

Interactions with electrons, positrons and photons

Molecular Physics and Modelling Group

October 17th 2019

ICR, Aix-Marseille Université

Institute of Physics, University of São Paulo

Márcio T. do N. Varella

Positronic Molecules

Positron Physics: Motivation

Astrophysics

Anti-H, anti-H₂, cold anti-matter, QED Tests (CPT, Anti-Gravity) http://www.if.ufrj.br/~lenz/lenz.html http://hussle.harvard.edu/~atrap/ http://athena.web.cern.ch/athena/

 \rightarrow Ps₂^(a), Ps spectroscopy^(b), Ps scattering^(c), Ps^{-(d)}, annihilation control^(e)

http://www.positron.edu.au

(e)PRL 115, 183401 (2015)

^(a)Nature 449, 195 (2007)
^(b)PRL 108 043401 (2012); PRL 117 073302 (2016)
^(c)Science 330, 789 (2010); PRL 115 223201 (2015)
^(d)Nat. Commun. 7, 11060 (2016)

Clifford M. Surko

A whiff of antimatter soup

NATURE|Vol 449|13 September 2007

ATOMIC PHYSICS

POSITRON EMISSION TOMOGRAPHY

CURRENT CLINICAL AND RESEARCH ASPECTS

Edited by Chia-Hung Hsieh

Plasma and trap-based techniques for science with positrons

Reviews of Modern Physics 87, 247 (2015)

and bound states Positron-molecule interactions: Resonant attachment, annihilation, **REVIEWS OF MODERN PHYSICS, VOLUME 82, JULY-SEPTEMBER 2010**

$C_{10}H_8$	C_6H_6	C ₂ H ₅ OH	CH ₃ OH	$C_{12}H_{26}$	C_6H_{14}	C_3H_8	C_2H_6	CH_4	CH ₃ Br	CH_3F	NH_3	H_2O	Molecule
68	42	26	18	86	50	26	18	10	44	18	9	10	Ζ
1240000 ^c	47000 ^c	4500 ^b	750 ^b	² 0000086	184000 ^c	10500°	900°	70 ^b	2000 ^b	250 ^b	300 ^b	170 ^b	Z_{eff}^{a}

Annihilation Rate:
$$\lambda = \pi r_0^2 cn Z_{\text{eff}}$$

 $Z_{\text{eff}}(E) = \frac{\pi}{k_i} \langle \Psi_{k_i}^{(+)} | \sum_{i=1}^Z \delta(\mathbf{r}_j - \mathbf{r}_p) | \Psi_{k_i}^{(+)} \rangle$

	S. J. Gilbert, L. D. Barnes, J. P. Sullivan, and C. M. Surko	
Molecules	Resonance Enhancement of Positron Annihilation in	Vibrational-F
28 JANUARY 2002	PHYSICAL REVIEW LETTERS	Volume 88, Number 4
Impact ko	1 of Electronic States of Ar, H_2 , and N_2 by Positron ullivan, J. P. Marler, S. J. Gilbert, S. J. Buckman, [*] and C. M. Su	Excitation J.P. St
13 August 2001	PHYSICAL REVIEW LETTERS	Volume 87, Number 7
	itation of Molecular Vibrations by Positron Impact J. P. Sullivan, S. J. Gilbert, and C. M. Surko	Exc
19 February 2001	PHYSICAL REVIEW LETTERS	VOLUME 86, NUMBER 8

Reviews of Modern Physics 87, 247 (2015)

Gribakin & Lee, Phys. Rev. Lett. 97, 193201 (2006)

IR-Active Vibrations: Gribakin-Lee Model

PHYSICAL REVIEW A 81, 012712 (2010)

$$Z_{\rm eff}(E) = \frac{\pi}{k_i} \langle \eta_0 | \Gamma^{1/2}(E) \frac{1}{[E - T_N - V_{\rm opt}]^{\dagger}} \rho_{\rm d} \frac{1}{[E - T_N - V_{\rm opt}]} \Gamma^{1/2}(E) | \eta_0 \rangle$$

Sanchez et al., Phys. Rev. Lett. **107**, 103201 (2011) Data: S. J. Gilbert, et al.,, Phys. Rev. Lett. 88, 043201 (2002)

Sanchez et al., Phys. Rev. A 80, 052710 (2009)

Feshbach Projection Operator Approach

A. Reyes, F. Moncada and J. Charry, Int. J. Quantum Chem., 2019, 119, e25705. Any Particle Molecular Orbital (APMO)

LOWDIN Code

J. Charry, M. Díaz-Tinoco, S. A. González, N. F. Aguirre and A. Reyes, Int. J. Quantum Chem., 2014, 114, 50-56. R. Flores-Moreno, E. Posada, F. Moncada, J. Romero,

Prof. Andrés Reyes

(UNAL, Bogota)

The Born-Oppenheimer Hamiltonian:

$$H_{T} = -\sum_{i}^{N_{e^{-}}} \frac{1}{2} \nabla_{i}^{2} - \sum_{i}^{N_{e^{-}}} \frac{N_{e}}{J_{j}} \frac{Z_{J}}{R_{iJ}} + \sum_{i}^{N_{e}} \frac{N_{e}}{I_{ij}} \frac{1}{-\sum_{k}^{N_{e^{+}}} \frac{1}{2} \nabla_{k}^{2}} + \sum_{k}^{N_{e^{+}}} \frac{N_{e^{+}}}{J_{j}} \frac{N_{e^{+}}}{R_{kJ}} + \sum_{k}^{N_{e^{+}}} \frac{N_{e^{+}}}{I_{kl}} \frac{1}{-\sum_{i}^{N_{e^{-}}} \frac{N_{e^{+}}}{I_{k}} \frac{1}{-\sum_{i}^{N_{e^{+}}} \frac{1}{I_{k}}} + \sum_{i}^{N_{e^{-}}} \frac{N_{e^{+}}}{I_{k}} \frac{1}{-\sum_{k}^{N_{e^{-}}} \frac{N_{e^{+}}}{I_{k}} \frac{1}{-\sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}}} + \sum_{k}^{N_{e^{+}}} \frac{N_{e^{+}}}{I_{k}} \frac{1}{-\sum_{k}^{N_{e^{-}}} \frac{N_{e^{+}}}{I_{k}} \frac{1}{-\sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}}} + \sum_{k}^{N_{e^{+}}} \frac{N_{e^{+}}}{I_{k}} \frac{1}{-\sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}}} + \sum_{k}^{N_{e^{+}}} \frac{N_{e^{+}}}{I_{k}} \frac{1}{-\sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}}} + \sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}} \frac{N_{e^{+}}}{I_{k}} \frac{1}{-\sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}}} + \sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}} \frac{1}{I_{k}} + \sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}} \frac{1}{I_{k}} \frac{1}{-\sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}}} + \sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}} \frac{1}{-\sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}}} + \sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}} \frac{1}{I_{k}} + \sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}} \frac{1}{I_{k}}} + \sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}} \frac{1}{I_{k}}} + \sum_{k}^{N_{e^{+}}} \frac{1}{I_{k}} \frac{1}{I_{k}} +$$

The total wavefunction:

Fock operators

 $f^{lpha}(i)\psi^{lpha}_i=\epsilon^{lpha}_i\psi^{lpha}_i \qquad i=1,...,N^{lpha}$ $lpha=e^-,e^+$ Solving the Fock equations

 $\Psi_0 = \Phi^{e^-} \Phi^{e^+}$

 $f^{e^{-}}(i) = h^{e^{-}}(i) + \sum_{j=1}^{N_{e^{-}}} [J_{j}^{e^{-}} - K_{j}^{e^{-}}] - \sum_{j=1}^{N_{e^{+}}} J_{j}^{e^{+}}$ $f^{e^{+}}(i) = h^{e^{+}}(i) + \sum_{j=1}^{N_{e^{+}}} [J_{j}^{e^{+}} - K_{j}^{e^{+}}] - \sum_{j=1}^{N_{e^{-}}} J_{j}^{e^{-}}$

Charry et al., Phys. Rev. A 89, 052709 (2014) Romero et al., J. Chem. Phys. 141, 114103 (2014)

Any-Particle Molecular Orbital Method

and A. Mills, Jr., 2010. Molecules, in: Physics with Many Atom Positron, Eds. A. Dupasquier D. M. Schrader, Compounds of positronium with koino-Atoms and -

"As an atom, it [Ps] has its rightful place in the peridoc chart."

Kb Sr * In 85.5 87.6 114.8	KD Sr * In 85.5 87.6 114.8	KD SF * In 85.5 87.6 114.8	KD Sr * In		39.10 40.08 69.7	K Ca * Ga	22.99 24.30 26.98	Na Mg Al	6.94 9.01 10.8	Li Be B	A 1.008	H	0.001097	Ps At
110./	110./	110./	110 7	Sn	72.6	Ge	28.09	Si	12.01	С			(Daltons	omic W
			121.8	Sb	74.92	As	30.97	Р	14.01	N			Ŭ	Veight
			127.6	Te	79.0	Se	32.07	\mathbf{S}	16.00	0				S
			126.9	Ι	79.9	Br	35.45	CI	19.00	F				
			131.3	Xe	83.8	Kr	39.95	Ar	20.18	Ne	4.003	He		

Positron-Induced Stabilization

10⁻¹ ns lifetimes consistent with neglect of annihilation (μ eV error).

Positron Covalent Bonding

IUPAC definition* of covalent bond:

at least partly from sharing of **electrons** and gives rise to an attractive force and characteristic internuclear distance. A region of relatively high electron density between nuclei which arises

We have obtained something like:

at least partly from sharing of **positrons** and gives rise to an attractive force and characteristic internuclear distance A region of relatively high positron density between nuclei which arises

eV)	/mol (0.77	ational ZPE): 74 kJ	tability (with vibi	ound for energy s	Lower b
		^(b) kJ/mol	artree	(a) H	
Ι	I	Ι	-0.789196	-0.527751	Exact
76.95	78.35	-1.346256	-0.788744	-0.527671	CISDTQ
50.47	51.86	-1.336168	-0.788744	-0.527671	CISDT
25.45	48.12	-1.326642	-0.780645	-0.527671	CISD
-76.38	86.72	-1.287855	-0.736369	-0.518455	MP2
BE* ^(b)	BE ^(b)	$e^{+} \cdot H_{2}^{2-(a)}$	PsH ^(a)	H ^{- (a)}	
				on products.	dissociatic

Table 3: CBS extrapolated energies of the positronic molecule and

 $(H_2^+ + Ps + 2e^-)$

 $H_2 + Ps + e^-$

 $H_2^- + P_s$

 $e^+[H_2^{2-}] \rightarrow H + H + Ps + e^-$

 $H^- + H + Ps$

 $H^- + H^- + e^+$

 $(H^- + PsH \text{ (lowest energy decay channel)})$

Y (Å) 0.0

2.0

1.0

-2.0

-2.0

-1.0

QM/MM approach to solvated Ps

Physics Institute

University of São Paulo Campus

Members

Ely Miranda (MS) Rafael Ribeiro (MS) Leonardo Martins (MS) Leonardo Vetritti (MS) Mateus Rocha, (MS) Lucas Cornetta (PhD) Julio Cesar da Costa (PhD) André Luis Santana (PhD) Matheus Kiataki (PhD)

Support

⊳

р т s

<u>Collaborators at UNAL</u>: Prof. Andres Reyes Jorge Charry (MS, on the move...) Laura Pedraza-González (PhD)

Felix Moncada (PhD)

Tanks for your attention!

Molecular Physics and Modelling Group Intteractions with electrons, positrons and photons http://fig.if.usp.br/~mvarella/