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We present a simplified lattice model to study calcium dynamics in the endoplasmic reticulum membrane.
Calcium channels and calcium ions are placed in two interpenetrating square lattices which are connected in
two ways:sid via calcium release andsii d because transitions between channel states are calcium dependent.
The opening or closing of a channel is a stochastic process controlled by two functions which depend on the
calcium density on the channel neighborhood. The model is studied through mean field calculations and
simulations. We show that the critical behavior of the model changes drastically depending on the opening/
closing functions. For certain choices of these functions, all channels are closed at very low and high calcium
densities and the model presents one absorbing state.
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I. INTRODUCTION

Calcium ionssCa2+d play an important physiological role
in living cells, acting as a second messenger to regulate mul-
tiple cellular functions, such as muscle contraction and syn-
aptic transmissionf1g. Changes in the cytosolic free calcium
concentration are often used for signaling. InXenopus laevis
oocytessfrog eggsd, for instance, penetration of a sperm into
the egg increases cytosolic calcium, inducing cortical con-
traction, cell division, and structural rearrangementf1–3g.

In cells that are not electrically excitable, calcium is
stored in the endoplasmic reticulumsERd f3g. Part of the
sequestered calcium can be released by binding of inositol
1,4,5-triphosphatesIP3d to a receptor that controls the perme-
ability of a calcium channel in the ER membranef2,3g. Ex-
perimental findings suggest that the opening of the channel
occurs when both IP3 and Ca2+ are bound to the activating
sites and at the same time Ca2+ is not bound to the inhibiting
site. This means that low calcium levels in the cytosol favor
channel opening while high levels close the channel or in-
hibit its opening, rendering a nonlinear processf3g. This au-
tocatalytic amplification is called calcium-induced calcium
release and is present in a variety of channelsf3,4g. Calcium
release is terminated by the closure of calcium channels, af-
ter which Ca2+ is removed from the cytosol by the action of
the Ca2+ ATPases and pumpsf5g.

There is a vast literature devoted to modeling calcium
dynamics. Deterministic models consider a large population
of channels and can be based on partial differential equations
f3,6–10g. In the kinetic modelsf3,6–9g a different number of
states for the channel-receptor is possible, depending on the
rules for IP3 and Ca2+ binding and the number of subunits of
a calcium channel. Since experimental results showed that
calcium release exhibits a high degree of stochasticityf11g,
different stochastic versions of the kinetic models have been
proposed. These models present fourteenf12g, eight f13g,
four f5,13,14g, or two f15g possible states for the channel-
receptor. In fact, in order to reproduce some experimental

aspects of calcium release it is mandatory to take into ac-
count the binding processes of Ca2+ and IP3 as stochastic
eventsf5,12g. Both deterministic and stochastic models can
be classified as temporal and spatio-temporal. The temporal
modelsf5–9,15g can reproduce calcium oscillations in time.
On the other hand, a spatial distribution of channels must be
considered in order to study calcium wave patterns
f3,10,12–14g.

Some works use a reaction-diffusion equation with a sim-
plified model for calcium releasef16–19g. Bär et al. f4g pro-
pose a simplified stochastic model for clusters of calcium
channels. In any case IP3 is considered explicitly. Despite the
fact that these models do not provide information about ki-
netics of channels, they are useful, for example, to study
propagation of calcium waves.

In this paper we propose a simplified lattice model to
study Ca2+ dynamics in the ER membrane. Calcium channels
and calcium ions are considered in two interpenetrating
square lattices that are connected in two ways:sid via cal-
cium release andsii d because transitions between channel
states are calcium dependent. For simplicity IP3 is not con-
sidered in our model and we use a two-state model for the
channel: it can be open or closed. Changes in the channel
state are stochastic processes controlled by two functions, for
opening and closing, which depend on the calcium density
on the channel neighborhood. The model is studied through
mean-field calculationssmaster equationd and simulations.
We show that the critical behavior of the model changes
drastically depending on the opening/closing probability
functions. For certain choices of these functions, all channels
are closed at very low and high calcium densities, as shown
by experimental resultsf20g, and the model presents one
absorbing state. The critical behavior of the model is in the
directed percolation universality classf21g.

II. MODEL

In our model, the ER membrane is represented by a two-
dimensional lattice which contains the calcium channels and
the calcium ions. The dynamics of calcium ions on the mem-
brane is performed in two stages. In the first one, calcium*Corresponding author. Electronic address: nara@if.usp.br
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ions are released from the ER through calcium channels and
remain on the membrane. In the second stage, they sponta-
neously leave the membrane into the cytosol. The ER acts as
a reservoir source and the cytosol as a reservoir sink of cal-
cium ions. For simplicity IP3 is not considered in our model.

We consider a two-dimensional square lattice with two
interpenetrating sublattices A and B, which represent the ER
membrane. Calcium channels are located only on the sites of
the sublattice B and calcium ions coming from the reservoir
source occupy only the sites of the sublattice A. A sitei of
the sublattice A can either be emptyshi =0d or occupied
shi =1d by one calcium ion. A calcium channel on the sitej
of the sublattice B can either be closedss j =0d or openss j

=1d.
The dynamic rules connect the calcium ions on the sub-

lattice A and the calcium channels on the sublattice B in two
ways: sid calcium release into a sitei of the sublattice A
depends on the numberai =odsi+d of open channels in its
neighborhood which is composed by the four nearest neigh-
bor sites belonging to the sublattice B, andsii d the probabil-
ity functions for the opening/closing of a calcium channelj
are assumed to depend on the numberg j =odh j+d of calcium
ions in the channel neighborhood which is composed by the
four nearest neighbor sites belonging to the sublattice A.

At each time step the sublattice A is updated with prob-
ability pa and so is the sublattice B with probability 1−pa:

s1d If one decides to update the sublattice A, then the
following rules are used. One calcium sitei is randomly
chosen. If it is occupied, then it is vacated with probability
pb. If it is empty, then a calcium ion is created with the
normalized probabilitys1−pbdai /4. The first process repre-
sents a calcium ion leaving the ER membrane into the cyto-
sol and the second one represents the calcium release from
the ER through a calcium channel. In our model these pro-
cesses correspond to a spontaneous annihilation and catalytic
creation of calcium ions, respectively.

s2d If the sublattice B is to be updated, the rules are as
follows. One channel sitej is randomly chosen. If it is open,
then it is closed with probabilityfclsg jd. If it is closed, then it
is opened with probabilityfopsg jd. The probabilitiesfclsg jd
and fopsg jd are normalized functions of the number of cal-
cium ionsg j in the neighborhood of the channel sitej , to be
defined shortly.

If the sets of probabilities for the opening/closing of a
calcium channel,fopsnd and fclsnd, are given, the stochastic
process defined by the above rules involves two parameters,
pa, related to the update of the sublattice A or B, andpb,
related to spontaneous annihilation of calcium ions.

The autocatalytic amplificationscalcium-induced calcium
released found in calcium channels is represented in our
model by nonlinear functions for opening/closing probabili-
ties of a calcium channel. These functions mimic the experi-
mental fact that low calcium levels favor channel opening
while high levels close the channel or inhibit its openingf3g.
In particular we focus our attention on the three sets of prob-
abilities shown in Table I. One of the simplest choices for the
functions fopsnd and fclsnd snamed as set 3 on Table Id is

fopsnd = dn,2,

fclsnd =
n

4
. s1d

III. MASTER EQUATION

The probability Psh ,s ,td of a state sh ,sd
=sh1,h2, . . . ,hN,s1,s2, . . . ,sNd at timet is governed by the
master equation. Denoting bywi

cash ,sd the transition prob-
ability from hi to 1−hi, and bywj

chsh ,sd the transition prob-
ability of a channel froms j to 1−s j, the master equation
reads

d

dt
Psh,s;td = o

i

fwi
cashi,sdPshi,s,td − wi

cash,sdPsh,s,tdg

+ o
j

fwj
chsh,s jdPsh,s j,td

− wj
chsh,sdPsh,s,tdg, s2d

where shi ,sd and sh ,s jd denote the states obtained from
sh ,sd by changinghi to 1−hi ands j to 1−s j, respectively.
The first summation is performed over the sites of the sub-
lattice A whereas the second is performed over the sites of
the sublattice B. According to the local rules of the model,
defined above, we have

wi
cash,sd = pafpbhi + 1

4s1 − pbdais1 − hidg ,

wj
chsh,sd = s1 − padffclsg jds j + fopsg jds1 − s jdg. s3d

The average of a generic state functionFsh ,sd is defined
by

kFsh,sdl = o
h,s

Fsh,sdPsh,s;td. s4d

From the master equationfEq. s2dg and the transition prob-
abilities fEqs.s3dg, its time evolution is given by

TABLE I. Sets 1, 2, and 3 for the openingfopsnd and closing
fclsnd probabilities of a calcium channel.

Function Set 1 Set 2 Set 3

fops0d 0.0 0.0 0.0

fops1d 0.5 0.5 0.0

fops2d 1.0 1.0 1.0

fops3d 0.3 0.3 0.0

fops4d 0.0 0.0 0.0

fcls0d 0.1 0.0 0.0

fcls1d 0.2 0.2 0.25

fcls2d 0.5 0.5 0.5

fcls3d 0.8 0.8 0.75

fcls4d 1.0 1.0 1.0
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d

dt
kFsh,sdl = o

i

kfFshi,sd − Fss,hdgwi
cash,sdl

+ o
j

kfFsh,s jd − Fsh,sdgwj
chsh,sdl. s5d

We are especially interested in the expressions for the
time evolution of the density of calcium ionskhil and the
density of open channelsks jl, given, respectively, by

d

dt
khil = ks1 − 2hidwi

cash,sdl

= paf 1
4s1 − pbdks1 − hidail − pbkhilg ,

d

dt
ks jl = ks1 − 2s jdwj

chsh,sdl

= s1 − padfks1 − s jdfopsg jdl − ks j fclsg jdlg. s6d

IV. MEAN FIELD APPROXIMATION

In order to obtain approximative solutions for Eqs.s6d we
use a truncation scheme. Its simplest version consists in writ-
ing the probability of a cluster of sites as the product of the
probability of each sitese.g., khiail,khilkaild. Using this
approximation Eqs.s6d become

d

dt
rca = pafs1 − pbds1 − rcadrch − pbrcag,

d

dt
rch = s1 − padfs1 − rchdkfopsg jdl − rchkfclsg jdlg, s7d

wherekhil=rca, ks jl=rch, andkail=4rch, since we are look-
ing for homogeneous solutions.

In order to obtain expressions forkfopsg jdl and kfclsg jdl,
we should remember thatg j is the number of calcium ions in
the channel neighborhood, and it can take values between 0
and 4, since the lattice has coordination four and each site of
sublattice A can be empty or occupied by one calcium ion.
Let us considerPjsa1,a2,a3,a4d as the probability of a par-
ticular cluster configuration of calcium ions in the channelj
neighborhood. We can write

fopsg jd = fops0dPjs0,0,0,0d + 4fops1dPjs1,0,0,0d

+ 6fops2dPjs1,1,0,0d + 4fops3dPjs1,1,1,0d

+ fops4dPjs1,1,1,1d,

where the degeneracy is correctly considered. Using the trun-
cation scheme defined above we can writekPjs1,0,0,0dl
,rcas1−rcad3 for homogeneous solutions, and we have

kfop,clsg jdl = o
n=0

4

fop,clsnds1 − rcad4−nsrcadnS4

n
D . s8d

To simplify the notation we definerca=x and rch=y, so
that Eqs.s7d are rewritten as

dx

dt
= pafs1 − pbds1 − xdy − pbxg, s9d

dy

dt
= s1 − padhs1 − ydffops0ds1 − xd4 + 4fops1dxs1 − xd3

+ 6fops2dx2s1 − xd2 + 4fops3dx3s1 − xd + fops4dx4g

− yffcls0ds1 − xd4 + 4fcls1dxs1 − xd3 + 6fcls2dx2s1 − xd2

+ 4fcls3dx3s1 − xd + fcls4dx4gj. s10d

In the particular case in which the functionsfopsnd and
fclsnd are given by set 3fEqs. s1dg the time evolution forx
andy fEqs.s9d and s10dg assume a simple form:

dx

dt
= pafs1 − pbds1 − xdy − pbxg,

dy

dt
= s1 − padfs1 − yd6x2s1 − xd2 − yxg. s11d

In Fig. 1 we present the density of open channelsy as a
function of calcium densityx obtained from numerical solu-
tion of Eqs.s9d ands10d in the stationary state. Note that the
solutions do not depend onpa, but only onpb, which is an
artifact of the simplest mean field approximation we used.
One can observe that the probability functions for the
opening/closing of a calcium channel changes drastically the
critical behavior of the model. Despite great similarities be-
tween sets 1 and 2fthe only difference isfcls0d, see Table Ig,
its behavior is completely different, since the absorbing state
exists just in the first case. For set 3 the absorbing state is
also present.

It is possible to find analytical expressions for the relation
between the density of open channelsy and the calcium den-
sity x in the regions of low and high calcium densitysx
→0 andx→1, respectivelyd. This analysis for low calcium
density allows us to establish the conditions that must be
satisfied by the functionsfopsnd and fclsnd so that the absorb-
ing state exists. Consequently, we understand why the ab-
sorbing state is present for sets 1 and 3 but not for set 2.

FIG. 1. The mean field results for the fraction of open channels
y as a function of calcium densityx. Sets 1, 2, and 3 are according
to definition in Table I. Despite great similarities between sets 1 and
2, the absorbing statesx=y=0d exists just in the first case. For set 3
the absorbing state is also present.
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Furthermore, when the absorbing state is present, we obtain
the critical exponent associated with the order parameter of
the model. For convenience we definer =pb/ s1−pbd.

Equationss9d and s10d have a fixed pointsx,yd=s0,0d
just for fops0d=0. We are interested in the behavior ofx and
y near to this fixed point. From the stationary condition on
Eq. s9d we obtain the relationy=rx / s1−xd, which can be
approximated byx=y/ r whenx→0. Using this approxima-
tion and the conditionfops0d=0 in Eq. s10d we obtain the
stationary condition fory near the fixed point:

yS4

r
fops1d − fcls0dD + y2S4

r
ffcls0d − fops1d − fcls1dg

+
6

r2ffops2d − 2fops1dgD + Osy3d + Osy4d + Osy5d = 0,

s12d

whose first nonzero coefficient determines the critical param-
eter rc. For sets 1 and 2 the linear coefficient of Eq.s12d is
nonzero and

rc =
4fops1d
fcls0d

, s13d

therefore the absorbing state exists for set 1src=20, which
corresponds topb

c.0.95d but does not exist for set 2, as we
can see from Table I and Fig. 1. For set 3 we must consider
the quadratic coefficient of Eq.s12d, since the linear coeffi-
cient is zero, and the critical parameter is

rc =
3fops2d
2fcls1d

. s14d

Consequently the absorbing state is present for set 3, with
rc=6 andpb

c.0.857 ssee Table I and Fig. 1d. As expected,
the critical behavior of the model depends on the functions
fopsnd and fclsnd for small values ofn.

Therefore, from the analytical results, we confirm that the
absorbing state is present just for sets 1 and 3. Forr , rc the
trivial solution sx,yd=s0,0d, which corresponds to the ab-
sorbing state, is stable. Atr =rc there is a phase transition
since an active state withxÞ0 andyÞ0 takes place forr
. rc.

In the vicinity of the fixed pointsx→0d we have shown
thaty=rcx with rc defined by Eq.s13d sset 1d or Eq.s14d sset
3d. In the region of high calcium density, whenx→1, from
the stationary condition on Eq.s10d, and consideringfops0d
=0 sa condition to exists the absorbing stated and fops4d=0
swhich is filled by sets 1, 2, and 3d, we can also find the
relation betweeny andx. Therefore, whenx→1, for sets 1
and 2 we havey=4fops3ds1−xd / fxfcls4dg, whereas for set 3
we obtainy=6fops2ds1−xd2/ fx2fcls4dg f22g. The asymptotic
behaviors forx→0 andx→1 are confirmed by the numeri-
cal solution presented in Fig. 1.

In the critical regionsx→0 and y→0d the relation be-
tween the density of open channelsy and the order parameter
r is given by Eq.s12d. From this equation we can obtain the
critical exponent of the model in the mean field approxima-
tion. Considering two nonzero terms of Eq.s12d for sets 1

and 3, we find thatysrd=sr −rcdb /A, with the critical expo-
nent b=1, as expected. For set 1A=1+3fops2d / f2fops1dg
−4ffops1d+ fcls1dg / fcls0d and for set 3, A=1−3ffops2d
+ fcls2dg / f2fcls1dg.

V. SIMULATION

Numerical simulations were performed on two interpen-
etrating square lattices with periodic boundary conditions.
All figures in this section correspond to simulations using set
3 for the opening and closing functionsssee Table Id. Each
run started with an initial configuration of open channels and
calcium ions placed randomly on the lattice.

The results of the simulation for the density of open chan-
nels as a function of the calcium density are presented in Fig.
2, for lattice sizeL=40 andpa=0.1, 0.5, and 0.9. For com-
parison we also show the mean field behavior. The agree-
ment between simulation and mean field results is better for
high values ofpa. Note that in the simulation, high levels of
calcium density withx,1 result in the closing of all chan-
nels, which is more evident for small values ofpa. As dis-
cussed before, in the mean field approximation, whenx→1
we havey=6s1−xd2/x2, and all channels are closed just for
x=1.

In Figs. 3sad and 3sbd we compare simulation and mean
field calculations. Figure 3sad shows the density of open
channels and calcium ions as a function ofpb and in Fig. 3sbd
we can see the fluxsFd as a function ofpb, in both cases for
pa=0.5 andL=40. In the simulation, the flux is defined as
the number of created or annihilated particles while in mean
field it is given by F=xpbpa. We can see that the critical
parameter from mean field calculationsfpb

c=0.857, from Eq.
s14dg is greater than that obtained from simulationspb

c

=0.292d, as expected. There is a good agreement between
simulation and mean field results in the region of smallpb.

In Fig. 4 we present the calcium densityx as a function of
pb for several values ofpa. The critical parameterpb

c sfor
each value ofpad is obtained from a linear regression in the

FIG. 2. The simulation results for the fraction of open channels
y as a function of calcium densityx using set 3 forpa=0.1, pa

=0.5, andpa=0.9 and lattice sizeL=40. Comparison with mean
field solution.
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region where density goes to zerosx→0d. Results forpb
c

using calcium density or open channels density are exactly
the same. The density of calcium ionsx goes to zero con-
tinuously aspb approachespb

c, as expected for the order pa-
rameter. The critical behavior of the order parameter follows
x,spb−pb

cdb. We compute the critical exponentb fitting the
data obtained by simulations and find that it is in agreement
with b=0.58, the expected value for two-dimensional mod-
els in the directed percolation universality classf23g.

Simulation results are summarized in the phase diagram
of Fig. 5, which depends on two parameters,pa andpb. Dif-
ferent lattice sizes results are shown forpa=0.1, 0.5, and 0.9.
Note thatpb

c is a crescent withpa just for paø0.8, as can also
be seen in Fig. 4. For comparison we show the mean field
results, which depend only onpb. For simulation results re-
gion A represents the active states, where the densities of
open channels and of calcium ions present a constant mean

value, and regions B and C represent the absorbing states
sx=y=0d. For mean field results the active states are repre-
sented by regions A and B and the absorbing states is repre-
sented by region C.

VI. DISCUSSION AND CONCLUSION

We propose a simplified lattice model to study Ca2+ dy-
namics in the ER membrane. Calcium channels and calcium
ions are placed in two interpenetrating square lattices which
are connected in two ways:sid via calcium release andsii d
because transitions between channel states are calcium de-
pendent. Changes in the channel state are stochastic pro-
cesses controlled by two functions, for opening and closing,
which depend on the calcium density in the channel neigh-
borhood.

We found that the model can present one absorbing state
depending on the choice of the opening/closing functions. As
expected from Janssen-Grassberger conjecturef21g the phase
transition between the active and the absorbing states in our
model is in the direct percolation universality class. In fact,
the critical exponent related with the order parameter in our
model is in agreement withb=0.58, the expected value for a
two-dimensional model f23g. Other simplified models
f4,17,18g introduced for calcium wave propagation modeling
are also in the directed percolation universality class. How-
ever, different from our model, these works were developed
in one dimensionf4,17g and just recently Timofeeva and
Coombesf18g have showed that a two-dimensional model
for calcium dynamics is in the direct percolation universality
class. Particularly, in the model presented by Bäret al. f4g,
clusters of calcium channels are placed in a one-dimensional
lattice with a fixed intercluster distance. The clusters are
composed of several subunits, which can be open or closed.
The amount of calcium released depends on the number of

FIG. 3. The simulation results using set 3 forsad the density of
open channelsy and of calcium ionsx as a function ofpb for pa

=0.5 slattice sizeL=40d and sbd the flux F as a function ofpb for
pa=0.5 slattice sizesL=40d. Comparison with mean field solution.
We havepb

c.0.292 for simulations andpb
c.0.857 for mean field

approximation.

FIG. 4. The simulation results using set 3 for calcium densityx
as a function ofpb for several values ofpa sindicated in the figured.
Lattice sizeL=40.

FIG. 5. The phase diagram for set 3 on thepb-pa plane, ob-
tained from simulations for lattice sizesL=10,20,40 and mean
field results. For simulations results region A represents the active
states and regions B and C represent the absorbing statessx=y
=0d. For mean field results the active states are represented by
regions A and B and the absorbing states are represented by region
C.
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open subunits in the cluster. Similarly to our model, changes
between subunits states depend on the local calcium density.
The model presents a nonequilibrium phase transition be-
tween propagating and abortive waves. Measurements of the
critical exponent associated with this transitionsthe survival
probabilityd show that it belongs to the directed percolation
universality class. An important difference between our
model and the one proposed by Bäret al. f4g is that they are
focusing on wave propagation, differently from us, since we
study only homogeneous solutions. In fact, our model is also
capable of giving nonhomogeneous solutions which can be
related to wave propagation. This will be a topic of future
investigation. Thereby our result agrees with the possibility
that intracellular calcium dynamics could be an experimental
realization of the direct percolation process, as suggested by
Bär et al. f4g. However, the measurement of the critical ex-
ponent in living cells could not be possible, as pointed out by
Hinrichsenf24g.

The critical behavior of the model is strongly affected by
changes in the probabilities for the opening/closing of a cal-
cium channel, as we can see in Fig. 1. For sets 1 and 3 the
model presents one absorbing state, while for set 2 it does
not exist. Note that the only difference between sets 1 and 2

is fcls0d, equal to 0.1 in the first case and 0 in the second one
ssee Table Id. This result can be understood in the mean field
approximation, since we establish the conditions that must be
satisfied by the functionsfopsnd and fclsnd in order for the
absorbing state to exist. As expected, the critical behavior of
the model depends on the functionsfopsnd and fclsnd for low
values ofn.

Experimental results for cerebellar cellsf20g show that
the fraction of open channels as a function of the logarithm
of calcium concentration corresponds to a bell-shaped curve.
Despite the simplicity of our model, when the absorbing
state exists, there is a qualitative agreement with this experi-
mental result, since at very low and high calcium densities
all channels are closedsFigs. 1 and 2d.
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