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Lattice model for calcium dynamics

Nara Guisorfi and Mario José de Oliveira
Instituto de Fisica, Universidade de Séo Paulo, C.P. 66318, Cep 05315-970, S&o Paulo, SP, Brazil
(Received 30 November 2004; published 22 June 2005

We present a simplified lattice model to study calcium dynamics in the endoplasmic reticulum membrane.
Calcium channels and calcium ions are placed in two interpenetrating square lattices which are connected in
two ways: (i) via calcium release andi) because transitions between channel states are calcium dependent.
The opening or closing of a channel is a stochastic process controlled by two functions which depend on the
calcium density on the channel neighborhood. The model is studied through mean field calculations and
simulations. We show that the critical behavior of the model changes drastically depending on the opening/
closing functions. For certain choices of these functions, all channels are closed at very low and high calcium
densities and the model presents one absorbing state.
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I. INTRODUCTION aspects of calcium release it is mandatory to take into ac-
count the binding processes of Taand IR, as stochastic
L ) vents[5,12]. Both deterministic and stochastic models can
N living cells, acting as a second messenger o regulate MUke classified as temporal and spatio-temporal. The temporal
“p"? cellular _funcnons, such as muscle contract|on anq SynFnodels[5—9,1!§ can reproduce calcium oscillations in time.
aptic transmissiopl]. Changes in the cytosolic free calcium o, yhe other hand, a spatial distribution of channels must be
concentration are often used for signalingXenopus laevis ., cidered in order to study calcium wave patterns
oocytes(frog eggs, for instance, penetration of a sperm into [3,10,12-12
the egg increases cytosolic calcium, inducing cortical con="gome works use a reaction-diffusion equation with a sim-
traction, cell division, and struc;ural rearrfangemgélmsl. . plified model for calcium releadd6—19. Bar et al.[4] pro-
Indcglls hthat Zre |n°t .e'e"tf'cﬁ"y (;xcgablg, cal?ukr‘n 'S pose a simplified stochastic model for clusters of calcium
stored In the en joplasmic reticulut&R) [ ]'. art 0 t. € channels. In any case {5 considered explicitly. Despite the
sequestered calcium can be released by binding of inositqh .+ \hat these models do not provide information about ki-
1,4,5-triphosphatéPy) to a receptor that controls the perme- qyies of channels, they are useful, for example, to study
ability of a calcium channel in the ER membra&3]. Ex- propagation of calcium waves.
perimental findings suggest :[rhat the opening of the_ channel In this paper we propose a simplified lattice model to
occurs when both IPand C&" are bound to the activating  gt,qy C&* dynamics in the ER membrane. Calcium channels
sites and at the same time Las not bound to the inhibiting 44" calcium ions are considered in two interpenetrating
site. This means that low calcium levels in the cytosol favorSquare lattices that are connected in two wajsvia cal-
channel opening while high levels close the channel or ingjym release andii) because transitions between channel
hibit its opening, rendering a nonlinear proc€8p This au-  giates are calcium dependent. For simplicity i€not con-
tocatalytic amplification is called calcium-induced calcium giqared in our model and we use a two-state model for the
release and is present in a variety of chanfi@lg]. Calcium  cpannel: it can be open or closed. Changes in the channel
release is terminated by the closure of calcium channels, akyate are stochastic processes controlled by two functions, for
ter W;‘Eh C&" is removed from the cytosol by the action of onening and closing, which depend on the calcium density
the C ATPases an_d pums). ) __on the channel neighborhood. The model is studied through
There is a vast literature devoted to modeling calCiummean field calculationémaster equationand simulations.
dynamics. Deterministic models consider a large populatioRye show that the critical behavior of the model changes
of channels and pan_be based on partla! differential equat'orl?rastically depending on the opening/closing probability
[3,6-10. In the kinetic model$3,6-9 a different number of  ¢,nctions. For certain choices of these functions, all channels
states for the channel-receptor is possible, depending on thge ¢josed at very low and high calcium densities, as shown
rules for IR, and C&* binding and the number of subunits of by experimental result§20], and the model presents one

a calcium channel. Since experimental results showed thafi,sorhing state. The critical behavior of the model is in the
calcium release exhibits a high degree of stochast[dity,  jirected percolation universality clag1].

different stochastic versions of the kinetic models have been
proposed. These models present fourtEg?], eight [13],

four [5,13,14, or two [15] possible states for the channel- Il. MODEL
receptor. In fact, in order to reproduce some experimental

Calcium ions(C&*) play an important physiological role

In our model, the ER membrane is represented by a two-
dimensional lattice which contains the calcium channels and
the calcium ions. The dynamics of calcium ions on the mem-

*Corresponding author. Electronic address: nara@if.usp.br brane is performed in two stages. In the first one, calcium
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ions are released from the ER through calcium channels and TABLE I. Sets 1, 2, and 3 for the openirfgy(n) and closing
remain on the membrane. In the second stage, they sponth+(n) probabilities of a calcium channel.

neously leave the membrane into the cytosol. The ER acts a5
a reservoir source and the cytosol as a reservoir sink of cal- Function Setl Set 2 Set 3
cium ions. For simplicity IR is not considered in our model.

We consider a two-dimensional square lattice with tw0f°p(o) 0.0 0.0 0.0
interpenetrating sublattices A and B, which represent the Eftor(l) 0.5 0.5 0.0
membrane. Calcium channels are located only on the sites ¢é(2) 1.0 1.0 1.0
the sublattice B and calcium ions coming from the reservoiffou(3) 0.3 03 0.0
source occupy only the sites of the sublattice A. A sitgf . (4) 0.0 0.0 0.0

the sublattice A can either be empfty;=0) or occupied

(7,=1) by one calcium ion. A calcium channel on the sjite fe(0) 0.1 0.0 0.0
of the sublattice B can either be closagi=0) or open(o;  fel(D) 0.2 0.2 0.25
=1). fa(2) 0.5 0.5 0.5
The dynamic rules connect the calcium ions on the subfq(3) 0.8 0.8 0.75
lattice A and the calcium channels on the sublattice B in twof(4) 1.0 1.0 1.0

ways: (i) calcium release into a site of the sublattice A
depends on the number,=X s0i, 5 of open channels in its
neighborhood which is composed by the four nearest neigh- n
bor sites belonging to the sublattice B, aiid the probabil- fa(n) = 1 1)
ity functions for the opening/closing of a calcium chanpel
are assumed to depend on the numper> ;7;, s of calcium
ions in the channel neighborhood which is composed by the
four nearest neighbor sites belonging to the sublattice A.

At each time step the sublattice A is updated with prob- ¢ probability P(7,0,t) of a state (7,0)

ability p, and so is the sublattice B with probability pz: =(70, 7Ty - Ny T1s T - 0yy) At timet is governed by the

1) If one decides to update the sublattice A, then the . . L
foII(ov)ving rules are used. pOne calcium sitels randomly master equation. Denoting by™(»,0) the transition prob-

age Ch e
chosen. If it is occupied, then it is vacated with probability ability from ; o 1-2, and byw;"(»,0) the transition prob-
pp. If it is empty, then a calcium ion is created with the ability of a channel fromo; to 1-0j, the master equation
normalized probability1-p,)a;/4. The first process repre- reads
sents a calcium ion leaving the ER membrane into the cyto-
sol and the second one represents the calcium release fronﬁp(ng;t) = > W7, 0)P(7,0,t) =W 5, 0)P(7,0,1)]
the ER through a calcium channel. In our model these pro-dt T '
cesses correspond to a spontaneous annihilation and catalytic

IIl. MASTER EQUATION

creation of calcium ions, respectively. + E [WjCh(% a)P(7,0,1)
(2) If the sublattice B is to be updated, the rules are as J
follows. One channel sitgis randomly chosen. If it is open, - chh( 7,0)P(n,0,1)], (2)

then it is closed with probability, (). If it is closed, then it
is opened with probabilityfo(y;). The probabilitiesf,(y;)  where (#/,0) and (7,0') denote the states obtained from
and fo(y;) are normalized functions of the number of cal- (7,0) by changingz; to 1-7 and o; to 1-0;, respectively.
cium ionsy; in the neighborhood of the channel sjtdo be  The first summation is performed over the sites of the sub-
defined shortly. lattice A whereas the second is performed over the sites of
If the sets of probabilities for the opening/closing of athe sublattice B. According to the local rules of the model,
calcium channelf,y(n) and fg(n), are given, the stochastic defined above, we have
process defined by the above rules involves two parameters,
p., related to the update of the sublattice A or B, gngl W(77,0) = pal Po7 + 3 (1 - pplai(1 - 7) ],
related to spontaneous annihilation of calcium ions.
The autocatalytic amplificatiofcalcium-induced calcium
release¢ found in calcium channels is represented in our WJ-Ch(n, o) = (L -p)[fa(y)oj+ oy -] (3
model by nonlinear functions for opening/closing probabili-
ties of a calcium channel. These functions mimic the experi-
mental fact that low calcium levels favor channel opening y
while high levels close the channel or inhibit its openjBd
In particular we focus our attention on the three sets of prob- (F(1,0)) = 2 F(5,0)P(n,0;1). (4)
abilities shown in Table I. One of the simplest choices for the o
functionsf,,(n) andfy(n) (named as set 3 on Tablgis

The average of a generic state functieiy, o) is defined

From the master equatidiEq. (2)] and the transition prob-
fop(N) = 65,2, abilities[Egs. (3)], its time evolution is given by
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—=- setl
—_————le set2
0.6 - ~y — set3

d .
E{(F(n, 0)) = 2 ([F(#,0) = F(o. ) W%, 0))

+ 2 ([F(n,0) = F(n,0) W (,0)).  (5) - el
J

We are especially interested in the expressions for the o4
time evolution of the density of calcium iong;) and the ™
density of open channelsr)), given, respectively, by

0.2

d
qim=(a- 20)W (9, 0))

= Pal (1= Po)X(L = 7))~ P ],

d
—(a) =((1 = 20, )W,
dt<U'> (« U') ! (m) FIG. 1. The mean field results for the fraction of open channels

1 - N _ y as a function of calcium density Sets 1, 2, and 3 are according
=1 -pK(2 (TJ)]COP(VJ)> <01fc'(71)>]' 6) to definition in Table I. Despite great similarities between sets 1 and
2, the absorbing state=y=0) exists just in the first case. For set 3
IV. MEAN FIELD APPROXIMATION the absorbing state is also present.

In order to obtain approximative solutions for E¢®). we
use a truncation scheme. Its simplest version consists in writ-dy
ing the probability of a cluster of sites as the product of the ¢
probability of each sitde.qg., (7a;) ~{m)«a;)). Using this
approximation Eqs(6) become

= (1= p (1 =Y)[fop0)(L —x)* + 4f 1 (1)X(1 = %)°

+ 6f 0p(2X(1 = X)? + 4f o ((3)X3(L = X) + fo,(4)x*]
d = Y[fa(0) (L =x)* + 4f(DX(1 = x)® + 6f(2)x*(1 - x)?
d_tpca: pa[(l - pb)(l _Pca)Pch_ pbpca]a + 4fc|(3)X3(1 -x) + fcl(4)x4]}- (10)

d In the particular case in which the functiofig,(n) and
—pen= (1 =P(L = pe){Fop(¥)) = per(fe(y ], (7)  fa(n) are given by set 3Egs. (1)] the time evolution forx

dt andy [Egs.(9) and(10)] assume a simple form:
where(7)=pca (7)) =pcn @aNd{e;)=4pgp, since we are look- X
ing for homogeneous solutions. P PaL(1 = pp)(1 = X)y — ppx],

In order to obtain expressions fof,.(y;)) and(fq(¥)),
we should remember tha4 is the number of calcium ions in d
the char_mel nelghb(_)rhood, and it can take values betwgen 0 ay _ (1-pI[(1-y)Bx¥(1 -x)2 - yx]. (11)
and 4, since the lattice has coordination four and each site of dt
sublattice A can be empty or occupied by one calcium ion. . .
Let us consideP;(ay, a,, a3, a,) as the probability of a par- f In_F|g. fl Wle.present t'he denslty O]f open chanr)elhs ?
ticular cluster configuration of calcium ions in the chanjel unction of caicium den_sny( obtalr_1ed rom numerical Sofu-

tion of Egs.(9) and(10) in the stationary state. Note that the

neighborhood. We can write solutions do not depend gy, but only onpy, which is an
fop(7)) = fop(0)P;(0,0,0,0 + 4f,(1)P;(1,0,0,0 artifact of the simplest mean field approximation we used.
_ _ One can observe that the probability functions for the
+6lop(2)P(1,1,0,0 +4fo(3)P;(1,1,1,0 opening/closing of a calcium channel changes drastically the
+fo(4)P;(1,1,1,D, critical behavior of the model. Despite great similarities be-

. ) ) tween sets 1 and 2he only difference i$.(0), see Table],
where the degeneracy is correctly considered. Using the trun: ST . i .
) . : its behavior is completely different, since the absorbing state
cation scheme defined above we can wiig(1,0,0,0) o . . ) ;
3 . exists just in the first case. For set 3 the absorbing state is
~ pea(1=pea)® for homogeneous solutions, and we have also present
4 4 It is possible to find analytical expressions for the relation
(fopa(¥)) = > fopc(M(1 —pca)“‘”(pca)”( ) ) (8) between the density of open channglsnd the calcium den-
n=0 n sity x in the regions of low and high calcium densitx
—0 andx—1, respectively. This analysis for low calcium
density allows us to establish the conditions that must be
g satisfied by the functiong,(n) andf(n) so that the absorb-
X_ ing state exists. Consequently, we understand why the ab-
—z=p (L =-pp)(l-X)y- 9 X ; ’
dt Pal (1= Pe) (1 =Xy = Pyx], © sorbing state is present for sets 1 and 3 but not for set 2.

To simplify the notation we defing.,=x and p.,=Y, SO
that Eqgs.(7) are rewritten as
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Furthermore, when the absorbing state is present, we obta

the critical exponent associated with the order parameter of

the model. For convenience we defirep,/(1-pp).
Equations(9) and (10) have a fixed pointx,y)=(0,0)
just for f,(0)=0. We are interested in the behavioroénd
y near to this fixed point. From the stationary condition on
Eqg. (9) we obtain the relatiory=rx/(1-x), which can be
approximated by=y/r whenx— 0. Using this approxima-
tion and the conditiorf,,(0)=0 in Eq. (10) we obtain the
stationary condition foy near the fixed point:

y<§fop(1) - fc|(0)> + yz(é-[fcl(o) - fop(l) - fcl(l)]

6
* lfo(2) - 2fop(l)]> +0(y*) + O(y*) + O(y®) =0,
(12

whose first nonzero coefficient determines the critical param
eterr.. For sets 1 and 2 the linear coefficient of Ef2) is
nonzero and

Ao
¢ fcl(o) ’

therefore the absorbing state exists for sdt E20, which
corresponds t@g=0.95 but does not exist for set 2, as we

(13)

can see from Table | and Fig. 1. For set 3 we must consider

the quadratic coefficient of Eq12), since the linear coeffi-
cient is zero, and the critical parameter is

_ 3foy(2)

ARETNGT) e
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FIG. 2. The simulation results for the fraction of open channels
y as a function of calcium density using set 3 forp,=0.1, p,
=0.5, andp,=0.9 and lattice sizé.=40. Comparison with mean
field solution.

and 3, we find thay(r)=(r-ry)#/A, with the critical expo-
nent B=1, as expected. For set A=1+3f,,(2)/[2f,,(1)]
—4foo(D+f(1)]/f(0) and for set 3, A=1-Ff,42)
+ia(2)]1/[2f4(D)].

V. SIMULATION

Numerical simulations were performed on two interpen-
etrating square lattices with periodic boundary conditions.
All figures in this section correspond to simulations using set
3 for the opening and closing functiorisee Table ). Each
run started with an initial configuration of open channels and

Consequently the absorbing state is present for set 3, witBalcium ions placed randomly on the lattice.

r.=6 andp;=0.857 (see Table | and Fig.)1As expected,

The results of the simulation for the density of open chan-

the critical behavior of the model depends on the functionsels as a function of the calcium density are presented in Fig.

fop(n) andfgy(n) for small values oh.

2, for lattice sizeL =40 andp,=0.1, 0.5, and 0.9. For com-

Therefore, from the analytical results, we confirm that theparison we also show the mean field behavior. The agree-

absorbing state is present just for sets 1 and 3.rFor, the
trivial solution (x,y)=(0,0), which corresponds to the ab-
sorbing state, is stable. At=r. there is a phase transition
since an active state witk# 0 andy+ 0 takes place for
>,

In the vicinity of the fixed pointx— 0) we have shown
thaty=rx with r. defined by Eq(13) (set 1 or Eq.(14) (set
3). In the region of high calcium density, whem- 1, from
the stationary condition on E¢10), and considering,(0)
=0 (a condition to exists the absorbing spasad f,(4)=0
(which is filled by sets 1, 2, and)3we can also find the
relation betweery and x. Therefore, wherx— 1, for sets 1
and 2 we havey=4f,y(3)(1-x)/[xfy(4)], whereas for set 3
we obtainy=6f,(2)(1-x)?/[x*f(4)] [22]. The asymptotic
behaviors forx— 0 andx— 1 are confirmed by the numeri-
cal solution presented in Fig. 1.

In the critical region(x—0 andy—0) the relation be-
tween the density of open channgland the order parameter
r is given by Eq.(12). From this equation we can obtain the

ment between simulation and mean field results is better for
high values ofp,. Note that in the simulation, high levels of
calcium density withx<<1 result in the closing of all chan-
nels, which is more evident for small values pf As dis-
cussed before, in the mean field approximation, whenl

we havey=6(1-x)?/x?, and all channels are closed just for
x=1.

In Figs. 3a) and 3b) we compare simulation and mean
field calculations. Figure (8 shows the density of open
channels and calcium ions as a functiorpgfind in Fig. 3b)
we can see the flugd) as a function ofy,, in both cases for
p,=0.5 andL=40. In the simulation, the flux is defined as
the number of created or annihilated particles while in mean
field it is given by ®=xp,p,. We can see that the critical
parameter from mean field calculatioi=0.857, from Eq.
(14)] is greater than that obtained from simulatigpj
=0.292, as expected. There is a good agreement between
simulation and mean field results in the region of snpgll

In Fig. 4 we present the calcium densityas a function of

critical exponent of the model in the mean field approxima-p, for several values ofy,. The critical parametepy (for

tion. Considering two nonzero terms of Ed.2) for sets 1

06191

each value ofy,) is obtained from a linear regression in the
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FIG. 3. The simulation results using set 3 faj the density of FIG. 5. The phase diagram for set 3 on thg p, plane, ob-

open channely and of calcium ionx as a function ofp, for p, tained from simulations for lattice sizds=10,20,40 and mean

=0.5 (lattice sizeL=40) and (b) the flux® as a function ofp, for field results. For simulations results region A represents the active

p.=0.5 (lattice sized=40). Comparison with mean field solution. states and regions B and C represent the absorbing Stetss

We havepg=0.292 for simulations ang@f=0.857 for mean field =0). For mean field results the active states are represented by

approximation. regions A and B and the absorbing states are represented by region
C.

region where density goes to zem—0). Results forpg

using calcium density or open_cha_nnels density are exactl¥a|ue, and regions B and C represent the absorbing states
the same. The density of calcium i0Rsjoes to zero con-  (y—v=0) For mean field results the active states are repre-

5 C
tinuously asp, approaches, as expected for the order pa- gonieq by regions A and B and the absorbing states is repre-
rameter. The critical behavior of the order parameter fouowssented by region C.

X~ (pp—pg)P. We compute the critical exponepgtfitting the
data obtained by simulations and find that it is in agreement

with 8=0.58, the expected value for two-dimensional mod- VI. DISCUSSION AND CONCLUSION
els in the directed percolation universality cl428].

L . 5
Simulation results are summarized in the phase diagram Ve Propose a simplified lattice model to study“Cely-
of Fig. 5, which depends on two parametgygand py,. Dif- namics in the ER membrane. Calcium channels and calcium

ferent lattice sizes results are shown pge0.1, 0.5, and 0.9. ions are placed in two interpenetrating square lattices which

Note thatp¢ is a crescent witlp, just for p,<0.8, as can also '€ connected in two ways) via calcium release andi)
be seen in Fig. 4. For comparison we show the mean ﬁe|@ecause transitions between channel states are calcium de-

results, which depend only gp,. For simulation results re- pendent. Changes in the channel state are stochastic pro-

gion A represents the active states, where the densities §FSS€S controlled by two functions, for opening and closing,
open channels and of calcium ions present a constant medf1ich depend on the calcium density in the channel neigh-

borhood.
X Fa——— We found that the model can present one absorbing state
03 e NN vt depending on the choice of the opening/closing functions. As
5 \ N Ao expected from Janssen-Grassberger conje€inghe phase
: . RN\ U fer 2 transition between the active and the absorbing states in our
% "x“\ g%;; model is in the direct percolation universality class. In fact,
02t \ ) RN =1 the critical exponent related with the order parameter in our

& model is in agreement witB=0.58, the expected value for a
L i \ 3 two-dimensional model[23]. Other simplified models
T % [4,17,19 introduced for calcium wave propagation modeling
are also in the directed percolation universality class. How-
ever, different from our model, these works were developed
in one dimension4,17] and just recently Timofeeva and
Coombes[18] have showed that a two-dimensional model
for calcium dynamics is in the direct percolation universality
class. Particularly, in the model presented by B&al. [4],
clusters of calcium channels are placed in a one-dimensional
FIG. 4. The simulation results using set 3 for calcium density lattice with a fixed intercluster distance. The clusters are
as a function oy, for several values gf, (indicated in the figure ~ composed of several subunits, which can be open or closed.
Lattice sizeL=40. The amount of calcium released depends on the number of
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open subunits in the cluster. Similarly to our model, changess f(0), equal to 0.1 in the first case and 0 in the second one
between subunits states depend on the local calcium densitigee Table)l This result can be understood in the mean field
The model presents a nonequilibrium phase transition beapproximation, since we establish the conditions that must be
tween propagating and abortive waves. Measurements of theytisfied by the functiong,,(n) and f.(n) in order for the
critical exponent associated with this transitithe survival  ahsorbing state to exist. As expected, the critical behavior of

prqbabilit')o show that it pelongs to the directed percolationine model depends on the functioh(n) andfe(n) for low
universality class. An important difference between our,

. : values ofn.

model and the one proposed by Bdiral. [4] is that they are Experimental results for cerebellar ce[l20] show that
focusing on wave propagation, differently from us, since we he fraction of open channels as a function of the logarithm
study only homogeneous solutions. In fact, our model is alséif lci P . Y
capable of giving nonhomogeneous solutions which can b caicium con'cent_ra_ltlon corresponds to a bell-shaped curve.
related to wave propagation. This will be a topic of future esplte_the S'mp“_c'ty of Qur_model, when th_e ab_sorblng_
investigation. Thereby our result agrees with the possibilitySt2t® €xists, there is a qualitative agreement with this experi-
that intracellular calcium dynamics could be an experimentalental result, since at very low and high calcium densities
realization of the direct percolation process, as suggested ! channels are closeigs. 1 and 2
Bar et al. [4]. However, the measurement of the critical ex-
ponent in living cells could not be possible, as pointed out by
Hinrichsen[24]_ ACKNOWLEDGMENTS

The critical behavior of the model is strongly affected by
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