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We present a stochastic approach to nonequilibrium thermodynamics based on the expression of the

entropy production rate advanced by Schnakenberg for systems described by a master equation. From the

microscopic Schnakenberg expression we get the macroscopic bilinear form for the entropy production

rate in terms of fluxes and forces. This is performed by placing the system in contact with two reservoirs

with distinct sets of thermodynamic fields and by assuming an appropriate form for the transition rate. The

approach is applied to an interacting lattice gas model in contact with two heat and particle reservoirs. On

a square lattice, a continuous symmetry breaking phase transition takes place such that at the nonequi-

librium ordered phase a heat flow sets in even when the temperatures of the reservoirs are the same. The

entropy production rate is found to have a singularity at the critical point of the linear-logarithm type.
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The distinguishing feature of a system out of thermody-
namic equilibrium is the continuous production of entropy.
The variation of entropy per unit time is not only due to the
exchange of entropy with the environment but also due to
the internal entropy production [1–3], that is,

dS

dt
¼ ���; (1)

where S is the entropy of the system, � is the rate of
entropy production and � is the flow of entropy per unit
time from the system to the outside. Within this context, the
second law of thermodynamics is equivalent to saying that
the rate of entropy production is nonnegative, � � 0.
In the steady state, S is constant and all entropy generated
is continuously been given away to the environment,
� ¼ �. If the stationary state is a nonequilibrium, that
is, irreversible then � ¼ �> 0. In the equilibrium state,
� ¼ � ¼ 0.

In this Letter we wish to present a microscopic stochas-
tic approach to the thermodynamics of far from equilib-
rium systems, that embodies the properties of the entropy
production rate just stated and from which we should be
able to deduce the macroscopic bilinear form for the
entropy production rate for nonequilibrium systems in
the steady states in terms of fluxes and forces [1–4]. To
this end we assume that the system we are studying is
amenable to be described by a continuous time Markovian
process which amounts to assume a description in terms of
a master equation [5]

d

dt
PiðtÞ ¼

X
j

fWijPjðtÞ �WjiPiðtÞg; (2)

where Wij is the transition rate from state j to state i and

PiðtÞ is the probability of state i at time t. The deduction of
the macroscopic bilinear form is performed by placing the
system in contact with two reservoirs with distinct sets of
thermodynamic fields and by assuming an appropriate

form for the transition rate, to be explained below. We
remark that the contact with two reservoirs keeps the
system far from equilibrium.
To establish a microscopic approach to nonequilibrium

thermodynamics one encounters two major problems con-
cerning entropy. The first is the definition of entropy S of
irreversible systems. This problem is solved if one uses the
Boltzmann-Gibbs expression [6,7],

SðtÞ ¼ �k
X
i

PiðtÞ lnPiðtÞ; (3)

to represent the nonequilibrium entropy, where k the
Boltzmann constant.
The second problem is the definition of entropy produc-

tion rate �. It should meet the two important properties,
stated above, that represent the second law of thermody-
namics. (a) It should be nonnegative and (b) it should
vanish for systems in equilibrium. A system is considered
to be in thermodynamic equilibrium if it exhibits micro-
scopic reversibility [8]. For systems described by a master
equation this is equivalent to the detailed balance condition
WijPj ¼ WjiPi, for any pair of states i and j. An expres-

sion that meet the conditions (a) and (b), for systems
described by a master equation, is the one advanced by
Schnakenberg [9]

�ðtÞ ¼ k

2

X
ij

fWijPjðtÞ �WjiPiðtÞg ln
WijPjðtÞ
WjiPiðtÞ ; (4)

an expression that has been considered by several authors
[10–22] and has a close relationship with the fluctuation
theorems of Gallavotti and Cohen [23] and with the
Jarzynski equality [24,25]. It is nonnegative because each
term in the summation is of the form ðx� yÞ lnðx=yÞ and
vanishes in equilibrium, that is, when microscopic revers-
ibility or detailed balance condition is obeyed.
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In the stationary state the expression (4) reduces to the
simpler expression

� ¼ k
X
ij

WijPj ln
Wij

Wji

; (5)

where Pi is the stationary probability distribution.
Expression (5) is particularly useful since it can be under-
stood as an average over the probability distribution Pi. To
deduce (5) from (4) it suffices to notice that the difference
between these two expression equals dS=dt, which van-
ishes in the stationary state.

To proceed further we need to know the specific forms of
the transition rates corresponding to a given situation. We
begin by considering firstly systems that in the stationary
state are found to be in thermodynamic equilibrium. In this
case the system exhibits the microscopic reversibility
which is equivalent to the detailed balance condition
Wij=Wji ¼ Pe

i =P
e
j , where P

e
i is the equilibrium probability

distribution. The desired transition rate should then be of

the general form Wij ¼ Kij½Pe
i =P

e
j�1=2 where Kij is sym-

metric, that is, Kij ¼ Kji. The equilibrium probability

distribution Pe
i is assumed to be the Gibbs distribution

describing the contact of the system with a specific reser-
voir. Here we consider a reservoir that exchanges heat and
particles with the system so that the associated distribution
is Pe

i / expf��ðEi ��NiÞg [26], � ¼ 1=kT, where Ei

and Ni are the energy and the number of particles of the
system, and T and � are the temperature and the chemical
potential of the reservoir. The desired transition rate is then

Wij ¼ Kije
��½ðEi�EjÞ��ðNi�NjÞ�=2: (6)

Let us imagine now the system to be in contact with two
distinct reservoirs, 1 and 2. Reservoirs 1 and 2 are asso-
ciated with the temperatures T1 and T2 and the chemical
potentials �1 and �2, respectively. The transition rate
associated to the rth reservoir is given by

WðrÞ
ij ¼ KðrÞ

ij e
��r½ðEi�EjÞ��rðNi�NjÞ�=2; (7)

where �r ¼ 1=kTr.
Each possible transition occurring in the system between

two states i and j is either due to the contact with the
reservoirs or is an internal transition with no relation to
the reservoirs. The transitions describing the contact with
the reservoirs are assumed to be caused by the contact with
either one or the other reservoir so that the transition rate is

either Wð1Þ
ij or Wð2Þ

ij . The internal transitions, denoted by

Wð3Þ
ij , are assumed to have the property Wð3Þ

ij ¼ Wð3Þ
ji when-

ever Ei ¼ Ej and Ni ¼ Nj, otherwise W
ð3Þ
ij ¼ 0. Each pos-

sible transition is therefore assumed to belong to one of
three mutually exclusive classes of transitions labeled 1, 2,

and 3. Introducing a projection variable �ðrÞ
ij ¼ �ðrÞ

ji that

takes the value 1 if the transition between states i and j

belongs to class r and 0 otherwise then the transition rate
can be written as

Wij ¼ �ð1Þ
ij W

ð1Þ
ij þ �ð2Þ

ij W
ð2Þ
ij þ �ð3Þ

ij W
ð3Þ
ij : (8)

The entropy production rate becomes then

� ¼ k
X
r¼1;2

X
ij

�ðrÞ
ij W

ðrÞ
ij Pj ln

WðrÞ
ij

WðrÞ
ji

: (9)

Notice that the summation is only over the transitions
associated to the two reservoirs since the transitions of
class 3 give no contribution to �. By the use of (7) it can
be written as

� ¼ X
r¼1;2

X
ij

�ðrÞ
ij W

ðrÞ
ij Pj

�
1

Tr

ðEj � EiÞ ��r

Tr

ðNj � NiÞ
�
:

(10)

Since the flux of energy (actually heat) from reservoir 1
into the system is

J E ¼ X
ij

�ð1Þ
ij W

ð1Þ
ij PjðEi � EjÞ; (11)

and the flux of particles from reservoir 1 into the system is

J N ¼ X
ij

�ð1Þ
ij W

ð1Þ
ij PjðNi � NjÞ; (12)

and making use of the global balance equation, then ex-
pression (10) can be written in the bilinear form

� ¼ XEJ E þ XNJ N; (13)

where XE ¼ 1=T2 � 1=T1 and XN ¼ �1=T1 ��2=T2 are
the thermodynamic forces conjugated to the flux of energy
and particles, respectively.
We have applied the results above to a nonequilibrium

interacting lattice gas model defined on a regular lattice
with energy E ¼ �J

P
ð‘;‘0Þ�‘�‘0 , where the summation is

over the nearest neighbor sites, and number of particles
N ¼ P

‘ð�‘ þ 1Þ=2. We are using spin variables �‘ that
take the valuesþ1 or�1 according to whether the sites are
occupied or empty. The whole configuration of the lattice is
denoted by �. The system is in contact with two reservoirs
that keep the system far from equilibrium. The contact with
each reservoir is described by a spin flip transition rate of
the Glauber type

w‘ð�Þ ¼ �

2

�
1� �‘ tanh

�
�r

�
J
X
�

�‘þ� þHr

���
; (14)

which is a particular form of (7), where Hr is related to the
chemical potential by Hr ¼ �r=2 and � sets the time
scale. To update a chosen site, we use reservoir 1 if the
majority of neighboring spins is up and reservoir 2 if the
majority is down. When there is a tie, one uses reservoir 1
if the site at the right of the chosen site is up and reservoir 2
if it is down. For the one-dimensional model the local
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configurations areþ � þ and� � þ for reservoir 1 and� �
� and þ � � for reservoir 2, where the dot represents the
site to be updated. For the model defined on a square lattice
the local configurations associated to each reservoir are
shown in Fig. 1. This model is related to models that
describe the flux of molecules across a cell membrane
[27]. The two reservoirs represent the inside and outside
regions of a cell. Depending on the configuration of its
neighborhood, a site can exchange particles with either the
outside or the inside region.

Here we report results for a linear chain and for a square
lattice for the case in which T1 ¼ T2 ¼ T and H1 ¼
�H2 ¼ H. In this case the model has up-down symmetry
and XN ¼ ð4H=TÞ and XE ¼ 0 so that � ¼ ð4H=TÞJ N .

For the linear chain it follows from (14) that the spin flip
transition rate can be written in the equivalent form

w‘ð�Þ ¼ ðb0 þ b1�‘�1�‘þ1Þe��‘�½J�‘�1þðJþHÞ�‘þ1�;
(15)

where b0 and b1 are known functions of �J and �H. The
stationary probability distribution Pð�Þ is obtained by
assuming that it has the form

Pð�Þ ¼ 1

Z
e
K
P
‘

�‘�‘þ1

; (16)

where K is a parameter to be found. If we substitute (15)
and (16) into the global balance equation

X
‘

fw‘ð�‘ÞPð�‘Þ � w‘ð�ÞPð�Þg ¼ 0; (17)

where �‘ denotes the configuration obtained from � by
changing the sign of �‘, we getX

‘

fa0 þ �‘ða1�‘�1 þ a2�‘þ1Þ þ a3�‘�1�‘þ1g ¼ 0;

(18)

where ai are known functions ofK,�J and�H. A solution
of this equation is obtained by imposing a0 ¼ a3 ¼ 0 and
a1 ¼ �a2. These three conditions are not all independent
and can be met by just one constraint, which is found to be
K ¼ �ðJ þHÞ=2.
The production of entropy per site �� is also obtained

exactly. Substituting (15) and (16) into the expression for
the entropy production rate

�� ¼ k

�
w‘ð�Þ lnw‘ð�‘Þ

w‘ð�Þ
�
; (19)

we obtain an expression that involves the nearest neighbor
and next-nearest neighbor correlations h�‘�‘þ1i and
h�‘�1�‘þ1i. But these two correlations can be obtained
exactly from the solution of the one-dimensional model
defined by (16). They are tanhK and ðtanhKÞ2, respectively,
which lead us to the following expression for the rate of
entropy production:

�� ¼ �H tanh�H

2TðcoshKÞ2 : (20)

The flux of heat J E vanishes identically. It is worth to
point out that if a temperature TS is associated to the
system through K ¼ J=kTS then TS ¼ T=ð1þH=2JÞ
and the temperature of the system TS is distinct from the
temperature T of the reservoirs.
On a square lattice the entropy production rate was

obtained from numerical simulations. At each time step a
site of the lattice is randomly chosen and is updated
according to the Glauber dynamics defined by (14).
According to the local configuration, shown in Fig. 1, we
use either H1 ¼ H or H2 ¼ �H in Eq. (14). The tempera-
ture T is the same. The simulations were performed on a
square lattice of linear size L ¼ 160 and periodic boundary
conditions. The results obtained at the stationary state are
shown in Fig. 2 in units where k ¼ 1 and J ¼ 1. The model
exhibits a symmetry breaking phase transition at T ¼
3:125ð5Þ from a disordered to an ordered state. The entropy
production rate per site �� is finite but has a singularity at
the critical point which is better appreciated if we look at
its derivative d��=dT. This last quantity diverges at the
critical point as can be seen in Fig. 2. Our results indicate a
logarithmic divergence for d��=dT, similar therefore to
the specific heat divergence of the equilibrium Ising model
on a square lattice. Similar behavior has also been found in
the majority vote model [14].
The phase transition taking place in this irreversible

model could be characterized, at a first thought, by the
magnetization and susceptibility. However, these quanti-
ties do not grasp the irreversible character of the system.
Alone they could not tell whether the system is or is not in
equilibrium. The full characterization is accomplished by
the currents and fluxes of various types taking place a the
nonequilibrium steady state. These fluxes together with
the forces make up the entropy production rate, as given
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FIG. 1. Local configurations on a square lattice associated to
reservoir 1 (above the line) and reservoir 2 (below the line). The
dot represents the site to be updated.
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by the bilinear form, assigning to this quantity a funda-
mental role in describing the phase transition at nonequi-
librium steady states.

The nature of the phase transition can be found from the
behavior of the entropy production rate and the fluxes as
functions of the external parameters. A discontinuous, or
first order, phase transition takes place if these quantities
display a jump at the transition point. If they are continu-
ous, the transition is continuous, or second order. In this
respect, these quantities play roles analogous to the first
derivatives of the Gibbs free energy in equilibrium system.
According to this framework, the phase transition of the
present two-dimensional model is second order and is
similar to the continuous phase transition in the equilib-
rium Ising model in the sense that the derivative of the
continuous function diverges instead of having a jump.

Another and perhaps more meaningful characterization
of the phase transition is provided by the order parameter.
Since we are faced with a phase transition in which the up-
down symmetry is broken at low temperatures, the order
parameter has to change sign under the up-down trans-
formation, that is, should be antisymmetric. Antisymmetric
quantities vanish in the disordered phase and become non-
zero in the ordered phase. This is exactly the case of the
heat flux J E, which is an antisymmetric quantity and may
therefore be identified as the order parameter, in contrast to
the particle flux J N , which is symmetric. Above the criti-
cal temperature there is no heat flux. Below the critical
temperature a nonzero heat flux sets in, as can be seen in
the inset of Fig. 2, in spite of the fact that the temperatures
of the reservoirs are the same. Because of the symmetry
breaking there may be two coexisting phase at low
temperature: one characterized by a heat flow from reser-
voir 1 to reservoir 2 and the other, from 2 to 1.

The one-dimensional model introduced above is an ex-
ample of models lacking detailed balance but having a

Boltzmann-Gibbs (BG) distribution as the stationary state
[28]. In spite of being described by a BG distribution such
models are out of equilibrium, with a nonzero production
of entropy. In two dimension, the simplest model of this
type is the North-East model defined on a square lattice by
the spin flip transition rate [28,29]

w‘ð�Þ ¼ �e�2K�‘ð�‘þx̂þ�‘þŷÞ: (21)

Employing the same reasoning used in the one-
dimensional case, it is straightforward to show that the
stationary probability distribution for this stochastic pro-
cess is the BG distribution

Pð�Þ ¼ 1

Z
e
K
P
ð‘;‘Þ

�‘�‘0
; (22)

where the summation is over the nearest neighbor pair of
sites of a square lattice and describes an Ising model with
nearest neighbor interactions, which exhibits also a sym-
metry breaking phase transition at a temperature T ¼ 1=K

given by Tc ¼ 2= lnð1þ ffiffiffi
2

p Þ. The calculation of the en-
tropy production rate for this model can be carried out
exactly. Indeed, from the definition (5) of the entropy
production and using the transition rate (21) we obtain the
following expression for the entropy production rate per site

�� ¼ a� bh�‘�‘þx̂i þ ah�‘þx̂�‘þŷi; (23)

where a ¼ 4k�K sinh4 K, b ¼ 8k�K cosh4 K, and
h�‘�‘þx̂i and h�‘þx̂�‘þŷi are the nearest and next-nearest

neighbor correlations on a square lattice. Since these two
correlations can be determined exactly for the Ising model
on a square lattice [30] it follows that the entropy production
can also be exactly calculated. Substituting the closed forms
for the correlations (from [30], pages 200–201) we get the
desired expression for �, which is too cumbersome to be
written down but can be appreciated in the plot of Fig. 3. It is
important to notice that these correlations are finite but have

1 2 3 4 5 6 7

T

0

0,01

0,02

0,03

,
d

/d
T 2,5 3 3,5

T

0

0,001

J
E

*

d
dT

FIG. 2. Entropy production rate per site ��, the derivative
d��=dT and the heat flux per site J �

E (inset) versus temperature
T obtained from numerical simulations. They exhibit singular-
ities at the critical temperature Tc ¼ 3:125ð5Þ.

0 1 2 3 4 5
T

0

1

2

d
dT

d
dT

FIG. 3. Entropy production rate per site �� and the derivative
d��=dT versus temperature according to the exact expression
(23). They exhibit singularities at the critical temperature Tc ¼
2= lnð1þ ffiffiffi

2
p Þ ¼ 2:269 185.
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singularities of the type jT � Tcj lnjT � Tcj [30]. These
features are reflected on the production of entropy, that is,
this quantity is also finite and has the same type of singu-
larity, as can be seen in the plot of �� versus T shown in
Fig. 3 together with the plot of d��=dT versus T.

As a final remark, the existing examples of nonequilib-
rium models with stationary BG probability distribution
teach us that the BG distribution is a necessary but not a
sufficient condition for the thermodynamic equilibrium.
Actually, the necessary and sufficient condition is detailed
balance, or microscopic reversibility or, in macroscopic
terms, the vanishing of entropy production rate.
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