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Fourier’s law from a chain of coupled anharmonic oscillators under energy-conserving noise
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We analyze the transport of heat along a chain of particles interacting through anharmonic potentials consisting
of quartic terms in addition to harmonic quadratic terms and subject to heat reservoirs at its ends. Each particle
is also subject to an impulsive shot noise with exponentially distributed waiting times whose effect is to change
the sign of its velocity, thus conserving the energy of the chain. We show that the introduction of this energy-
conserving stochastic noise leads to Fourier’s law. The behavior of the heat conductivity for small intensities of
the shot noise and large system sizes is found to obey a finite-size scaling relation. We also show that the heat
conductivity is not constant but is an increasing monotonic function of temperature.
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I. INTRODUCTION

The derivation of Fourier’s law, or any other macroscopic
law, from the microscopic underlying motion of particles
constitutes a major task in condensed matter physics. This task
comprises not only the derivation itself but also the problem
of setting up the appropriate microscopic model. The simplest
model one could conceive to derive Fourier’s law is a chain
of particles interacting through harmonic potentials in contact
with two heat reservoirs at each end. However, it has been
shown by Rieder et al. [1] that this model does not lead to
Fourier’s law. Since then, several microscopic models have
been introduced and studied [2–22], some of them leading
instead to the so-called anomalous Fourier’s law.

Fourier’s law states that the heat flux J is proportional to
the gradient of the temperature T , that is,

J = −κ
dT

dx
, (1)

where κ is the heat conductivity. If we consider a small bar
of length L subject to a difference in temperature �T , then
J = κ�T/L. Thus a microscopic model for Fourier’s law
should predict a heat flux that decreases with L, for a fixed
value of �T , according to

J ∼ 1

L
. (2)

This amounts to saying that κ is finite. If, instead, we find that
J ∼ L−α with α < 1, then we are faced with the anomalous
Fourier’s law. In this case we may say that κ is infinite, as in
the harmonic chain [1], diverging according to κ ∼ La , with
exponent a = 1 − α. Notice that L should be macroscopically
small, so that Eq. (2) is the expression of Fourier’s law, but
microscopically large, so that a microscopic model for this law
would yield Eq. (2) for sufficiently large L.

The heat flux J of the linear harmonic chain placed between
two heat reservoirs has been shown [1] to be independent of
the size L of the chain, meaning that the heat conductivity κ

is infinite. This result is a direct consequence of the ballistic
transmission of heat by the elastic waves, from one reservoir
to the other. A consequence of this result is that a perfectly
harmonic crystal has an infinite heat conductivity [23]. In real
crystals the heat conductivity is manifestly finite. This is due
to the presence of lattice imperfections, impurities, and other
factors that act as scattering centers for the waves carrying

energy, such as the umklapp process [24]. These factors make
the heat conduction a diffusion process which implies Fourier’s
law. The crossover from ballistic to diffusive behavior can also
be understood in terms of the dephasing of the elastic waves
caused by the scattering events just mentioned. This process
is characterized by a dephasing length [25,26] which, when
smaller than the size of the system, gives the linear temperature
profile expected from Fourier’s law. Thus, a possible ingredient
in the microscopic derivation of Fourier’s law consists of the
presence of a diffusive motion at the microscopic level.

One way of introducing this ingredient is by means of
stochastic collisions that change the sign of the velocity of the
particles. This can be accomplished in the form of impulsive
shot noises with exponentially distributed waiting times [22].
Two key properties are required when devising such a noise.
First, it should conserve the total energy of the system because
any variation of the energy of the system should only be due to
the contact with the heat reservoirs. Changing the sign of the
velocity does not alter the energy. Second, it should make the
system ergodic even when it is not coupled to the heat baths.
A harmonic chain with this type of shot noise has been indeed
studied by Dhar et al. [22]. They showed that this model can
be mapped into the self-consistent harmonic crystal introduced
by Bolsteri et al. [27] and studied by Bonetto et al. [11]. In
this model each particle is in contact with independent heat
reservoirs, whose temperatures are chosen so that, in the steady
state, there is no exchange of heat between these reservoirs
and the chain. The contact with the reservoirs is regarded
as a procedure to make the system ergodic [27]. This model
predicts a linear profile for the temperature and a finite heat
conductivity, which is independent of temperature.

Here we study a chain of particles interacting through
anharmonic forces in addition to random reversals of the
velocity. More specifically, we consider a potential with quartic
terms in addition to the harmonic quadratic terms. Without the
stochastic shot noise, this is the well-known Fermi-Pasta-Ulam
model in contact with heat reservoirs at its ends, which was
studied numerically by Lepri et al. [2], who found a superdif-
fusive transport of heat, implying an anomalous Fourier’s law.
This important result has been confirmed by other numerical
studies and other approaches [4,8,12,14,15,17,18,28,29]. The
impulsive stochastic shot noise that we use here can be
regarded as a procedure that turns the superdiffusive transport
of heat into a diffuse transport, leading thus to Fourier’s law.
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By numerically solving the Langevin equations for chains
of several sizes, we determine the heat conductivity as a
function of the system size L and the rate of stochastic
collisions λ. When λ is nonzero, we obtain a finite heat
conductivity and therefore Fourier’s law. For small values of λ,
the heat conductivity is found to behave as κ ∼ λ−b, diverging
when λ = 0. Our numerical results give b = 0.52 ± 0.06. We
have also determined the exponent a related to the divergence
of κ with L at λ = 0 and found a = 0.42 ± 0.04. These
results are distinct from the harmonic case [1,22] for which
a = 1 and b = 1. Also, in contrast to the harmonic case, we
have found that the heat conductivity depends on temperature.
More precisely, for a fixed �T , we found that it increases
monotonically with the temperatures of the reservoirs.

II. MODEL

We consider a chain of L interacting particles with equal
masses m and denote by xn the position of the nth particle. The
total potential energy V (x) = V (x1,x2, . . . ,xL) is considered
to be a sum of anharmonic potential energies involving nearest-
neighbor pairs of particles,

V (x) =
L∑

n=0

[
K1

2
(xn − xn+1)2 + K2

4
(xn − xn+1)4

]
, (3)

where K1 and K2 are parameters. We consider fixed boundary
conditions so that xL+1 = x0 = 0. When K2 = 0, the harmonic
potential is recast. The force Fn acting on the nth particle due
to the potential V (x) is

Fn(x) = K1(xn−1 + xn+1 − 2xn) + K2(xn−1 − xn)3

+K2(xn+1 − xn)3. (4)

The first and last particles are connected to heat baths at
temperatures TA and TB , and all particles are susceptible to
stochastic collisions, here described by forces Fn(t). Denoting
by vn = dxn/dt the velocity of the nth particle, the equations
of motion are stochastic equations given by

m
dv1

dt
= F1 + F1(t) − αv1 +

√
2αkBTAξA, (5)

m
dvn

dt
= Fn + Fn(t), 2 � n � L − 1, (6)

m
dvL

dt
= FL + FL(t) − αvL +

√
2αkBTBξB, (7)

where kB is Boltzmann’s constant and the last two terms in
Eqs. (5) and (7) represent the coupling to the heat reservoirs.
The constant α represents the strength of the coupling, and ξA

and ξB are independent Gaussian white noises with zero mean
and unit variance. The forces Fn(t) have the form of impulsive
shot noises, given by

Fn = −2m

∞∑
�=1

vn(t−n�)δ(t − tn�), (8)

where tn�, � = 1,2, . . . , are uncorrelated exponentially dis-
tributed stochastic waiting times with a probability density
distribution ρ(t) = λe−λt . Here, the parameter λ is the rate of
collisions, which has been taken to be the same for all particles.

After a collision occurring at time t , the nth particle changes
its velocity from vn(t−) to vn(t+) = −vn(t−), thus conserving
its kinetic energy and therefore the total energy

E =
L∑

n=1

m

2
v2

n + V (x). (9)

Due to the contact with the reservoirs, the total energy E is
not a strictly conserved quantity. From the stochastic equations
of motion we find

dE

dt
= JA + JB, (10)

where

JA = −αv2
1 + v1

√
2αkBTAξA (11)

and

JB = −αv2
L + vL

√
2αkBTBξB. (12)

In the stationary state, 〈E〉 is a constant, and the sum of the
fluxes JA = 〈JA〉 and JB = 〈JB〉 vanishes, that is, JB = −JA.
The heat flux J = JA can be calculated as the average of the
right-hand side of Eq. (11) or, in an equivalent way, from the
equation

J = K1〈(xn−1 − xn)vn〉 + K2〈(xn−1 − xn)3vn〉, (13)
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FIG. 1. (Color online) Average square velocity 〈v2
n〉 of the

particles as a function of the position n on the chain, which is in
contact with heat reservoirs at temperatures TA = 2 and TB = 1.
Results are given for a chain of L = 40 particles for the values of
λ indicated for the (a) harmonic case and (b) anharmonic case. In (a)
the solid lines are exact results.
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which we found to be numerically more accurate than the
formula J = 〈JA〉.

III. NUMERICAL SOLUTIONS

The stochastic equations of motion were solved numerically
for chains of several sizes L. This was done by discretizing
the time in intervals �t . We use an approach in which the
deterministic part of the equations of motion of the inner
particles is handled by the use of the Verlet algorithm [30]
so as to ensure that, in the absence of the heat baths, energy
is conserved. For the equations of motion of the first and
last particles, which contain the stochastic forces due to the
heat baths, we used the stochastic Verlet algorithm developed
in [31]. As for the stochastic shot noises we treat them as
follows. At each time step, the sign of the velocity of each
particle is changed with probability p = λ�t . This procedure
generates a Poisson process with discrete waiting time t = ��t

that is distributed according to the probability distribution
p(1 − p)�. In the continuous time limit, �t → 0, this yields
the exponential distribution λe−λt , as required.

For definiteness, our numerical calculations were per-
formed with kB = 1, m = 1, α = 1, and �t = 0.01. For
the anharmonic potential all results reported in this paper
were obtained for K1 = 1 and K2 = 1. The size of the
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FIG. 2. (Color online) Heat flux J as a function of the inverse of
the system size L for several values of λ for (a) the harmonic chain
and (b) the anharmonic chain. In both cases, from top to bottom,
λ = 0.05, 0.1, 0.2, 0.5, and 1. The temperatures of the reservoirs are
TA = 2 and TB = 1. In (a) the solid lines are exact results.

system ranged from L = 10 up to L = 5000. We also present
numerical results for the harmonic case (K2 = 0) for K1 = 1
and compare with the results of the anharmonic case. The
existing exact solution [22] for the harmonic case is used to
check our numerical procedure. The exact solution is obtained
by solving the equations for the pair correlations, which is
possible because they consist of closed equations. However,
this closure property does not exist for the anharmonic case.

In Fig. 1 we show the results for the average kinetic energy
for each particle as a function of the position n on the chain
for the harmonic and anharmonic cases. The temperatures of
the reservoirs are considered to be distinct, TA �= TB , and
our numerical calculations were performed for TA = 2 and
TB = 1. Without stochastic collisions (λ = 0) the results of the
harmonic case show that the kinetic energy is almost constant,
a result obtained by Rieder et al. [1], which does not lead
to Fourier’s law. The inclusion of the stochastic collisions
(λ �= 0) produces a drastically different result. The average
kinetic energy as a function of n displays now a nonzero slope,
as can be seen in Fig. 1. For the anharmonic case, all curves,
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FIG. 3. (Color online) Log-log plot of the heat conductivity κ as
a function of the system size L for (a) the harmonic chain and (b) the
anharmonic chain. From top to bottom, λ = 0, 0.02, 0.05, 0.1, 0.2,
and 0.5 for (a) and λ = 0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05,
and 0.1 for (b). The temperatures of the reservoirs are TA = 2 and
TB = 1. In (a), the solid lines are exact results, and the slope of the
straight line corresponding to λ = 0 is a = 1. In (b), the slope of the
straight line (shown as a dashed line) fitted to the data points with
large L corresponding to λ = 0 gives a = 0.42.
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including the case λ = 0, show a nonzero slope. In spite of
that, the λ = 0 case does not lead to Fourier’s law.

We have calculated the flux J at the stationary state by
using Eq. (13), and the results are shown in Fig. 2 as a function
of 1/L for several values of λ. From Fig. 2 we see clearly
that J ∼ 1/L for sufficiently large values of L, in accordance
with Fourier’s law, as long as λ �= 0 for both the harmonic
and anharmonic cases. For sufficiently large values of L the
heat conductivity is given by κ = JL/�T . This quantity is
plotted as a function of L for several values of the rate of
stochastic collisions λ, including λ = 0. The results are shown
in Fig. 3. For both the harmonic and anharmonic cases, the heat
conductivity κ approaches a constant when L → ∞, as long
as λ �= 0, and Fourier’s law is accomplished. When λ = 0, our
numerical results give a superdiffusive behavior with κ → ∞
when L → ∞, according to

κ ∼ La, λ = 0, (14)

as shown in Fig. 3. For the harmonic case, a = 1, which is
in accordance with the result by Rieder et al. [1]. For the
anharmonic case we get a = 0.42 ± 0.04. This is in agreement
with the result a = 0.45 ± 5 found by Lepri et al. [2] and in
excellent agreement with the value a = 2/5 [8,17].

To analyze the behavior of the heat conductivity κ =
JL/�T as λ → 0 we have plotted this quantity as a function

4 3 2 1

3

2

1

0

1

ln Λ

ln
 1

/Κ

a

40

80

160

320

640

9 8 7 6 5 4 3
6

5

4

3

2

1

ln Λ

ln
 1

/Κ

b

100

200

500

1000

2000

5000

FIG. 4. (Color online) Log-log plot of the reciprocal of the heat
conductivity κ as a function of the collision noise λ for (a) the
harmonic chain and (b) the anharmonic chain for several values of L.
The temperatures of the reservoirs are TA = 2 and TB = 1. In (a) the
solid lines are exact results. The slope of the straight dashed line is
b = 1 for (a) and b = 0.52 for (b). The lowest curve in both cases is
an extrapolation obtained from finite values of L.

of λ for several values of the system size L. The results are
shown in Fig. 4. We have plotted also the extrapolated values
of κ when L → ∞ for each λ. These extrapolated values
were extracted from the plot of 1/κ versus 1/L. The heat
conductivity κ diverges when λ → 0 according to

κ ∼ λ−b, L → ∞. (15)

For the harmonic case our results give b = 1, a result obtained
by Dhar et al. [22]. For the anharmonic case we found b =
0.52 ± 0.06, a result clearly distinct from the harmonic case.

The algebraic behavior of κ with L and λ can be obtained
by assuming the following finite-size scaling for the heat
conductivity,

κ = Laψ(λLc), (16)

where ψ(s) is a universal function of s = λLc such that ψ(0)
is a finite constant and ψ(s) ∼ s−b when s is large. To ensure
a finite conductivity in the limit L → ∞, the exponent c must
be related to exponents a and b by c = a/b. In Fig. 5, we show
the data collapse for the harmonic case by plotting κ/La as a
function of λLc, where in this case a = 1 and c = 1. The data
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FIG. 5. (Color online) Data collapse obtained from the numerical
results of the heat conductivity κ obtained from several values of λ and
L corresponding to (a) the harmonic case and (b) the anharmonic case,
where � = κ/La and s = λLa/b. The solid line in (a) is described by
expression (17) with A = 1/4 and B = 3/2. In (b), the solid line is a
guide to the eye. The temperatures of the reservoirs are TA = 2 and
TB = 1. Points with the same symbol correspond to the same value
of λ.
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FIG. 6. (Color online) Heat conductivity κ = JL/�T as a
function of the temperature T = TB of the colder reservoir for several
values of λ. From top to bottom λ = 0, 0.02, 0.05, and 0.1. All results
were obtained for a chain of size L = 500 and by using the same value
of the difference in temperature of the reservoirs, �T = 1. The solid
lines are a guide to the eye.

collapse is well described by the expression

ψ(s) = A

B + s
, (17)

as can be seen in Fig. 5. This function was obtained by numeri-
cally solving the exact equations for the pair correlations from
which we found A = 1/4 and B = 3/2. For large values of
s, this result gives ψ ∼ s−1, so that κ ∼ λ−1, independent of
L, which is the behavior of the conductivity for the harmonic
chain when L → ∞ [11,22,27]. For the anharmonic case, the
data collapse, shown in Fig. 5, was obtained by using the
exponents, a and b, obtained previously.

It is worth mentioning that Lepri et al. [32], in their study of
a one-dimensional harmonic crystal with energy conservative
noise consisting of elastic collisions between neighboring
particles, reported a conductivity that behaves as (L/λ)1/2 for
large values of L. Assuming for this system a scaling function
of the form (16) and keeping in mind that a = 1, because the
conductivity behaves as κ ∼ L when λ = 0, we may conclude
that b = 1/2 and c = 1. Notice, however, that c �= a/b, so that
κ is not finite but diverges when L → ∞.

A relevant feature of the present anharmonic chain with
random reversal of velocities is the dependence of the heat
conductivity with temperature. For the harmonic case the heat
conductivity is temperature independent [22,27], a result that
can be understood by using the following reasoning. If we
rescale the temperature of the reservoirs by a factor r , that is,
TA → rTA and TB → rTB , and the positions and velocities
by a factor r1/2, that is, vn → r1/2vn and xn → r1/2xn, the
equations of motions for the case K2 = 0 become invariant.

In addition, according to Eq. (13) with K2 = 0, the heat flux
changes as the temperature, that is, J → rJ . From this relation
it follows that J is a homogeneous function of TA and TB ,
so that J = TAφ(TB/TA). Writing TB = TA + �T , then for
small values of �T it follows that J ∼ �T , leading to a heat
conductivity κ independent of temperature, a result that we
have also checked numerically.

For the anharmonic case we have found that the heat
conductivity κ is an increasing function of temperature. In
Fig. 6 we show κ as a function of the temperature T = TB

of the colder reservoir. The heat conductivity was determined
from κ = JL/�T for the same value of �T = 1 and for
several values of the noise parameter λ. We used L = 500,
a value high enough that the values of κ may be considered
the asymptotic values (see Fig. 3), with the exception of the
case λ = 0. Our results indicate a monotonic increase of the
heat conductivity with temperature, as can be seen in Fig. 6.
We have found that our results are consistent with the results
of Aoki and Kusnezov [33] and with the upper bounds of
Bernardin and Olla [34].

IV. CONCLUSION

In conclusion, we have considered a chain of particles
interacting through anharmonic potentials and subject to heat
reservoirs at its ends. In addition, the chain is subject to a shot
noise that changes the sign of the velocities of the particles
at random times, distributed according to an exponential
distribution. The shot noise does not change the energy, so
that the changes in energy are only due to the contact with the
reservoirs. We have shown that, when the chain is connected to
reservoirs at different temperatures, the heat flux is inversely
proportional to the size of the system, as long as the shot
noise parameter λ is nonzero, and therefore in accordance with
Fourier’s law. Our results suggest, in accordance with [27],
that the ergodicity may play a crucial role in the derivation of
Fourier’s law.

We have also obtained the behavior of κ with L when
λ = 0 and κ with λ when L → ∞. Both behaviors are found
to be algebraic, characterized by exponents a = 0.42 ± 0.04
and b = 0.52 ± 0.06. This allows us to introduce a finite-size
scaling in which the noise parameter scales with the inverse of
the system size to the power a = b/c. For the harmonic case,
we have shown that a finite-size scaling exists, a result that has
been also obtained by numerically solving the equations for
the correlations.
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