

Title: Adsorption of CO₂-C₃H₈ mixtures on Na-ZSM-5:

a molecular simulation study

Authors: Sarah Arvelos, Thalles S. Diógenes, Lucienne L. Romanielo

Address: Av. João Naves de Ávila, 2121, Bloco 1K, Faculdade de Engenharia Química, Universidade Federal de Uberlândia, Faculdade de Engenharia Química, Bloco K, CEP 38408-144, Uberlândia, MG, Brazil.

Abstract: Zeolite crystals with cations present, such as Na-ZSM-5, are widely used for gas sequestration, and separation process. One possible application is as an adsorbent to separate CO_2 from propane (C_3H_8) in petrochemical industry. This separation by zeolites is a defying research topic, because there are size and polarizability differences between the molecules. In literature, it is reported experimentally inverse shape selectivity in adsorption of this mixture on Na-ZSM-5 [1].

In this work, molecular simulations (GCMC) were performed to evaluate the equilibrium of adsorption of CO_2/C_3H_8 pure and binary mixtures on Na-ZSM-5 zeolite. The crystalline structure of Na-ZSM-5 was built by replacing Si atoms with Al atoms (obeying Lowenstein's rule) starting from an all-silica zeolite structure (silicalite-1) obtained in the literature [2]. The Si/Al ratios desired were 15 and 60. The cations Na⁺ were inserted on the structure by canonic (NVT) simulations. The parameters used to represent the oxygen on the rigid framewok was found on the work of June, Bell and Theodorou [3] and Makrodimitris et al.[4] and the parameters associated to the Na⁺ were based on Calero work [5].

In order to carry out the simulations, we identified in the literature suitable models for describing the gases in the bulk phase. CO_2 molecule was treated by a three site rigid model (TraPPE[6]) that account the intrinsic quadrupole moment using partial charges. For the C₃H₈, the TraPPE model [7] already was select, in which the molecules are treated by a discharged united atom representation.

The potential energies associate with different sites were tuned aiming to represent experimental equilibrium isotherms.

Non-bonded interactions $U(r_{ij})$ are modeled using pairwise-additive potentials consisting of Lennard-Jones (LJ) 12-6 and Coulomb's law [8]:

$$U(r_{ij}) = 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{1}{4\pi\epsilon_{0}} \frac{q_{i}q_{j}}{r_{ij}}$$

During the development of the work, we tested the influence of partial charges of the extraframework cations on the correct representation of experimental data. Comparing the adsorption of CO_2 on silicalite-1 and Na-ZSM-5 (both zeolites have MFI framework), it is clear the electric field created by the sodium cation distribution strongly increase the adsorption of the CO_2 .

Our results showed that the force field presented depicts well the isotherms studied. The magnitude of the potential energies associated with different sites on cationic zeolite suggest there are a polarization effect on propane when these molecules are in mixtures with CO_2 on Na-ZSM-5.

Key-words: Adsorption, GCMC, separation, ZSM-5

Support:This work has been supported by FAPEMIG. We thank the funding agency for their financial assistance.

References:

- [1] G. Calleja, J. Pau, J.A. Calles, S. Al, J. Chem. Eng. Data. 43, 994 (1998).
- [2] D.H. Olson, G.T. Kokotailo, S.L. Lawton, W.M. Meier, J. Phys. Chem. 85, 2238 (1981).
- [3] R.L. June, A.T. Bell, D.N. Theodorou, J. Phys. Chem. 94, 1508 (1990).
- [4] K. Makrodimitris, G.K. Papadopoulos, D.N. Theodorou, Macromolecules. 105, 777 (2001).
- [5] E. García-Pérez, I.M. Torréns, S. Lago, D. Dubbeldam, T.J.H. Vlugt, T.L.M. Maesen, B. Smit, R. Krishna, S. Calero, Appl. Surf. Sci. 252, 716 (2005).
- [6] J.J. Potoff, J.I. Siepmann, AIChE J. 47, 1676 (2001).
- [7] M.G. Martin, J.I. Siepmann, J. Phys. Chem. B. 102, 2569 (1998).
- [8] D. Frenkel, B. Smit, "Understanding molecular simulation: from algorithms to applications" (2002), Academic-Press, San Diego-CA, USA.