

Structural determination of polyphenols by quantum mechanical calculations of ¹³C NMR chemical shifts: development of a parameterized protocol using a set of chalcones

Authors: Thaís Forest Giacomello,^a Rênica Alves de Morais Rocha,^a Antonio Maia de Jesus Chaves Neto,^b Gunar Vingre da Silva Mota^b Fabio Luiz Paranhos Costa,^{*a}

1. Address: ^aDepartament of Chemistry, Federal University of Goiás, REJ Jataí 75801-615, Brasil.

2. ^bNatural Science Faculty, Federal University of Pará, ICEN UFPA Belém 66075-110, Brasil

Abstract: Polyphenols are one of the most important and certainly the most numerous among the groups of phytochemicals present in the plant kingdom, e.g., chalcones, curcumines, phenolic acids, stilbenoids etc [1]. Chalcone derivatives are found widespread in natural products [2]. This class of compounds is considered as key precursors for flavonoid and isoflavonoid syntheses [2]. They have several biological activities including anti-inflammatory, anti-leishmania, antimitotic and antiviral are some few examples of their broad range of action etc [2]. Herein, we present the development of a protocol for determination of polyphenols structures, using a set of 13 chalcones (totaling more than 200 chemical shifts, δ) with different substitution pattern, whose structures have been reliably elucidated in literature [3-5]. This protocol consists of GIAO-DFT calculations of δ (mPW1PW91/6-31G*//mPW1PW91/6-31G*) and application of a scaling factor based on a linear regression. The δ are obtained as δ_{calc} = $\sigma_{TMS} - \sigma$, where σ_{TMS} is the isotropic shielding constant of the reference compound, tetramethysinale (TMS), calculate at the same level of theory. The scaling factor was generated by plotting calculated (δ_{calc}) against experimental chemical shifts of the set of chalcones. Thus, slope (a) and intercept (b) values obtained from this linear regression can be used to generate scaled chemical shifts (δ_{scal}), using the expression $\delta_{scal} = a.\delta_{calc} \pm b$ (1). Thus, sing a set of 13 chalcones the following equation was generated: $\delta_{scal} =$ $1.051.\delta_{calc}$ -0.870, r²= 0.989. Due to their great conformational flexibility, the set of 13 chalcones as well as 2',6'-dihydroxy-4',4-dimethoxy-dihydrochalcone [5] and 2-[3-(1,3benzodioxol-5-yl)propyl]-5-methoxyphenol [6], i.e. the test molecules, were submitted to randomized conformational searches using Monte Carlo method and MMFF force field. For complete conformational analysis and the conformers selection protocol see Giacomello *et al.* [7]. All quantum mechanical calculations were performed in gas phase, using Gaussian 09 software package [8]. For the chalcone set, the Mean Absolute Deviation (MAD) and the Root Mean Square Deviation (RMSD), in ppm, before and after (in parenthesis) the application of the equation (1) are: MAD = 5.84 (2.71) and RMS = 6.61 (3.86). Finally, the robustness of the new protocol and its applicability to others

12 a 17/Nov, 2017, Águas de Lindóia/SP, Brasil

polyphenols class were evaluated by the calculation of the δ for 2 naturals compounds with synthesis, biological and therapeutic interest: 2',6'-dihydroxy-4,4'-dimethoxydihydrochalcone (dihydrochalcone) (I) and 2-[3-(1,3-benzodioxol-5-yl)propyl]-5methoxyphenol (diarylpropane) (II), figure 1. For these molecules the MAD and the RMSD, in ppm, before and after (in parenthesis) the application of the equation (1) are: (I) MAD = 4.66 (1.14); RMS = 5.21 (1.81) and (II) MAD = 4.94 (1.65); RMS = 5.44 (2.38). Considering a set of 13 chalcones with different substitution pattern, we developed a parameterized protocol for the calculation of ¹³C NMR chemical shifts of polyphenols. This protocol, consisted of GIAO-DFT calculations and a linear scaling factor, was able to yield calculated chemical shifts with satisfactory accuracy. Therefore, the calculation protocol developed in this work is a very attractive tool as an alternative to more computationally demanding approaches for the calculation of polyphenols, such as dihydrochalcones and diarylpropanoids.

Figure 1. 2',6'-dihydroxy-4,4'-dimethoxy-dihydrochalcone (1a) and 2-[3-(1,3-benzodioxol-5-yl)propyl]-5-methoxyphenol (1b) molecules.

Key-words: GAIO-mPW1PW91/6-31G*//mPW1PW91/6-31G*, NMR, polyphenols, chalcones.

Support: This work has been supported by Fundação de Amparo à Pesquisa do Estado de Goiás.

References:

- 1. N. R. Perron; J. L. Brumaghim, Cell Biochem. Biophys. 53, 75 (2009).
- 2. P. Singh; A. Anand; V. Kumar, Eur. J. Med. Chem. 85, 758 (2014).
- F. L. P. Costa, P. F. Gomes; A. K. Silva; L. M. Lião, J. Braz. Chem. Soc. 00, 1-6 (doi:10.21577/0103-5053.20170062) (2017).
- 4. C. Díaz-Tielas; E. Graña; M. J. Reigosa; A. M. Sánchez-Moreiras Planta Daninha, 34, 607 (2016).
- 5. P. K.Agrawal, "Carbon-13 NMR of Flavonoids. Studies in Organic Chemistry, v. 34" (1989), Elsevier, Amsterdan. The Netherlands.
- 6. K. S. Francis; E. Suresh; M. S. Nair, Nat. Prod. Res., 28, 1664 (2014).
- T. F. Giacomello; R. A. de M. Rocha; A. M. de J. C. N.; G. V. Da S. Mota; F. L. P. Costa, Adv. Sci. Eng. Med. 9, x, (2017), accepted.
- 8. A. E. Frisch; M. J. Frisch; G. Trucks, Gaussian 09, Revision D.01, User's Reference, Gaussian Inc., Pittsburgh, USA (2009).