

POSMOL 2019

XX International Workshop on Low-Energy Positron and Positronium Physics XXI International Symposium on Electron-Molecule Collisions and Swarms 18 - 20 JULY 2019 Belgrade, Serbia

Chirality Sensitive Effects in Electron Collisions Against Halocamphors

Márcio T. do N. Varella

Institute of Physics University of São Paulo (USP), Brazil

Belgrade, July 20th, 2019

Biological Homochirality

"The biopolymers that characterize life on Earth, and the molecular building blocks from which they are constructed, are both chiral and single-handed (...) they are selectively biosynthesized in only one of the two forms."

D. G. Blackmond, Cold Spring Harb. Perspect. Biol. **11**, a032540 (2019).

Vester-Ulbrich Hypothesis: Selective damage to prebiotic molecules.

http://www.astronoo.com/en/articles/neutrino.html

Transmission (Scattering) Asymmetry

Preferential scattering does not involve symmetry violation*.

- Chiral effects arise from the spin-orbit interaction:

Mott Scattering (spin-same-orbit) [Kessler, J. Phys. B **15**, L101 (1982)]

Spin-Other-Orbit [Walker, J. Phys. B 15, L289 (1982)]

Helicity Density [Hegstrom *et al.*, PRL, **48** 1341 (1982)]

*Symmetry properties: Farago, JPB 13, L567 (1980); Blum & Thompson, JPB 22, 1823 (1989)

Chirally Sensitive Electron-Induced Molecular Breakup and the Vester-Ulbricht Hypothesis

Ś

J. M. Dreiling^{*} and T. J. Gay PRL **113**, 118103 (2014)

- I (−) 3-Br-camphor
- Racemic
- (+) 3-Br-camphor

Dissociation (DEA) Chiral Asymmetry

$$a_{\text{DEA}} = \frac{\eta(P_0, \rho d) - \eta(-P_0, \rho d)}{\eta(P_0, \rho d) - \eta(-P_0, \rho d)}$$

 $A_{\text{DEA}} = [a_{\text{DEA}}]_L - [a_{\text{DEA}}]_R$

Anomalously Large Chiral Sensitivity in the Dissociative Electron Attachment of 10-Iodocamphor

J. M. Dreiling, F. W. Lewis, J. D. Mills, and T. J. Gay

PRL 116, 093201 (2016)

- DEA asymmetries can exceed the transmission conterparts by one order of magnitude.

- Relative DEA asymmetry magnitudes not consistent with Mott Scattering ($\sim Z^2$)

- Relative DEA asymmetry magnitudes are not consistent with the helicity densities.

- Lack of knowledge on the collision dynamics.

DEA Asymmetry Theory

 $e^- + AB$ $\stackrel{e^- + AB^*}{\searrow}$ - Elastic and vibrationally inelastic scattering $A^- + B^{ullet}$ - Reactive (DEA) scattering

- Transmission asymmetry [Fandreyer et al., J. Phys. B. 23, 3031 (1990)]

$$a_{\text{tra}} = \frac{N(P_0, \rho d) - N(-P_0, \rho d)}{N(P_0, \rho d) - N(-P_0, \rho d)} = -P_0 \tanh\left[\frac{1}{2} \left(Q_{\text{tot}}^+ - Q_{\text{tot}}^-\right) \rho d\right]$$

– **DEA** asymmetry:

$$a_{\text{DEA}} = \frac{\eta(P_0, \rho d) - \eta(-P_0, \rho d)}{\eta(P_0, \rho d) - \eta(-P_0, \rho d)} \approx P_0 \left[\alpha_{\text{DEA}} + t(Q_{\text{tot}}^+, Q_{\text{tot}}^-, \rho d) \right]$$

$$t(Q_{\text{tot}}^+, Q_{\text{tot}}^-, \rho d) = \frac{e^{-\frac{1}{2}(Q_{\text{tot}}^+ + Q_{\text{tot}}^-)\rho d} \sinh\left(\frac{1}{2}(Q_{\text{tot}}^+ - Q_{\text{tot}}^-)\rho d\right)}{1 - e^{-\frac{1}{2}(Q_{\text{tot}}^+ + Q_{\text{tot}}^-)\rho d} \cosh\left(\frac{1}{2}(Q_{\text{tot}}^+ - Q_{\text{tot}}^-)\rho d\right)}$$

Working Approximations

Assumptions:

- ~50% attenuation
- Low-order expansion of hyperbolic trigonometric functions

 $- \alpha_{\rm tot} \lesssim \alpha_{\rm DEA}$

$$a_{\text{DEA}} \approx P_0 \left[\alpha_{\text{DEA}} + 0.35\alpha_{\text{tot}} \right] \approx P_0 \alpha_{\text{DEA}}$$
$$\approx P_0 \left[\frac{Q_{\text{DEA}}^+ - Q_{\text{DEA}}^-}{Q_{\text{DEA}}^+ + Q_{\text{DEA}}^-} \right]$$

$$\alpha_{\text{DEA}} = \frac{\left(\frac{Q_{\text{DEA}}^+}{Q_{\text{tot}}^+} - \frac{Q_{\text{DEA}}^-}{Q_{\text{tot}}^-}\right)}{\left(\frac{Q_{\text{DEA}}^+}{Q_{\text{tot}}^+} + \frac{Q_{\text{DEA}}^-}{Q_{\text{tot}}^-}\right)}$$

$$\alpha_{\rm tot} = \frac{Q_{\rm tot}^+ - Q_{\rm tot}^-}{Q_{\rm tot}^+ + Q_{\rm tot}^-}$$

Feshbach Projection Operator Approach

- Projection operators:

$$Q = |\phi_d + \rangle \langle +\phi_d| + |\phi_d - \rangle \langle -\phi_d|$$
$$\hat{P} = \int d\mathbf{k} |\phi_{\mathbf{k}} + \rangle \langle +\phi_{\mathbf{k}}| + \int d\mathbf{k} |\phi_{\mathbf{k}} - \rangle \langle -\phi_{\mathbf{k}}|$$

- Local approximation, purely Coulomb (U) complex potential, no background:

$$A_{\rm tran}(E;\rho d) \approx -\rho dP_0 \, \frac{(2\pi)^2}{E} \langle 2{\rm Re}[W_{\mathbf{k}_i}^{0*} U_{\mathbf{k}_i}] \rangle \frac{\Gamma_{\rm res}}{(E-E_{\rm res})^2 + (\frac{1}{2}\Gamma_{\rm res})^2}$$

- *T*-Matrix elements for DEA:

Spin-preserving

$$T_{m_s,m_s}^{\text{DEA}} \approx \left(\frac{\mu}{K}\right)^{1/2} \lim_{R \to \infty} e^{-iKR} \left[\langle R | \frac{1}{E - T_{\text{nuc}} - V_{\text{opt}}^{(\pm)}} U_{\mathbf{k}_i} | \eta_{\nu_i} \rangle + (-1)^{\frac{1}{2} - m_s} \langle R | \frac{1}{E - T_{\text{nuc}} - V_{\text{opt}}^{(\pm)}} W_{\mathbf{k}_i}^0 | \eta_{\nu_i} \rangle \right] = T_0^{\text{DEA}} + (-1)^{\frac{1}{2} - m_s} T_1^{\text{DEA}}$$

Spin-flip

$$T_{m'_s,m_s}^{\text{DEA}} \approx \left(\frac{\mu}{K}\right)^{1/2} \lim_{R \to \infty} e^{-iKR} \left[\delta_{m'_s,m_s+1} \langle R | \frac{1}{E - T_{\text{nuc}} - V_{\text{opt}}^{(\pm)}} W_{\mathbf{k}_i}^+ | \eta_{\nu_i} \rangle \right] + \left(\frac{\mu}{K}\right)^{1/2} \lim_{R \to \infty} e^{-iKR} \left[\delta_{m'_s,m_s-1} \langle R | \frac{1}{E - T_{\text{nuc}} - V_{\text{opt}}^{(\pm)}} W_{\mathbf{k}_i}^- | \eta_{\nu_i} \rangle \right]$$

Electron Scattering by Halocamphors

- Fixed-nuclei calculations; only Coulomb interaction
- Static-exchange plus ploarization (SEP) approximation
- SMC implemented in parallel with pseudopotentials [da Costa et al., EPJD 69, 159 (2015)]

So, What Do We Learn?

3-bromocamphor	σ_1^*		σ_2^*	
SMCPP	0.32(0.192)		2.34(0.488)	3)
ETS data	0.53		1.94	
Scaled VOEs	0.46		1.82	
M06-2X/aug-cc-pVDZ	0.356			
3-iodocamphor	σ^*		π^*	
SMCPP	-0.01		2.00 (0.490	6)
Scaled VOEs	-0.23		1.63	
M06-2X/aug-cc-pVDZ	-0.048			
10-iodocamphor	σ^*		π^*	
SMCPP	0.25(0.030)		1.77 (0.194)	4)
Scaled VOEs	0.26		1.52	
M06-2X/aug-cc-pVDZ	0.429			

Out of 20 statistically uncorrelated configurations, ~40% show up as resonances.

Molecular dynamics with CP2K: *T* = 353 K, NVT with velocity rescaling for 20ps (after 5-ps thermalization), with DFT/M06-2X/auc-cc-pDZV potentials and gradients.

DEA from Local Pseudo-Diatomic Models (Coulomb potential)

$$a_{\text{DEA}} \approx P_0 \left[\frac{Q_{\text{DEA}}^+ - Q_{\text{DEA}}^-}{Q_{\text{DEA}}^+ + Q_{\text{DEA}}^-} \right] \qquad T_{m_s.m_s}^{\text{DEA}} = T_0^{\text{DEA}} + (-1)^{\frac{1}{2} - m_s} T_1^{\text{DEA}}$$

- Geometry-independent attachment amplitudes (Condon approximation):

$$T_{0}^{\text{DEA}} \approx \left(\frac{\mu}{K}\right)^{1/2} \lim_{R \to \infty} e^{-iKR} U_{\mathbf{k}_{i}}(R_{0}) \langle R| \frac{1}{E - T_{\text{nuc}} - V_{\text{opt}}^{(\pm)}} |\eta_{\nu_{i}}\rangle$$

$$T_{1}^{\text{DEA}} \approx \left(\frac{\mu}{K}\right)^{1/2} \lim_{R \to \infty} e^{-iKR} W_{\mathbf{k}_{i}}^{0}(R_{0}) \langle R| \frac{1}{E - T_{\text{nuc}} - V_{\text{opt}}^{(\pm)}} |\eta_{\nu_{i}}\rangle$$

$$\frac{4}{2} \int_{0}^{0} \frac{1}{2} \int_{0}^{0} \frac{1}{1 + 1} \int_{0}^{0} \frac{1}{1 + 1} \int_{0}^{0} \frac{1}{3 \text{Bomocamphor}} \int_{0}^{0} \frac{1}{3 \text{Bomocamphor}} A_{\text{DEA}} \sim \frac{2 \text{Re}(\langle W_{\mathbf{k}_{i}}^{0*} U_{\mathbf{k}_{i}} \rangle)}{|\langle U_{\mathbf{k}_{i}} \rangle|^{2} + |\langle W_{\mathbf{k}_{i}}^{0*} \rangle|^{2}} \int_{0}^{0} \frac{1}{1 + 1} \int_{0}^$$

Conclusions and Outlook

– Theory for transmission asymmetries generalized to account for vibrationally inelastic and reactive (DEA) scattering.

- Theory for DEA asymmetries.
- The FPO approach hopefully makes more clear the role of resonances.
- Low-lying σ^{\star} resonances expected to underlie the DEA asymmetries for halocamphors.

- Still working on the DEA models to account for DEA asymmetries, but the Condon approximation seems useful.

– Implementation of SO couplings along with the DWB approximation for the transmission asymmetry:

$$f \approx -\frac{1}{2\pi} \left[\langle S_{\mathbf{k}_f} | U | \Psi_{\mathbf{k}_i}^{(+)} \rangle + \langle \Psi_{\mathbf{k}_f}^{(-)} | W | \Psi_{\mathbf{k}_i}^{(+)} \rangle \right]$$

Many Thanks to

Julio Cesar Ruivo (USP, PhD)

Fabris Kossoski (AMU, former PhD)

Lucas Cornetta (USP, PhD)

Joan Dreiling & Timothy Gay (Nebraska)

Thanks for your attention!