

Computational study of glycerol/guanidine associative system for CO₂ capture

Larissa F. Vasconcelos, Rodolfo G. Fiorot, José Walkimar de M. Carneiro

Instituto de Química, Programa de Pós-gradução em Química, Universidade Federal Fluminense. Outeiro de São João Batista s/n, 24020-141 Niterói, RJ, Brasil

The excess of atmospheric CO₂ is a problem that has been causing harsh climatic changes, needing the urgent control of its emission and capture. -To that purpose, the chemical absorption with alcohols and amines has been largely in use [1]. According to experimental [1] and theoretical [2] works, guanidine, a strong base, is a promising CO₂ scavenger. Alternatively, biofuels – produced from vegetable oils - is also a way to reduce its atmospheric concentration through photosynthesis. [3] However the byproduct, glycerol (propanetriol), has low industrial application [4]. Towards this problematic and knowing that the associative use of strong bases with polyols has been studied for CO₂ capture [5], the present work aims to investigate the possible pathways and energetic profiles involved in the CO₂ scavenging. Three possible systems were identified, which are shown in **Figure 1**.

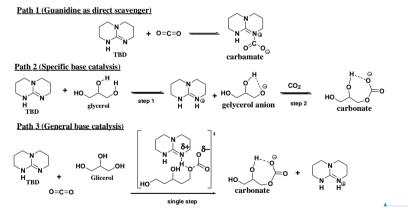


Figure 1. Possible paths to CO₂ capture with the system guanidine-glycerol.

DFT CAM-B3LYP/6-311++g(2d,2p) method was selected after trial with different functionals compared to reference methods a similar system [2]. Polar media was

Formatado: Inglês (Reino Unido)

XIX		BC	<u>T</u>
Simpósio Brasileiro de C 12 a 17/Nov, 2017, Águ	as de Lindóia	/SP, Brasil	
simulated with IEFPCM, using water as so	olvent. In p a	ath 1, different	guanidines were
investigated to identify the molecular properties important for the capture. Among them,			
TBD showed the best energetic profile, suggesting that intramolecular hydrogen bond			
TDD showed the best energene prome, suggesting that initialioreedia hydrogen bond			
(IHB) is more important than possible π -electron delocalization (Figure 2). However,			
although CO ₂ concentration is reduced by guanidines, the carbamate intermediate may			
not be isolated, probably due to decompositi	-		-
not be isolated, probably due to decompositi	ion in suu.		
	$\int (N + M) = (N$	∆G [kcal mol ⁻¹]	
	TBD	10.13	- 11.36
	1	6.43	1.19
	2	5.71	1.04
$TBD \longrightarrow N^{\times}N^{\times} 4 \longrightarrow N^{\times}N^{\times}$	3	8.33	4.46
п`о́~о́о о́;⊖́о нв	4	8.30	4.90
Eterra 2 Energy in late to CO		· · ·	200 12
Figure 2. Energetic data to CO ₂ captu	ure with diffe	erent guanidines at	1 298 K
In nath 2 the conformational analysis	of glycerol	and its anion	s indicated that

Formatado: Português (Brasil)

In **path 2**, the conformational analysis of glycerol and its anions indicated that deprotonation of primary hydroxyl is energetically preferred, with the anion establishing two IHBs. In **step 1**, a positive Gibbs free energy change was observed ($\Delta G^{298} = 7,69$ kcal mol⁻¹). In **step 2**, CO₂ is spontaneously captured by glycerol anion ($\Delta G^{298} = -12,73$ kcal mol⁻¹) with no activation barrier.

Calculations are still being made to find the concerted transition state of single step (**Path 3**).

Key-words: Carbon dioxide, capture, glycerol, DFT.

Support: This work has been supported by FAPERJ and Cap.

References:

- [1] Pereira, F.S. et al. Tetrahedron. 2008, 64, 10097-10106
- [2] Orestes, E.; Ronconi, C.M.; Carneiro, J. W. M. C. Phys. Chem. Chem. Phys. 2014, 16, 17213-17219.
- [3] Costa, O. A.; Oliveira, L. B.; Silva, A. C. M.; Araujo, M. S. M.; Jr. Pereira, A. O.; Rosa, L. P. Renew. Sustain. Energy Rev., 2013, 27, 407-412.
- [4] Heider, M. K.; Dummer, N. F.; Knight, D. W.; Jenkins, R. L.; Howard, M.; Moulijn, J.; Taylor, S. H.; Hutchings, G. J. Nature Chemistry, 2015, 7, 1028-1032.
- [5] Zhang, S.; He, L.-N. Aust. J. Chem. 2014, 67(7), 980.