

12 a 17/Nov, 2017, Águas de Lindóia/SP, Brasil

Nonadiabatic dynamics of cycloparaphenylenes

Ljiljana Stojanovic¹, Rifaat Hilal², Felix Plasser³, Thomas Niehaus⁴, Mario Barbatti¹

¹Aix Marseille Univ, CNRS, ICR, Marseille, France ²Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia ^{3I}nstitute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Austria ⁴Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Lyon, France

We implemented and applied the fewest switches surface hopping method based on time-dependent density functional tight binding (TD-DFTB) to study the gas-phase relaxation dynamics of two cycloparaphenylene molecules, [8]CPP and [10]CPP. TD-DFTB based on DFTB3 model provides a qualitatively correct description of excitedstate dynamics, as compared to experimental and other theoretical results. According to the dynamics, both molecules remain in their excited states during 3 ps of dynamics. The long fluorescence lifetimes originate from the slow radiative relaxation from the S₁ state. The trend of increasing the fluorescence rate with the molecule size is explained by an increase of the energy gap and oscillator strength for the S₁-S₀ transition in the larger molecule. The analysis of the charge transfer and spatial localization properties of the S₁ states shows that these states have charge transfer characters. In the case of [8]CPP, the S₁ state is delocalized over the whole molecule, whereas in [10]CPP it comprises both localized and delocalized excitons. Even though the TD-DFTB method underestimates the excitation energies of the S₁ states, the charge-transfer character and the types of the excitations occurring during dynamics are well described, when compared to results of TD-DFTB with long-range corrected functional.

Cycloparaphenylenes, Surface hopping dynamics, TD-DFTB