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We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems
described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible
character is provided either by nonconservative forces or by the contact with heat baths at distinct tempera-
tures. The expression for the entropy production is deduced from a general definition, which is related to the
probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the
dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of
two Brownian particles each one in contact to a heat reservoir. We show also the connection between the
definition of entropy production rate and the Jarzynski equality.
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I. INTRODUCTION

A thermodynamic system in a stationary state is charac-
terized by having its properties such as energy and entropy
invariant in time. In this regime, there can be no flow of a
conserved quantity such as energy to or from the outside
because it cannot be created. However, there might be a flow
of a nonconserved quantity such as the entropy. The flux of
entropy to the outside will be equal to the entropy spontane-
ously generated inside the system. Only in thermodynamic
equilibrium there will be no production of entropy. A non-
equilibrium thermodynamic system in the stationary state is
thus characterized by a continuous production of entropy. In
a transient state, the change in the entropy is not only due to
the entropy flow but is also due to the spontaneous genera-
tion of entropy within the system so that, in general, the time
derivative of the entropy S of a system can be split into two
parts �1–3�

dS

dt
= � − � , �1�

where � is the entropy production rate, which is always
nonnegative, and � is the entropy flux rate from the system
to the environment. In the stationary regime, the entropy rate
dS /dt vanishes and �=�. If in addition the system is out of
equilibrium then �=��0; if it is in equilibrium �=�=0.
The quantity �, defined as the flux rate from inside to out-
side of the system, will be positive in the nonequilibrium
stationary state.

The construction of a microscopic theory of nonequilib-
rium thermodynamic systems is faced with two major prob-
lems related to entropy. The first concerns the definition of
nonequilibrium entropy and the second the definition of en-
tropy production. For systems in equilibrium, the entropy S
is related to the probability P��� of finding the system in a
certain state � by the well known Boltzmann-Gibbs expres-
sion

S = − �
�

P���ln P��� . �2�

For nonequilibrium systems, described by a time-dependent
probability distribution P�� , t�, it is natural to extend the

Boltzmann-Gibbs expression to these systems. The out-of-
equilibrium time-dependent entropy S�t� is then defined by

S�t� = − �
�

P��,t�ln P��,t� , �3�

and therefore varies in time according to the specific dynam-
ics that governs the evolution of the probability distribution
P�� , t�.

The second problem, the definition of entropy production
rate �, is equivalent to the problem of defining the entropy
flux rate � since these two quantities are related with each
other by means of Eq. �1�. These two quantities should nec-
essarily be related to the time evolution of P�� , t� and there-
fore cannot be defined in terms of P�� , t� alone. We need to
known the dynamics that governs its time evolution. We as-
sume that the system evolves in time according to a Markov-
ian process on a discretized phase space, defined by a tran-
sition rate W��� ��� from state � to state ��. Within this
framework, � and � will be related to W. The time evolu-
tion of the probability distribution is assumed to be governed
by the master Eq �4,5�.

d

dt
P��,t� = �

��

J�����,t� , �4�

where

J�����,t� = W������P���,t� − W������P��,t� �5�

is the probability current. Here we will be concerned mainly
with the study of the Fokker-Planck equation �4–6�, which
we regard as coming from an appropriate continuous limit of
the master Eq. �4�, as we shall see.

From the probability current, one determines the flux rate
�E of any state function E���, which is

�E�t� = − �
�,��

J�����,t�E��� , �6�

and clearly vanishes in the stationary state as it should. A
natural way to define the entropy flux rate is as follows:
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��t� = − �
�,��

J�����,t�ln W������ . �7�

From this definition we see immediately by means of Eqs.
�1�, �3�, and �4� that the entropy production rate is given by

��t� = − �
�,��

J�����,t�ln�W������P��,t�� , �8�

an expression that is always nonnegative and equivalent to
that introduced by Schnakenberg �7�. In thermodynamic
equilibrium, when microscopic reversibility takes place, J
vanishes and both � and � vanish as well. It worth mention-
ing that this definition of entropy production makes no
a priori reference to any thermodynamic quantity such as
dissipated energy as is usually done. It is a universal defini-
tion in the same sense as the definition of entropy �Eq. �3�� is
universal.

The production of entropy in systems described by a sto-
chastic process or by a master equation has been the subject
of several studies �8–25�. This includes the numerical calcu-
lation of entropy production in nonequilibrium lattice gas
models �16�. Here we are concerned with the production of
entropy in nonequilibrium interacting particle systems de-
scribed by Langevin equations or, in an equivalent way, by
the associate Fokker-Planck equation, which is the appropri-
ate framework to describe nonequilibrium system under tem-
perature gradients �10,25�. Our main purpose here is to use
expressions �7� and �8� to determine the entropy flux rate �
and the entropy production rate � in irreversible systems
described by Langevin equations. The production of entropy
in systems described by Langevin equations in the over-
damped limit has been previously studied �17,18�. Here we
consider the general case. Systems described by a Fokker-
Planck �4–6� equation follows a Markovian process in con-
tinuous time and continuous configuration space. The irre-
versible character comes from the type of forces entering the
Langevin equations or from the type of contact of the system
with the environment. As we shall see, if the system is in
contact with a heat reservoir that keeps the temperature T
constant but the forces are nonconservative the resulting en-
tropy production rate is strictly positive. We will show that in
this case the dissipated power P is related to the entropy
production rate by �=P /T, which is a fluctuation dissipation
type relation.

When the forces become conservative but the system is in
contact with more than one heat reservoirs at distinct tem-
peratures the resulting entropy production rate is also non-
zero. We apply the results obtained here to a simple system
of this type consisting of two Brownian particles connected
with each other by a harmonic force and each one to heat
baths at distinct temperatures �26,27�. Whenever the tem-
peratures are distinct there will be a heat flow through the
system from one reservoir to the other. By calculating the
production of entropy we determine the thermal conduc-
tance. Although the forces are conservative, the difference in
temperatures keeps the system in a nonequilibrium state. The
production of entropy vanishes only when the forces are con-
servative and the system is in contact with only one heat
bath.

We use the expressions �7� and �8� for the entropy flux
and entropy production to determine an equality of the
Jarzynski type �28–32�. This is carried out by considering the
ratio of the probability of a given trajectory in phase space
and the probability of the time reversal trajectory.

II. FOKKER-PLANCK EQUATION

A. Langevin equations

We consider a system of n interacting particles that
evolves in time according to the following set of coupled
Langevin equations

m
dvi

dt
= Fi − �vi + Fi�t� , �9�

dxi

dt
= vi, �10�

where xi and vi are the position and velocity of the ith par-
ticle. We are assuming that the mass m and the coefficient �
are the same for all particles and that the force Fi acting on
the ith particle depends only on the positions. The forces Fi
might not be conservative. The quantity Fi�t� is the random
force, a stochastic variable having the properties

�Fi�t�� = 0, �11�

and

�Fi�t�F j�t��� = 2�Ti�ij��t − t�� , �12�

where, Ti�0 is a constant that might be distinct for each
particle.

The associate Fokker-Planck equation, that gives the time
evolution of the probability distribution P�x ,v , t�, where x
and v denote the vectors whose components are the variables
	xi
 and 	vi
, respectively, is given by

�

�t
P = −

1

m
�

i

�

�vi
�FiP − �viP� − �

i

�

�xi
�viP�

+
�

m2�
i

Ti
�2

�vi
2 P , �13�

which we write in the form

�

�t
P = − �

i
�Ki +

�

�vi
Ji� , �14�

where Ki and Ji are given by

Ki =
Fi

m

�

�vi
P + vi

�

�xi
P , �15�

and

Ji = −
�vi

m
P −

�Ti

m2

�

�vi
P . �16�

The Fokker-Planck equation should be solved inside a
certain region of the space spanned by the joint sets of vari-
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ables x= 	xi
 and v= 	vi
. We assume that at the boundary of
this region the probability distribution P�x ,v , t� vanishes.

The set of Langevin Eqs. �9� and �10� and the associate
Fokker-Planck Eq. �13� are assumed to describe a system
that is in contact with several heat baths, each one having a
temperature Ti. The contact is accomplished by the random
forces Fi. If Ti=T is independent of i then we may say that
the system is in contact with just one heat reservoir at tem-
perature T. If in addition the forces Fi are conservative then
in the stationary state the system is in equilibrium.

B. Equilibrium conditions

At the stationary state the probability distribution P�x ,v�
is independent of time and is the solution of

�
i
�Ki +

�

�vi
Ji� = 0. �17�

When microscopic reversibility holds we shall see in Sec. IV
that Ji=0, that is,

�vi

m
P +

�Ti

m2

�

�vi
P = 0, �18�

which implies that P must be of the form

P�x,v� = ��x���v� , �19�

that is x and v are independent random vector variables.
Setting Eq. �19� into the definition �15� of Ki, it follows that

Ki = vi��−
Fi

Ti
� +

�

�xi
�� . �20�

But since Ji=0, it follows from Eq. �17� that the summation
of Ki must vanish, that is

�
i

Ki = 0. �21�

Taking into account that the expression inside the parenthe-
ses in Eq. �20� depends only on x and that Eq. �21� must be
held for any velocity, it follows that each term of the sum-
mation in Eq. �21� must vanish, that is, Ki=0, so that

�

�xi
ln � =

Fi

Ti
. �22�

From this equation it follows immediately that

1

Ti

�Fi

�xj
=

1

Tj

�Fj

�xi
, �23�

for any pair i , j, which is the desired equilibrium condition.
That is, microscopic reversibility implies that the forces Fi
and the parameters Ti must be such that they satisfy Eq. �23�.

If the temperatures are all the same,

Ti = Tj , �24�

then

�Fi

�xj
=

�Fj

�xi
, �25�

that is, the forces Fi must be conservative. In this case the
system is in thermodynamic equilibrium and is described by
the canonical Gibbs probability distribution

P�x,v� =
1

Z
exp	− 	H�x,v�
 , �26�

which follows directly from Eqs. �17� and �22�, where

H�x,v� =
1

2
m�

i
vi

2 + V�x� �27�

and Ti=1 /	. In addition, the forces are related to the poten-
tial V by

Fi = −
�V
�xi

. �28�

When the conditions �25� and �24� are valid, the Langevin
equations and the associate Fokker-Planck equation describe
a system with conservative forces in contact with a heat res-
ervoir at temperature T=1 /	. However, our aim here is to
study systems that do not satisfy these conditions so that, in
the stationary state, they are irreversible. We distinguish two
types of nonequilibrium situations. In the first, the forces Fi
are conservative but the temperatures Ti are not all the same.
In the second, the temperatures are all the same but the
forces Fi are nonconservative.

C. Entropy production

To determined an expression for the entropy flux rate and
entropy production rate we follow a method similar to that
used by Seifert �17� for the case of overdamped motion. We
start from the entropy S, defined by

S = −
 P ln Pdxdv . �29�

Its time derivative is

dS

dt
= −
 ln P

�P

�t
dxdv , �30�

or, using the Fokker-Planck equation as given by Eq. �14�,

dS

dt
= �

i

 Ki ln Pdxdv + �

i

ln P
�Ji

�vi
dxdv . �31�

The integral in the first summation vanishes identically as
can be seen by replacing Ki by its definition, given by Eq.
�15�, and by performing an integration by parts. The result is


 Ki ln Pdxdv = −
 �Fi

m

�P

�vi
+ vi

�P

�xi
�dxdv = 0, �32�

where the second equality is obtained by another integration
by parts and by taking into account that Fi depends on x but
not on v. Using this last result and integrating the second
integral in Eq. �31� by parts gives
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dS

dt
= − �

i

 Ji

�

�vi
ln Pdxdv . �33�

But from the definition of Ji,

�

�vi
ln P = −

mvi

Ti
−

m2

�Ti

Ji

P
, �34�

so that

dS

dt
= �

i

 �m

Ti
viJi +

m2

�Ti

Ji
2

P
�dxdv . �35�

The second term, which is always nonnegative, is identified
as the entropy production rate

� = �
i

m2

�Ti

 Ji

2

P
dxdv . �36�

A similar expression for � has been obtained for the case of
overdamped motion �17,18�. In accordance with relation �1�,
the entropy flux rate should be then

� = − �
i

m

Ti

 viJidxdv . �37�

In the stationary state, dS /dt=0 and �=�. In equilibrium
Ji=0 and both the entropy flux rate and entropy production
rate vanish, �=�=0. In nonequilibrium stationary state,
Ji�0 and �=��0.

Equations �36� and �37� give the desired expression for
the entropy production rate and entropy flux rate for a system
described by the Fokker-Planck Eq. �13�. In Sec. IV, we will
show that these two expressions can actually be deduced
from the general expressions �7� and �8� by an appropriate
master equation representation of the Fokker-Planck Eq.
�13�.

D. Entropy flux and energy dissipation

Using the definition of Ji, given by Eq. �16�, the entropy
flux rate may be written as

� = �
i

 � �

Ti
vi

2P +
�

m
vi

�

�vi
P�dxdv . �38�

Integrating the second integral by parts,

� = �
i

 � �

Ti
vi

2P −
�

m
P�dxdv , �39�

or

� = �
i

1

Ti
���vi

2� −
�

m
Ti� . �40�

Let us determine the average rate of energy dissipation Pi
of each particle. It has two contributions: one is the work
dissipated per unit time, viFi, and the other is the decrease in
kinetic energy per unit time, �m /2��d /dt�vi

2. That is

Pi = �viFi� −
m

2

d

dt
�vi

2� . �41�

Now, from the Fokker-Planck equation, it is straightforward
to obtain the result

m

2

d

dt
�v j

2� = �v jFj� − ��v j
2� +

�

m
Tj , �42�

which follows after some appropriate integration by parts.
Replacing this result in Eq. �41�, we get an equivalent ex-
pression for the dissipation power of each particle, namely,

P j = ��v j
2� −

�

m
Tj . �43�

From this result we may write the entropy flux rate as

� = �
i

Pi

Ti
. �44�

If the temperatures are the same Ti=T then

� =
P
T

. �45�

Where P=�iPi is the total energy dissipated per unit time.
In the stationary state, �vi

2� is a constant so that
d�vi

2� /dt=0 and Pi= �viFi�. We are then left with the follow-
ing expression:

� = � = �
i

Pi

Ti
= �

i

1

Ti
�viFi� , �46�

valid in the stationary regime. Using the interpretation that
each particle i is in contact with a heat reservoir at tempera-
ture Ti, this result says that the entropy production rate is a
sum of terms each one being the ratio between the dissipa-
tion of energy per unit time, that is, the dissipated power, and
the temperature of the heat bath.

Let us consider now the case in which the forces are con-
servative in which case Fi=−�V /�xi. From the Fokker-
Planck equation and after an appropriate integration by parts
it is straightforward to show that

d

dt
�V� = �

i
�vi

dV
dxi
� = − �

i

�viFi� . �47�

Therefore, the total dissipated power is

P = �
i

Pi = −
d

dt��V� + �
i

m

2
�vi

2�� , �48�

If, in addition, Ti=T is the same for all sites, then the entropy
flux rate is given by

� = −
1

T

d

dt��V� + �
i

m

2
�vi

2�� . �49�

From this equation we see that the entropy flux rate is equal
to the ratio between the decrease in the internal energy per
unit time and the temperature T of the heat bath.
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III. THERMAL CONDUCTION IN A SIMPLE SYSTEM

A. Equations of motion

We apply the previous results to a nonequilibrium simple
system consisting of two coupled particles of the same mass
m, moving along a straight line. They interact with each
other and each one is in contact with thermal reservoirs at
different temperatures. Their movements are governed by the
Langevin equations

m
dv1

dt
= − k�x1 − x2� − k�x1 − �v1 + F1�t� , �50�

and

m
dv2

dt
= − k�x2 − x1� − k�x2 − �v2 + F2�t� , �51�

where xi and vi=dxi /dt are the position and velocity of the
i-th particle. The quantities k and k� are spring constants and
� is the friction constant. The random forces F1 and F2 are
Gaussian white noises with the properties

�Fi�t�� = 0, �52�

�Fi�t�F j�t��� = 2�Ti�ij��t − t�� , �53�

where T1 and T2 are the temperature of the thermal reservoirs
connected to particles 1 and 2, respectively.

If we define the forces F1�x1 ,x2� and F2�x1 ,x2� by

F1 = − k�x1 − x2� − k�x1, �54�

and

F2 = − k�x2 − x1� − k�x2, �55�

then Eqs. �50� and �51� have the same structure of Eq. �9�.
The associate Fokker-Planck equation for the probability
density P�x1 ,x2 ,v1 ,v2 , t� is given by

�

�t
P = −

�

�x1
�v1P� −

�

�x2
�v2P� −

1

m

�

�v1
�F1P� −

1

m

�

�v2
�F2P�

+ 

�

�v1
�v1P� + 


�

�v2
�v2P� +

�1

2

�2

�v1
2 P +

�2

2

�2

�v2
2 P ,

�56�

where 
=� /m and �i=2�Ti /m2.
To determine the entropy production rate it is necessary to

compute averages of the type �xixj�, �xiv j� and �viv j�. Since
the Langevin Eqs. �50� and �51� are linear equations they can
be solved exactly and so can the Fokker-Planck equation.
From the solution P�x1 ,x2 ,v1 ,v2 , t� of the Fokker-Planck
equation we determine the desired averages. Here, however,
we follow a distinct procedure. Instead of finding the prob-
ability P itself we set up equations for those averages and
solve them. From the Fokker-Planck equations it is straight-
forward to reach the following equations for the averages

d

dt
�x1

2� = 2�x1v1� , �57�

d

dt
�x2

2� = 2�x2v2� , �58�

d

dt
�x1x2� = �x1v2� + �x2v1� , �59�

d

dt
�x1v1� = �v1

2� − K�x1
2� + L�x1x2� − 
�x1v1� , �60�

d

dt
�x2v2� = �v2

2� − K�x2
2� + L�x1x2� − 
�x2v2� , �61�

d

dt
�x1v2� = �v1v2� − K�x1x2� + L�x1

2� − 
�x1v2� , �62�

d

dt
�x2v1� = �v2v1� − K�x1x2� + L�x2

2� − 
�x2v1� , �63�

d

dt
�v1

2� = − 2K�x1v1� + 2L�x2v1� − 2
�v1
2� + �1, �64�

d

dt
�v2

2� = − 2K�x2v2� + 2L�x1v2� − 2
�v2
2� + �2, �65�

d

dt
�v1v2� = − K�x1v2� + L�x2v2� − K�x2v1� + L�x1v1�

− 2
�v1v2� , �66�

where K= �k+k�� /m and L=k /m.

B. Entropy production in the steady state

In the stationary regime, the set of equations above are
reduced to following set of equations

�x1v1� = �x2v2� = �v1v2� = 0, �67�

�x2v1� + �x1v2� = 0, �68�

�v1
2� − K�x1

2� + L�x1x2� = 0, �69�

− K�x1x2� + L�x1
2� − 
�x1v2� = 0, �70�

− K�x1x2� + L�x2
2� − 
�x2v1� = 0, �71�

�v2
2� − K�x2

2� + L�x1x2� = 0, �72�

2L�x2v1� − 2
�v1
2� + �1 = 0, �73�

2L�x1v2� − 2
�v2
2� + �2 = 0. �74�

These equations are linear in the averages and can readily be
solved with the results
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�v1
2� =

�1 + �2

4

+

K
��1 − �2�
4�L2 + K
2�

, �75�

�v2
2� =

�1 + �2

4

−

K
��1 − �2�
4�L2 + K
2�

, �76�

�x1v2� = − �x2v1� =
L��1 − �2�

4�L2 + K
2�
, �77�

�x1
2� =

K��1 + �2�
4
�K2 − L2�

+

��1 − �2�

4�L2 + K
2�
, �78�

�x2
2� =

K��1 + �2�
4
�K2 − L2�

−

��1 − �2�

4�L2 + K
2�
, �79�

�x1x2� =
L��1 + �2�

4
�K2 − L2�
. �80�

In the stationary state �=� and we may use expression
�40� for the entropy flux rate to get the entropy production
rate, given by

� =
�

T1
�v1

2� +
�

T2
�v2

2� − 2
�

m
, �81�

or

� =
2
2

�1
�v1

2� +
2
2

�2
�v1

2� − 2
 . �82�

Taking into account the results above for �v1
2� and �v2

2� and
after straightforward calculations we arrive at the following
expression for the entropy production rate

� =
��1 − �2�2

2�1�2


L2

L2 + K
2 . �83�

Making the substitutions K= �k+k�� /m, L=k /m, 
=� /m,
and �i=2�Ti /m2, we get

� =
�T1 − T2�2

T1T2

�k2

2�mk2 + �k + k���2�
, �84�

From the relation �=��T1−T2�2 /T1T2 between entropy pro-
duction � and the thermal conduction � �33�, we get

� =
�k2

2�mk2 + �k + k���2�
. �85�

which agrees with the result obtained by a distinct method
�27�.

IV. PRODUCTION OF ENTROPY IN A MARKOVIAN
PROCESS

A. Master equation representation

In this section we demonstrate two important results that
we have used previously. The first one is related to the cur-
rent Ji as defined by Eq. �16�. In the steady state and if

microscopic reversibility holds then Ji=0 for each i. The
second result refers to the expressions �36� and �37� for the
entropy production and entropy flux rates. We show here that
these two expressions can be obtained from formulas �7� and
�8�, valid for systems described by a master equation. The
demonstration begins by discretizing the Fokker-Planck Eq.
�13� transforming it on a master equation of the form

�

�t
P��� = �

��

	W������P���� − W������P���
 , �86�

where �= �x ,v� and ��= �x� ,v�� denote discretized states in
phase space and W��� ��� is the rate of transition from the
state � to the state ��. To simplify the notation we are omit-
ting the time dependence of P���.

We use two types of discretizations. In the first we assume
that the velocity vi will increase or decrease by an amount a.
This procedure is used to write down the following approxi-
mations for the derivatives of P with respect to vi

�2

�vi
2 P =

1

a2 	P�x,vi+� − 2P�x,v� + P�x,vi−�
 �87�

and

�

�vi
�viP� =

1

2a
	�vi + a�P�x,vi+� − �vi − a�P�x,vi−�
 .

�88�

The notation vi
 stands for the vector whose components are
the same as those of the vector v except the i-component
which equals vi
a.

In the second type of discretization the position xi will
increase by an amount bvi whereas the velocity vi will in-
crease by Fib /m. This procedure is used to write down the
approximation

−
1

m

�

�vi
�FiP� −

�

�xi
�viP� =

1

b
	P�xi−�,vi−�� − P�x,v�
 .

�89�

The notation xi
� stands for the vector whose components
are the same as those of the vector x except the i-component
which equals xi
bvi and vi
� stands for the vector whose
components are the same as those of the vector v except the
i-component which equals vi
bFi /m.

Using the approximations given by Eqs. �87�–�89�, the
Fokker-Planck Eq. �13� can be represented in the form of a
generalized birth and death master equation,

�

�t
P�x,v� = �

i

	Ai
+�x,vi−�P�x,vi−� − Ai

−�x,v�P�x,v�


+ �
i

	Ai
−�x,vi+�P�x,vi+� − Ai

+�x,v�P�x,v�


+ �
i

	Bi�xi−�,vi−��P�xi−�,vi−�� − Bi�x,v�P�x,v�
 ,

�90�

where Ai

�x ,v� are the transition rates from �x ,v� to �x ,vi
�

and are given by
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Ai
+�x,v� =

�Ti

m2a2 −
�vi

2ma
, �91�

and

Ai
−�x,v� =

�Ti

m2a2 +
�vi

2ma
, �92�

where a is chosen to be sufficiently small so that Ai

�x ,v�

will be nonnegative. The quantity Bi�x ,v�, the transition rate
from �x ,v� to �xi+� ,vi+��, is

Bi�x,v� =
1

b
. �93�

In the limit a→0 and b→0, the master Eq. �90� turns into
the Fokker-Planck Eq. �13�.

B. Microscopic reversibility

The state of thermodynamic equilibrium of a system de-
scribed by a stochastic process is identified as the state obey-
ing microscopic reversibility, which occurs whenever the
probability of any trajectory equals the probability of its time
reverse. In a stochastic Markovian process this condition is
fullfield if �34�

T������P���� = T������P��� , �94�

for any to state � and ��, where T��� ��� is the conditional
probability of the transition �→�� and P��� is the stationary
probability distribution. In the continuous time limit, we use
the relation T��� ���=�tW��� ���, valid for small time inter-
val �t, to get the microscopic reversibility condition for sys-
tem described by the master Eq. �86�,

W������P���� = W������P��� , �95�

From Eq. �95�, we get two independent conditions,

Ai
+�x,vi−�P�x,vi+� = Ai

−�x,v�P�x,v� , �96�

and

Bi�xi−�,vi−��P�xi−�,vi−�� = Bi�x,v�P�x,v� . �97�

From this last condition and using Eqs. �89� and �93� we get

1

m

�

�vi
�FiP� +

�

�xi
�viP� = 0. �98�

Therefore, the quantity Ki defined by Eq. �15� vanishes,
which is one of the equilibrium conditions found earlier. The
condition given by Eq. �96� provides

��Ti −
ma

2
��vi − a��P�x,vi−� = ��Ti +

ma

2
�vi�P�x,v� .

�99�

Expanding this expression in powers of a, the linear term in
a gives

�Ti
�

�vi
P�x,v� + m�viP�x,v� = 0 �100�

from which follows that Ji, defined by Eq. �16�, vanishes,
which is the other equilibrium condition.

C. Conserved quantity

Let us consider an elementary trajectory �→�� in phase
space occurring during a small interval of time �t. Suppose
that a quantity L��� ���, such as the work done by noncon-
servative forces, is defined along this elementary trajectory.
The flux of this quantity during this time interval is

�
��,�

T������P���L������ , �101�

where T��� ���=�tW��� ��� is the transition probability
from � to ��. The flux per unit time �L is the ratio of this
quantity and �t, that is,

�L = �
��,�

W������P���L������ . �102�

If the forces are conservative, that is, if
L��� ���=E���−E����, which happens for instance in the
case where L��� ��� is the work of conservative force, we
may write

�E = − �
��,�

	W������P���� − W������P���
E��� .

�103�

In this form, which is identical to Eq. �6�, it is easy to see
that �E vanishes in the stationary state. Indeed, the summa-
tion in �� is identically zero in the stationary state. From the
master equation it follows that the time derivative of
U= �E���� is

dU

dt
= − �E, �104�

which again shows that �E vanishes in the stationary state.
The flux is defined from the system to the environment.

D. Entropy production

We assume that the entropy flux rate � in a system de-
scribed by a Markovian process governed by the master Eq.
�86� is given by the expression �102� in which L��� ��� is
replaced by ln�W��� ��� /W�� �����, that is

� = �
��,�

W������P���ln
W������
W������

. �105�

We remark that this expression can be understood as the
average of ���W��� ���ln W��� ��� /W�� ���� and in this
sense it can actually be used in numerical simulations to
calculate the entropy flux rate �16�. Equation �105� can also
be written in the form

� = �
��,�

	W������P��� − W������P����
ln W������ ,

�106�

which is identical to expression �7�. Notice that,
ln�W��� ��� /W�� ����� cannot, in general, that is, for a irre-
versible system, be written as a difference of the type
E���−E����, and therefore it does not necessarily vanish,
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except under thermodynamic equilibrium, in which case this
quantity equals ln P����−ln P���, as is evident from Eq.
�95�.

Now, from the entropy of a nonequilibrium thermody-
namic system, assumed to be given by Eq. �3�, it follows that
the rate in which the entropy of the system varies is

dS

dt
= − �

�
� �

�t
P����ln P��� . �107�

Using the master Eq. �86�, Eq. �107� can be written as

dS

dt
= − �

�,��

	W������P���� − W������P���
ln P��� ,

�108�

or, equivalently,

dS

dt
= �

�,��

W������P���ln
P���
P����

. �109�

The entropy production rate is obtained by inserting ex-
pressions �105� and �109� into relation �1�. We get the fol-
lowing expression for the entropy production rate

� = �
�,��

W������P���ln
W������P���
W������P����

, �110�

which can be written in the suggestive form

� =
1

2 �
�,��

	W������P��� − W������P����
ln
W������P���
W������P����

.

�111�

In this form � is manifestly nonnegative and can be regarded
as an extension of the entropy production rate introduced by
Schnakenberg �7�.

Using the transition rates appropriate for the master equa-
tion representation �Eq. �90�� of the Fokker-Planck equation,
the entropy flux rate is explicitly given by

� = �
i

�
x,v

Ai
+�x,v�P�x,v�ln

Ai
+�x,v�

Ai
−�x,vi+�

+ �
i

�
x,v

Ai
−�x,v�P�x,v�ln

Ai
−�x,v�

Ai
+�x,vi−�

+ �
i

�
x,v

Bi�x,v�P�x,v�ln
Bi�x,v�

Bi�xi−�,vi−��
. �112�

Using the transitions rates �Eqs. �91�–�93��, we get the result

� = �
i

�
x,v

� �

Ti
vi

2 −
�

m
�P�x,v� , �113�

that is,

� = �
i
� �

Ti
�vi

2� −
�

m
� , �114�

which is identical to the expression �40� and therefore
equivalent to entropy flux rate given by Eq. �37�.

The rate of production of entropy � can be determined
analogously,

� = �
i

�
x,v

Ai
+�x,v�P�x,v�ln

Ai
+�x,v�P�x,v�

Ai
−�x,vi+�P�x,vi+�

+ �
i

�
x,v

Ai
−�x,v�P�x,v�ln

Ai
−�x,v�P�x,v�

Ai
+�x,vi−�P�x,vi−�

+ �
i

�
x,v

Bi�x,v�P�x,v�ln
Bi�x,v�P�x,v�

Bi�xi−�,vi−��P�xi−�,vi−��
.

�115�

It is straightforward but cumbersome to show that this ex-
pression leads us to the result

� = �
i

m2

�Ti

 Ji

2

P
dxdv , �116�

which is identical to the expression �36� found earlier. It
suffices to replace Ai


 and Bi by their definitions, given by
Eqs. �91�–�93�, expand P�x ,vi
� up to second order in a and
use relation �89�. After taking the limit a→0 and using the
definition of Ji, given by Eq. �16�, we arrive at the above
result.

E. Jarzynski equality

Here we follow a method similar to that used by Crooks
�30,31� and by Gaveau et al. �32�. We discretize the time in
intervals �t so that �tW��� ���=T��� ��� will be the transi-
tion probability from � to ��. Let us consider a trajectory in
phase space

C = ��0 → �1 → �2 → . . . → ��� , �117�

occurring during an interval of time equal to ��t. The prob-
ability of occurrence of such a trajectory will be

P�C� = T������−1� . . . T��2��1�T��1��0�P��0� , �118�

which can also be written as

P�C� = ��t��W������−1� . . . W��2��1�W��1��0�P��0� .

�119�

Let us consider now the time reversal path CR, related to C
and defined by

CR = ��� → ��−1 → . . . → �1 → �0� , �120�

and its probability of occurrence

P�CR� = T��0��1�T��1��2� . . . T���−1����P���� , �121�

which can also be written as

P�CR� = ��t��W��0��1�W��1��2� . . . W���−1����P���� ,

�122�

with the following understanding: whenever W��� ��� in Eq.
�119� is equal to Ai

+ then W�� ���� in Eq. �122� will be equal
to Ai

− and vice versa.
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The microscopic reversibility happens when a given tra-
jectory and its reverse have the same probability of occur-
rence, that is, P�C�= P�CR�, so that

T��1��0�P��0� = T��0��1�P��1� , �123�

or

W��1��0�P��0� = W��0��1�P��1� , �124�

which we use before in Eq. �95�.
Let us consider the ratio

R =
P�CR�
P�C�

= �
j=1

�
W�� j−1�� j�
W�� j�� j−1�

P����
P��0�

. �125�

One finds that

�R� = �
C

RP�C� = �
C

P�CR� = 1, �126�

so that

�eln R� = 1. �127�

Now the ratio R can be written in the form

R = �
j=1

�
W�� j−1�� j�P�� j�

W�� j�� j−1�P�� j−1�
, �128�

where P�� j� is understood as the probability distribution at
time t= j�t, solution of the master equation with the initial
condition P��0� at time t=0. From Eq. �128�, it follows

ln R = − �
j=1

�

��� j,� j−1��t , �129�

where

����,�� =
1

�t
ln

W������P���
W������P����

�130�

is the intrinsic entropy production rate, with the convention
that � is the state occurring at a given time t and �� at a later
time t+�t. A identity of the Jarzynski type �28–31� follows
then

�exp�− �
j=1

�

��� j,� j−1��t�� = 1, �131�

where the average is to be taken over the probability distri-
bution �Eq. �119�� of the path C. The intrinsic entropy flux
rate is given by

����,�� =
1

�t
ln

W������
W������

, �132�

so that

����,�� = ����,�� +
1

�t
�S���� − S���� , �133�

where S���=−ln P��� is the intrinsic entropy. Taking into
account that the entropy production rate �, as given by Eq.
�110�, is the average of �, that is, �= ����� ,���, and that the
entropy flux rate �, as given by Eq. �105�, is the average of
�, that is, �= ����� ,���, we get, in the limit �t→0

� = � +
dS

dt
, �134�

where S is the average of S, that is, S= �S�.
In the continuous time limit we may write the Jarzynski

identity as

�exp�− 

0

t

�dt�� = 1, �135�

where the integral extends over a given trajectory in phase
space or, taking into account Eq. �133�,

�exp�− 

0

t

�dt − �S�t� − S�0���� = 1. �136�

From expression �44� for � and bearing in mind that
�= ��� we get

�exp��
i

1

Ti
�m

2
�vi

2�t� − vi
2�0�� − 


0

t

viFidt�
− �S�t� − S�0���� = 1, �137�

which is the Jarzynski equality for a nonequilibrium systems
of particles following a Fokker-Planck equation describing
the contact with several heat baths at distinct temperatures.

V. CONCLUSION

We have determined an expression for the entropy pro-
duction rate and entropy flux rate in irreversible systems de-
scribed by a Fokker-Planck equation. The irreversible char-
acter is represented either by nonconservative forces or by
the contact of the system with heat baths at different tem-
peratures. The expression for the entropy production was ob-
tained by using a master equation representation of the
Fokker-Planck and through a definition of entropy produc-
tion rate and entropy flux rate that involve the transition rates
and in this sense is related to the ratio between the probabili-
ties of a trajectory in phase space and its time reversal. We
have shown that, in the stationary state, the entropy produc-
tion, or the entropy flux, is related to the dissipated power.
More precisely, we have shown that the entropy production
in a system in contact with several heat baths is a sum of
terms, each one being the ratio between the dissipated power
and the temperature of the corresponding heat bath. Usually
this relation is actually used to define entropy flux. The defi-
nitions of entropy production and entropy flux as we used
here make no a priori reference to the dissipated power. In
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this sense they are universal definitions being valid for gen-
eral open systems not necessarily in contact with heat reser-
voirs. As an example of our formalism, we have used the
expression for the entropy production rate to determine the
heat conductance of a simple system consisting of two

Brownian particles, each one in contact to heat reservoirs at
distinct temperatures. Our results agree with those obtained
by other methods. Finally, we have made a connection be-
tween the definition of entropy production rate and the
Jarzynski equality.
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