

Workshop on Implication of Biomolecules Damage in Cancer Therapy and Progression

Transient Anion States of Potential Radiosensitizers

Márcio T. do N. Varella

Universidade Federal do Paraná Curitiba, October 18th 2018

' Molecular Physics and Modelling Group

Interactions with electrons, positrons and photons

http://fig.if.usp.br/~mvarella/

Electronic Transients

Technological applications

- Plasma-based processing (microelectronics)
- Plasma-assisted ignition
- Plasma-based pre-treatment of sugarcane biomass
- FEBID

Scientific applications

- Astrophysics and Atmospheric Physics (lonosphere)
- Pre-Biotic molecules
- Radiation damage to biomolecules
- Radiosensitizers

Radiation/Heavy Ion DNA Damage

http://quantumdiaries.org/author/ brookhaven/

https://rageshkumartp.wordpress.com/

Beam Induced Deposition

Energy Deposition: Secondary Electrons

Proton Track

Primary Ionization (proton)
 Secondary Ionization (electron)

Douglass, Phys. in Med. & Biol., 60 3217 (2015)

Fig. 14. An example of single electron tracks simulation in liquid water. (a) 1000 electrons with 10 keV incident energies slowing down by successive collisions (coloured balls).
(b) Nanovolume detail close to the end of a selected track. The colour of the balls indicates the type of interaction: •, elastic scattering; •, rotational excitation; •, vibrational excitation; •, electronic excitation; •, neutral dissociation; •, ionisation; •, electron attachment.

Blanco et al., Eur. Phys. J. D 67, 199 (2013)

Radiation / Heavy Particle Damage

Radiation Damage: mostly indirect (OH radicals, electrons, etc.)

https://clinicalgate.com/basics-of-radiation-therapy-2/

Electron-Induced Damage: Transient Anions

http://www.isa.au.dk/networks/eipam/radam-research.html

Radiosensitizers

"Radiosensitizers are intended to enhance tumor cell killing while having much less effect on normal tissues"

P. Wardman, Chemical Radiosensitizers for Use in Radiotherapy, Clin. Oncol. 19, 397 (2007).

Wilson et al., Semin. Radiat. Oncol. 16, 2 (2006)

Wardman's tip for dummies: "Radiotherapy is free-radical therapy"

Fig. Some of the drugs discussed in the text (those asterisked at first mention).

P. Wardman, Clin. Oncol. 19, 397 (2007).

Types of Chemical Radiosensitizer

radiosensitizers into five categories [15, 16]: An early pioneer in this field, G. E. Adams, divided

- genous radioprotective substances. 'Suppression of intracellular-SH [thiols] or other endo-
- Radiation-induced formation of cytotoxic substances from the radiolysis of the sensitizer.
- Inhibitors of post-irradiation cellular repair processes.
- Sensitization by structural incorporation of thymine analogues into intracellular DNA.
- Oxygen-mimetic sensitizers, for example the electronaffinic drugs ...'.

P. Wardman, Clin. Oncol. 19, 397 (2007).

 $AB + e^{-}$ AB-► A• + B-

Electron-induced dissociation reactions often produce radicals

Breaking Bonds

Breaking Bonds

THE JOURNAL OF CHEMICAL PHYSICS 147, 164310 (2017)

resonance positions (widths) in eV

Shape resonance spectra of uracil, 5-fluorouracil, and 5-chlorouracil

THE JOURNAL OF CHEMICAL PHYSICS 140, 024317 (2014)

Negative ion states of 5-bromouracil and 5-iodouracil

Phys. Chem. Chem. Phys., 2015, 17, 17271–17278

analogues of uracil: the case of 2-thiouracil Electron driven reactions in sulphur containing

Phys. Chem. Chem. Phys., 2014, 16, 25054-25061

Anion states and fragmentation of 2-chloroadenine upon low-energy electron collisions†

Phys. Chem. Chem. Phys., 2015, 17, 28958-28965

and 5-thiocyanateuracil Transient anion spectra of the potential radiosensitizers 5-cyanateuracil

<u>0</u>

THE JOURNAL OF CHEMICAL PHYSICS 147, 214310 (2017)

From Gas to Condensed Phase

monophosphate anion in water* Free energy barrier for dissociation of the guanosine

Lucas M. Cornetta, Kaline Coutinho, Sylvio Canuto, and Márcio T. do N. Varella^a

Eur. Phys. J. D (2016) 70: 176

Reaction Coordinate

How to Find Out Whether a 5-Substituted Uracil Could Be a Potential

Higher expansion pressures change cluster size, but the Br signal is hardly affected.

Halouracils

Members

Rafael Ribeiro (MS) Ely Miranda (MS) André Luis Santana (PhD) Mateus Rocha, (MS) Dr. Fábris Kossoski (former PhD) Julio Cesar da Costa (PhD) Leonardo Vetritti (MS) Lucas Cornetta (PhD) Leonardo Martins (MS)

PRÓ-REITORIA DE PESQUISA

Þ

Ш S

Thanks for your attention!

"Molecular Physics and Modelling Group Interactions with electrons, positrons and photons

http://fig.if.usp.br/~mvarella/