denoted
by the arrows. Note the steep increase in the electrostatic
potential close to the vesicle surface. In the gauge chosen, the
electrostatic potential at the cell boundary vanishes ψ(ê ) φ-1/3)
) 0. The four profiles were obtained with different combinations
of the ionic strength and the sodium association constant to the
phosphate surface groups KNa. Pairs of curves with the same
ionic strength differ only in the vicinity of the vesicle surface,
as shown in the inset.

[Na+] ) nNaOH + nNaCl + [ct](1 + KH[H+]r0
+

KdCAT1[dCAT1+]r0
). (41)

nNaPG ) [ct] e-ψ0

〈e-ψ〉[(nNaOH + nNaCl)KNa + (eψ0〈e-ψ〉 +

KNa[ct])(1 + KH[H+] e-ψ0

〈e-ψ〉
+

ndCAT1IKdCAT1

eψ0〈e-ψ〉 + KdCAT1[ct])],
(42)

KWKA ) (KA + γ2[H+])γ2[H+]2KH[ct] e-ψ0

〈e-ψ〉
+

γ4[H+]3 + (KA + γ2nNaOH)γ2[H+]2 -

{KW + KA(nHA - nNaOH)}γ2[H+]. (43)

[c-] ) [c+] - [ct] ) nNaOH + nNaCl + ndCAT1I +

[H+](1 + KH[ct] e-ψ0

〈e-ψ〉), (44)
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) 500 Å, we estimate that the radius of the spherical cell
is R ) 1610 Å and the bare external valence is Zmax ) 5.77
× 104 for the DMPG concentration nNaPG ) 10 mM.6 In the
experiments, the pH was stabilized by using a 10 mM
4-(2-hydroxyethyl)-1-piperizineethanesulfonic acid (Hepes)
buffer solution, pKA ) 7.48 at T ) 25 °C,26 with the pH
adjusted with 4 mM of the strong base NaOH. The ionic
strength was varied by adding monovalent salt (NaCl)
until a concentration of nNaCl ) 10 mM was reached. The
value of the proton association constant to the phosphate
groups, KH ) 15.8 M-1, was taken from the literature.27,28

Assuming the presence of 0.1 mM of the spin label, but
no specific binding to surface phosphate groups (KdCAT1 )
0 M-1) we present in Figure 3 the ionic-strength depen-
dence of the electrostatic potential for nNaPG ) 10 mM and
some values of KNa in the range of [0, 1] M-1 within the
spherical cell model. For comparison, we also show results
within the planar-symmetry Gouy-Chapman approxi-
mation (cf. Appendix B). It can be seen from the figure
that the two approaches give essentially the same results
for the surface electrostatic potential at this lipid con-
centration. However, this is true only when the vesicle
density is sufficiently low.

Deviations from the planar results can be observed at
higher lipid concentrations. In Figure 4, we show the
dependence of the surface electrostatic potential on the
lipid concentration for several fixed values of the associa-
tion constant KNa and the added monovalent salt con-
centration nNaCl. The results are presented in terms of the
difference between the spherical cell model and the planar
Gouy-Chapman predictions. The dependence of the
surface electrostatic potential with the vesicle concentra-
tion is enhanced as the ionic strength is lowered. Note,
however, that the finite-density, spherical-symmetry
effects are not very drastic because the deviations are
proportionally small (less than 5% of the absolute value
of the surface electrostatic potential), even for concentrated
suspensions.

In fact, we can observe that the surface potentials
obtained under the planar-symmetry Gouy-Chapman

model (cf. Appendix B) represent an upper bound for the
values in spherical symmetry for finite densities of vesicles.
The infinite-dilution limit of Ψ0 is very close to the Gouy-
Chapman value, although not rigorously exact. The
agreement is, however, asymptotically exact29,30 in the
limit of strong screening, κr0 f ∞.

For the conditions of the reported experiments in this
subsectionsin which the concentrations of the protons
(pH ≈ 7.4) and the cationic spin labels (ndCAT1I ) 0.1 mM)
are much smaller than the density of the sodium cationss
the surface charge density and electrostatic potential are
quite insensitive to variations in the association constants
KH and KdCAT1 (not shown). However, this independence
does not apply to the partition ratios of the cationic species,
which is considered in the next subsection.

B. Partition Ratios for the Cationic Spin Labels.
For the dispersion of DMPG unilamellar vesicles, the
partition ratio (eq 40) of the aqueous soluble cationic spin
labels can be rewritten as

in which τ ) t/r0 is the ratio between the bilayer thickness

(26) Good, N. E.; Winget, G. D.; Winter, W.; Connolly, T. N.; Izawa,
S.; Singh, R. M. M. Biochemistry 1966, 5, 467. This work determines
the Hepes pKA(T ) 20 °C) ) 7.55 with ∆pKA/°C ) -0.014.

(27) Watts, A.; Harlos, K.; Maschke, W.; Marsch, D. Biochim. Biophys.
Acta 1978, 510, 63.

(28) Toko, K.; Yamafuji, K. Chem. Phys. Lipids 1980, 26, 79. (29) Ramanathan, G. V. J. Chem. Phys. 1988, 88, 3887.

Figure 3. Comparison between theoretical predictions for the
ionic-strength dependence of the surface electrostatic potential
of charged vesicles. The solid lines correspond to the spherical
cell model, whereas the dashed lines correspond to the planar
Gouy-Chapman approximation. At this relatively dilute ex-
perimental concentration (nNaPG ) 10 mM), the two approaches
give essentially the same results. The different profiles cor-
respond to several values of the association constant KNa. The
calculations included the ionic-strength contribution due to the
aqueous soluble cationic spin labels (ndCAT1I ) 0.1 mM), but
their specific binding to the phosphate surface groups was
neglected (KdCAT1 ) 0 M-1).

Figure 4. Dependence of the surface electrostatic potential on
the vesicle concentration, measured by the volume fraction of
the vesicles, φ ) (r0/R)3, or by the phospholipid concentration
nNaPG (converted assuming that the radius of the vesicle remains
constant at r0 ) 525 Å). The calculations included the ionic-
strength contribution due to the cationic spin labels (ndCAT1I )
0.1 mM) but with no specific binding (KdCAT1 ) 0 M-1). To allow
a better view, the results are presented in terms of the difference
between the spherical cell model and the planar Gouy-
Chapman predictions, the numerical values of which are given
in Table 1. One should note, however, that the deviations are
proportionally small (less than 5% of the absolute value of the
surface electrostatic potential), even for concentrated suspen-
sions.

P ) 1
(veff + vint)ndCAT1I

(vintndCAT1I +

veff[dCAT1PGsurf] +
4πr0

3

〈e-ψ〉
[dCAT1+]∫1

êh
dê ê2e-ψ(ê))

) 1
1 + φ[(1 - τ)3 - 1][φ(1 - τ)3 +

1 - φ

eψ0〈e-ψ〉 + KdCAT1[ct]
(KdCAT1[ct] +

3φeψ0

1 - φ
∫1

êh
dê ê2e-ψ(ê))], (45)
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t and the vesicle radius r0, and φ ) (r0/R)3 is the volume
fraction occupied by the vesicles in the suspension. The
bound probes include, in addition to the electrostatically
associated probes, those probes specifically adsorbed to
phosphate surface groups, which give rise to the surface
density σdCAT1PG ) veff[dCAT1PGsurf]/(4πr0

2), and those
located in the aqueous compartment of volume vint ) (4π/
3)(r0 - t)3 surrounded by the bilayer. The latter probes
were included because the probability density ê2e-ψ(ê) is
a monotonic increasing function in the interior of the
vesicle (0 e ê e 1 - τ).

Contrary to the surface charge density and the elec-
trostatic surface potential, which were investigated in the
previous subsection, the partition ratios of the cationic
species are quite sensitive to the value of the association
constants. However, no direct measurements of the
association constants nor of the surface charge density of
the vesicles were reported. The only available experi-
mental measurements for the described experiments12 are
the spin-label partition ratios. Thus, to compare the
experimental partition ratios with the theoretical predic-
tions given by eq 45, which are calculated using the model
described in subsection IV-A and developed throughout
the manuscript, one has to, therefore, attribute values to
the association constants for sodium cations KNa and for
the cationic probe KdCAT1 to the phosphate surface groups.
Figure 5 shows the calculated values of these two
association constants, such that the experimentally
measured partition ratio12 equals the theoretical predic-
tion, given by eq 45. To estimate the effect of the error
bars of the experimentally measured partition ratios on
the values of the dissociation constants, we also plotted
in Figure 5 the predicted range of these constants within
the experimental error bars. Furthermore, we also con-
sidered the effect of the lack of accuracy in the determi-
nation of the vesicle radius. By using an estimate between
400 and 500 Å, we obtained the intercepts of the curves
and the axes in Figure 5 for the lowest and highest salt
concentrations. The obtained results are quite insensitive
to the variation of the vesicle radius: KdCAT1 ) (0.0072 (
0.0002) M-1 for KNa ) 0 M-1, P ) 0.63, and nNaCl ) 0 mM

(lowest ionic strength); and KNa ) (0.043 ( 0.003) M-1 for
KdCAT1 ) 0 M-1, P ) 0.25, and nNaCl ) 10 mM (highest ionic
strength). Therefore, the conclusions below remain un-
altered, even if the radii of the vesicles vary by as much
as 20%. The most relevant contribution to the error arises
from the experimental error bars of the partition ratios
and not from the uncertainty in the determination of the
radius of the vesicles. Several conclusions can be drawn
from Figure 5. For salt-free suspensions, a bilayer that
has a proton association KH * 0 M-1 with no further
cationic association (KdCAT1 ≈ KNa ≈ 0 M-1) is marginally
consistent with the salt-free experimentally measured
partition ratios. In general, however, it is not possible to
reproduce the salt-free experimental data by assuming
that there is no specific binding of the cationic spin labels
(KdCAT1 ) 0 M-1). A finite association constant for sodium
KNa is also required, at least for higher salt concentrations.
Full calculation of the electrostatic potential requires
additional information from experimental measurements.

The previous study, which was based on the Gouy-
Chapman model for an infinite charged plane in contact
with a monovalent salt reservoir and null specific binding
of the probe (KdCAT1 ) 0 M-1), pointed to a variation in the
sodium association constant KNa with ionic strength. The
range of variation ofKNa obtained by this simplified model12

was predicted to be 0.17-0.84 M-1 for ndCAT1I ) 0.1 mM.
These predicted values lie within the range reported in
the literature (e.g., see ref 6 and the references therein),
but are in contradiction with our theoretical predictions
for KdCAT1 ) 0 M-1. According to our calculations shown
in Figure 5, to obtain this previously predicted range of
variation for KNa, one should instead have a nonvanishing
association constant for the cationic probe KdCAT1 in the
range of 0.23-0.47 M-1. The crucial difference between
the two approaches lies in the definition of the partition
ratios. In our calculation, the existence of the geometric
factor r2 in the probability density to find a positive
microion at the position r is fundamental (cf. eq 39). It is
this geometric factor that allows us to define the radius
rj, below which the cationic species are classified as bound.
In the simplified model of ref 12, the partition ratio was
instead estimated using a box model with two homoge-
neous concentrations and an arbitrary thickness h of the
region where the bound probes reside, which plays the
role of êh in our treatment (cf. eq 39).

Use of a different monovalent salt (e.g., KCl) induces
changes in the light-scattering profile compared to NaCl,31

suggesting that there is indeed a specific binding of cations
to the vesicle surface. It would be interesting if the
conclusions drawn from this model were backed up by
direct measurements of the vesicle surface charge.

V. Conclusions

We have developed a general approach for the calcula-
tion of the electrostatic potential for aqueous suspensions
of charged spherical colloids in the presence of mono-
valent salts and buffer. Accounting for the spherical
geometry and the finite colloid concentration requires
much more involved calculations. We have shown that,
for dilute suspensions, both geometriessplanar and
sphericalsyield very similar results, and therefore, in the
case of dilute systems, it is appropriate to consider the
much simpler planar geometry. However, away from the
dilute regime, the correct geometry must be considered
because, as we also show, the difference with respect to
the planar approximation increases both with increasing
colloid concentration and decreasing ionic strength.

(30) Shkel, I. A.; Tsodikov, O. V.; Record, M. T., Jr. J. Phys. Chem.
B 2000, 104, 5161. (31) Riske, K. A. M.S. Thesis, University of São Paulo, Brazil, 1997.

Figure 5. Values of the spin label and sodium cations
association constants to the phosphate surface groups KdCAT1
and KNa, which yield the experimentally measured partition
ratios for the lowest (nNaCl ) 0 mM) and highest (nNaCl ) 10
mM) ionic strengths. The shaded regions represent the effect
of the error bars of the experimentally measured partition ratios
on the theoretical prediction (solid lines). The concentrations
of the phospholipid DMPG (nNaPG ) 10 mM) and of the spin
labels (ndCAT1I ) 0.1 mM) were kept constant. The range of
variation of the association constant KNa is reduced as the value
of KdCAT1 decreases. However, it is not possible apparently to
obtain unique values of KNa and KdCAT1 that cover the whole
range of ionic strengths. The inset shows the behavior of the
two curves close to the origin.
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Although in this work we treated only ionogenic surfaces
containing ionizable monovalent acidic groups, our method
can be extended to include different types of surface
chemistry. For example, we did not treat amphoretic
surfaces32,33 in which the same neutral surface group HA
may either dissociate to yield a proton to the solution
(HAsurf h H+ + Asurf

- ) or take up a proton from the solution
(HAsurf + H+ h H2Asurf

+ ). Furthermore, we also do not
consider zwitterionic surfaces (common in biological
systems) containing both basic (e.g., amino) and acidic
(e.g., carboxyl) groups (one capable of accepting a proton
and one capable of dissociating to release a proton) nor
surfaces that possess two distinct acid dissociation sites
(e.g., latex colloids containing sulfonic or sulfate (strong
acid) and carboxylic (weak acid) groups). This latter class
of systems was considered in ref 34 with the proton
concentration [H+] adjusted by balancing known amounts
of strong acid and strong base. All of these classes of
systems can also be considered when performing suitable
changes in the equations governing the surface charge
regulation.

We also propose a procedure for calculating the partition
ratio of specific ions, which allows for the possibility of
specific binding in two different environments: near the
charged surface and in the aqueous solution. Comparison
of our approach with experimental data for aqueous DMPG
suspensions indicates the need to take into account the
specific adsorption of the cationic probe and, in general,
that of any cationic species present in solution to the
phosphate surface groups. Despite the similarity between
the results derived from both geometries, note that
additional experimental data is needed to allow for the
prediction of the surface electrostatic potential.

Despite some effort,7-11 the peculiar thermotropic
behavior of aqueous DMPG suspensions has not been fully
explained, particularly with respect to electrical proper-
ties, such as conductivity. It has been shown6 that
conductivity rises around the region of low scattering of
light. On the other hand, our study points to an enhance-
ment of KNa with ionic strength at a fixed temperature.
An inspection of the scattering versus temperature plots
for different ionic strengths12 shows that increasing ionic
strength at a fixed temperature requires leaving the
pseudophase associated with low scattering of light. One
might conjecture that the decrease in the reduced con-
ductivity, defined as the difference between the measured
conductivity and the conductivity due to the added
electrolyte only, is a consequence of an increment in KNa.
In any case, this approach must certainly contribute to
clarify the relevance of charge effects on the thermal
behavior of the lipid dispersion. However, an attempt to
relate these changes to the different phases observed
experimentally would require looking into chain transi-
tions and their effect on colloid geometry, particularly on
the colloid radius. A different approach would be needed
to include the electrostatic treatment in theories based
on colloid elasticity or the thermodynamics of the disper-
sion.
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Appendix A: Buffer Solution
In this appendix, we present the standard treatment of

a buffer solution as a homogeneous electrolyte, neglecting
activity coefficients and the presence of the charged
colloids.

A buffer is an aqueous solution of a weak acid (HA) of
initial total concentration (before ionization) nHA coun-
terbalanced by a strong base of concentration nXOH, which
undergoes complete ionization in water (XOH f X+ +
OH-), thus implying that [X+] ) nXOH. The equilibrium
constants (neglecting activity coefficients) associated to
the water autoprotolysis (H2O h H+ + OH-) and the
reversible partial ionization of the weak acid (HA h H+

+ A-) read

At T ) 25 °C, the ionic product of the water assumes the
numerical value pKW ) - log KW ) 13.995,35 in which the
symbol log denotes the decimal logarithm. The overall
electroneutrality of the buffer solution implies that [H+]
) [OH-] + [A-] - [X+] ) KW/[H+] + nHA/(1 + [H+]/KA) -
nXOH, yielding a cubic equation for [H+],

To adjust the pH () - log[H+]) of a 10 mM Hepes buffer
solution to ∼7.4 at T ) 20 °C, 4 mM of the strong base
NaOH is added. Using the Hepes pKA ) - log[KA] ) 7.55
(standardized at T ) 20 °C)26 and the ionic product of the
water (pKW ) 14.163),35 we obtain the theoretical value
pH ) - log[H+] ) 7.374, which is close enough to the
experimentally measured value of pH ) 7.4. Because the
buffer solution pH and the added base concentration nNaOH
can be measured simultaneously, this represents an
experimental confirmation of the standard value of the
Hepes pKA. However, the pH adjustment at T ) 20 °C is
shifted as the temperature changes. For example, for
experiments performed at T ) 25 °C, using the standard-
ized values pKA ) 7.48,26 and pKW ) 13.995,35 we obtain
the theoretical prediction pH ) 7.304 for the same amount
of the added base (nNaOH ) 4 mM).

In the limit nXOH . [H+] and nXOH . [OH-], the solution
to eq A3 can be approximated by taking [A-] ≈ nXOH in the
Henderson-Hasselbalch equation,36 which results from
the eq A2 that defines KA,

or nXOH ≈ nHA/(1 + 10pKA-pH).
(32) Campos, A. F. C.; Tourinho, F. A.; da Silva, G. J.; Lara, M. C.

F. L.; Depeyrot, J. Eur. Phys. J. E 2001, 6, 29.
(33) Tourinho, F. A.; Campos, A. F. C.; Aquino, R.; Lara, M. C. F.

L.; da Silva, G. J.; Depeyrot, J. Braz. J. Phys. 2002, 32, 501.
(34) Gisler, T.; Schulz, S. F.; Borkovec, M.; Sticher, H.; Schurten-

berger, P.; D’Aguanno, B.; Klein, R. J. Chem. Phys. 1994, 101, 9924.

(35) Lide, D. R., Ed. CRC Handbook of Chemistry and Physics, 78th
ed.; CRC Press: Boca Raton, 1997; pp 6-8 and 8-80. Values of pKW(T)
at saturated vapor pressure: pKW(T ) 20 °C, p ) 2.3388 kPa) ) 14.163;
pKW(T ) 25 °C, p ) 3.1690 kPa) ) 13.995; pKW(T ) 30 °C, p ) 4.2455
kPa) ) 13.836.

KW ) [H+][OH-], (A1)

KA )
[H+][A-]

[HA]
)

[H+][A-]

nHA - [A-]
. (A2)

KWKA ) [H+]3 + (KA + nXOH)[H+]2 -

{KW + KA(nHA - nXOH)}[H+]. (A3)

pH ) pKA + log( [A-]

nHA - [A-]) ≈ pKA +

log( nXOH

nHA - nXOH), (A4)

11014 Langmuir, Vol. 21, No. 24, 2005 Tamashiro et al.



During investigations of the effect of H+ ions on the
activity of enzymes, Sørensen37 introduced in 1909 the
term pH ) - log[H+]. Later he realized, however, that the
pH of a solution is determined by the activity of the H+

ion (not just by its molar concentration, [H+]), and, in
1924, published a second paper on the subject,38 defining
pH ≡ - log aH+, in which aH+ ) γ+[H+] denotes the activity
of the H+ ion in terms of the activity coefficient γ+. The
question is more troublesome than it may look because
single-ion activities are immeasurable quantities. There-
fore, pH can only be measured relative to other solutions
in which pH has been defined in some arbitrary way. For
this purpose, accurate pH measurements have been
standardized by the International Union of Pure and
Applied Chemistry (IUPAC), a subject that is still under
development.39-41

In the above theoretical analysis, we neglected the ionic-
strength dependence of the equilibrium constants by
setting the ionic activity coefficients to one. Therefore,
under this approximation, the above analysis remains
unchanged with the addition of the monovalent salt NaCl
and the iodide salt corresponding to the aqueous soluble
spin label dCAT1I. However, if we were to use the Debye-
Hückel limiting expressions for the activity coefficients of
the charged species,42 a small correction of ∆pH ≈ -0.06
would be obtained for the highest employed ionic strength,
n ≈ 14 mM.

Appendix B: Gouy-Chapman Model with
Charge Regulation

In ref 12, in addition to the planar geometry, the high-
potential approximation was used to estimate the surface
potential in the framework of the Gouy-Chapman model.
In this appendix, we consider the Gouy-Chapman equa-
tions without any further approximations.

The analytical solution of the one-dimensional version
of the Poisson-Boltzmann equation

in which κ ≡ x8πlB103NAn is the inverse Debye screening
length, and n ) [H+] + nNaOH + nNaCl + ndCAT1I is the bulk
ionic strength (due to protons, sodium cations, and cationic
spin labels), leads to the boundary condition for the
dimensionless surface electrostatic potential ψ0,

in which Λ ) 1/(2πlBσmax) is the Gouy-Chapman
length21,43,44 associated with the bare surface charge

density σmax ) Zmax/(4πr0
2), and R is the fraction of actually

ionized sites on the charged plane,

in which η ≡ KH[H+] + (nNaOH + nNaCl)KNa + ndCAT1IKdCAT1,
and all of the concentrations are measured in the bulk,
where the electrostatic potential is set to zero (ψ ≡ 0). The
bulk proton concentration [H+] is given by the solution of
the cubic eq A3 with nXOH ) nNaOH, which can be
approximated by [H+] ≈ KA(nHA - nNaOH)/nNaOH. By
combining eqs B2 and B3, we obtain a fourth-order
equation for e-ψ0/2,

the real solution of which gives the surface electrostatic
potential in the Gouy-Chapman approximation ΨGC ≡
ψ0/(âq) used to plot Figure 4.

An asymptotic formula (for κr0 f ∞) of the electrostatic
surface potential for spherical symmetry was proposed
by Loeb et al.,45

which leads to an algebraic equation for e-ψ0/2,

which can be compared with the exact solutions in the
planar and spherical symmetries. For the conditions of
thereportedexperiments insubsectionIV-A, thedifference

(36) Atkins, P. W. Physical Chemistry, 6th ed.; Oxford University
Press: Oxford, 2000; Section 9.5.

(37) Sørensen, S. P. L. Biochem. Z. 1909, 21, 131.
(38) Sørensen, S. P. L.; Linderstrøm-Lang, K. L. C. R. Trav. Lab.

Carlsberg 1924, 15, 1.
(39) Buck, R. P.; Rodinini, S.; Covington, A. K.; Baucke, F. G. K.;

Brett, C. M. A.; Camões, M. F.; Milton, M. J. T.; Mussini, T.; Naumann,
R.; Pratt, K. W.; Spitzer, P.; Wilson, G. S. Pure Appl. Chem. 2002, 74,
2169.

(40) Baucke, F. G. K. Anal. Bioanal. Chem. 2002, 374, 772.
(41) Spitzer, P.; Werner, B. Anal. Bioanal. Chem. 2002, 374, 787.
(42) McQuarrie, D. A. Statistical Mechanics; University Science

Books: Sausalito, CA, 2000; Chapter 15. Debye-Hückel mean activity
coefficient: γ ) (γ+

ν+ γ-
ν-)1/(ν++ν-) for the salt dissociation Xν+Yν- f ν+X+

+ ν-Y- is given by ln γ ) -|z+z-|κlB/2, in which κ ) x8πlB103NAn; n
) (1/2) (z+

2 n+ + z-
2 n-).

(43) Gouy, G. J. Phys. Paris 1910, 9, 457; Ann. Phys. 1917, 7, 129.
(44) Chapman, D. L. Philos. Mag. 1913, 25, 475.

(45) Loeb, A. L.; Wiersema, P. H.; Overbeek, J. Th. G. The Electrical
Double Layer Around a Spherical Colloid Particle; MIT Press: Cam-
bridge, MA, 1961.

d2ψ(r)
dr

) κ
2 sinh ψ(r), (B1)

sinh
ψ0

2
) - R

κΛ
, (B2)

Table 1. Comparison between the Theoretical
Predictions for the Surface Electrostatic Potential (given

in mV) Obtained under the Planar-Symmetry
Gouy-Chapman Approximation (Eq B4) and by Using

Loeb’s Asymptotic Formula for Spherical Symmetry (Eq
B6)a

KNa nNaCl ) 0 mM nNaCl ) 10 mM

Gouy-Chapman
1 M-1 -160.98 -129.09
0 M-1 -218.92 -187.35

Loeb et al.
1 M-1 -160.67 -128.80
0 M-1 -218.67 -187.11

a The parameters used to perform the calculations correspond
to the conditions of the reported experiments of subsection IV-A.
As can be seen from the numerical values, under these conditions,
the difference between the two approximations is a fraction of mV.

R )
[PGsurf

- ]

[PGsurf
- ] + [HPGsurf] + [NaPGsurf] + [dCAT1PGsurf]

) 1
1 + KH[H+]r0

+ KNa[Na+]r0
+ KdCAT1[dCAT1+]r0

) 1
1 + ηe-ψ0

, (B3)

ηe-2ψ0 + (1 - η)e-ψ0 - 2e-ψ0/2

κΛ
- 1 ) 0, (B4)

sinh
ψ0

2
+ 2

κr0
tanh

ψ0

4
) - R

κΛ
, (B5)

[ηe-2ψ0 + (1 - η)e-ψ0 - 2e-ψ0/2

κΛ
- 1](1 + e-ψ0/2) )

4e-ψ0/2

κr0
(1 - e-ψ0/2)(1 + ηe-ψ0), (B6)
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between the surface electrostatic potential obtained under
the planar-symmetry Gouy-Chapman approximation (eq
B4) and that obtained by using Loeb’s asymptotic formula

for spherical symmetry (eq B6) is a fraction of mV (cf.
Table 1).
LA051211Q
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