NAP-FCx
Núcleo de Apoio à Pesquisa de Fluidos Complexos
Formulário de busca
Buscar
Login
Navigation
Home
Equipe
Alunos
Andamento
Finalizados
Docentes
Funcionários
Pos-Docs
Colaborações
Linhas de Pesquisa
Projetos
Projetos de Pesquisa (Andamento)
Projetos de Extensão (Andamento)
Projetos de Pesquisa (Finalizados)
Projetos de Extensão (Finalizados)
Resultados
Artigos
Pos-Doc Finalizados
Teses
Dissertações
Patentes
TCC
Iniciação Científica
Notícias e Eventos
Formulários
Você está aqui
Início
» Fotofísica e Propriedades Dinâmicas de Sistemas Moleculares
Fotofísica e Propriedades Dinâmicas de Sistemas Moleculares
Informações
Tipo:
Tese
Unidade da USP:
Instituto de Física (IF)
Autor(es):
Yoelvis Orozco González
Orientador:
Canuto, Sylvio Roberto Accioly
Data de Publicação:
2012
Link:
Link
Resumo
A fotodinâmica de sistemas moleculares representa um dos principais tópicos atuais da físico-química molecular. O conhecimento das propriedades dos estados eletrônicos excitados tem permitido desenvolver áreas de vital importância como das energias renováveis, da fotomedicina, dos sensores fluorescentes, entre outras. O objetivo desta tese está orientado a estudar teoricamente a influência do meio (ou efeito de solvente) na fotofísica e nas propriedades dos estados eletrônicos excitados de sistemas moleculares. Nesta tese, primeiramente foi feito um estudo em fase gasosa da superfície de energia potencial do sistema molecular HSO2 e do efeito da energia rotacional na reação OH+SO. Na superfície de energia potencial foram caracterizadas um grande número de estruturas estacionárias e foi encontrado um estado de transição que liga a região mais energética da superfície com a menos energética. Em relação ao papel da energia rotacional na reação mencionada, foi realizado um estudo de trajetórias quase-clássicas, onde foi observado um decréscimo da reatividade com o aumento da energia rotacional total depositada nos reagentes. Posteriormente, foi estudado o efeito do solvente nas propriedades dos estados eletrônicos excitados e nos mecanismos de decaimento de três sistemas moleculares, acetona, 1-nitronaftaleno e daidzein. Na acetona, foi estudada a influência da polarização eletrônica do estado excitado n* provocada pelo solvente no deslocamento espectral da banda de fluorescência. A banda de emissão obtida em água mostra um deslocamento espectral muito pequeno em relação à fase gasosa, em concordância com as evidencias experimentais. Também foi observada pouca dependência do deslocamento espectral com o grau de polarização eletrônica desse estado excitado. O sistema molecular 1-nitronaftaleno foi estudado a fim de esclarecer a ultrarápida desativação eletrônica não fluorescente observada experimentalmente após a transição de absorção, assim como, caracterizar os espectros de absorção transitória também observados nos experimentos. Foi encontrado um intersystem crossing muito eficiente entre o primeiro estado excitado singleto e o segundo estado tripleto, que explica o decaimento não fluorescente deste sistema molecular. O modelo de decaimento proposto permite descrever corretamente os espectros de absorção transitória nos solventes metanol e etanol, através de transições de absorção dos estados eletrônicos tripletos. Finalmente, o sistema molecular daidzein foi estudado a fim de entender porque em solvente polar prótico, como a água, o sistema é fluorescente, mostrando um valor de Stokes shift consideravelmente grande e na presença de solvente polar aprótico, como a acetonitrila, não é observada fluorescência. Nesse sentido, foi estudada a evolução dos estados eletrônicos excitados, na presença dos solventes água e acetonitrila, após as transição de absorção. A topologia dos estados eletrônicos excitados é diferente para cada um dos solventes, em acetonitrila o sistema tem acesso a um intersystem crossing muito eficiente que permite o decaimento não fluorescente. Em água o panorama é diferente, neste caso, não é possível a ocorrência do intersystem crossing e o sistema decai por fluorescência para o estado fundamental. No estado eletrônico fluorescente é observada uma polarização eletrônica significativa que provoca o grande valor de Stokes shift observado experimentalmente.