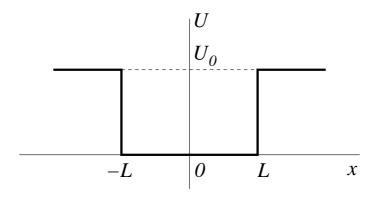
Física IV - 4320402

Escola Politécnica - 2015 GABARITO DA P3

26 de novembro de 2015

Questão 1

Uma partícula de massa m se move em uma dimensão na presença de um "poço de potencial" de profundidade U_0 e largura 2L conforme a figura 1. A partícula se encontra num estado estacionário de energia $E < U_0$.



- (a) (1,0 ponto) A <u>densidade de probabilidade</u> de se encontrar a partícula em uma das regiões fora do poço é $C \exp(-2bx)$, onde C e b são constantes positivas. Explicite a região fora do poço na qual é aceitável esta densidade e explique o porquê. Calcule a probabilidade de encontrar a partícula nesta região (suponha C e b conhecidos).
- (b) (1,0 ponto) Calcule a constante b para que a função de onda associada à densidade de probabilidade $C \exp(-2bx)$ satisfaça a equação de Schrödinger na região apropriada.
- (c) (0,5 ponto) Escreva a equação de Schrödinger para a região -L < x < L e determine a solução geral desta equação.

(a) A região fora do poço para a qual a solução é válida é $x \ge L$. Na região $x \le -L$ a densidade de probabilidade diverge quando $x \to -\infty$.

A probabilidade de encontrar a partícula em $x \geq L$ é

$$P(x > L) = \int_{L}^{\infty} C \exp(-2bx) = \frac{C}{2b} e^{-2bL}.$$

(b) A densidade de probabilidade

$$|\psi|^2 = C \exp(-2bx) \Longrightarrow \psi = \sqrt{C} \exp(-bx).$$

A equação de Schrödinger para a região $x \geq L$ é

$$\frac{-\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) + U_0\psi(x) = E\psi(x).$$

Substituindo a função ψ na equação acima obtemos

$$\frac{-\hbar^2 b^2}{2m} \psi(x) + U_0 \psi(x) = E \psi(x) \Longrightarrow b = \frac{\sqrt{2m(U_0 - E)}}{\hbar}$$

(c) A equação de Schrödinger na região -L < x < L é

$$\frac{-\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) = E\psi(x) \Longrightarrow \frac{d^2}{dx^2}\psi(x) = -\frac{2mE}{\hbar^2}\psi(x) = -k^2\psi(x),$$

onde definimos $k=\sqrt{2mE}/\hbar.$ A solução geral em termos de k é

$$\psi(x) = A\cos kx + B\sin kx.$$

2

Questão 2

Uma partícula de massa m executa oscilações em uma reta em torno de sua posição de equilíbrio em x=0, sujeita a um potencial harmônico dado por $U(x)=m\omega^2x^2/2$, com $-\infty < x < \infty$ e ω uma constante. A função de onda do estado fundamental da partícula é

$$\psi(x) = C \exp(-bx^2),$$

onde b e C são constantes positivas.

- (a) (1,0 ponto) Calcule b e a energia E_0 do estado fundamental do oscilador, em termos dos parâmetros dados: m, \hbar e ω .
- (b) (1,0 ponto) Calcule a constante C.
- (c) (0,5 ponto) Qual é a probabilidade de encontrar a partícula na região $x \geq 0$.

(a) Substituindo $\psi(x)$ na equação de Schrödinger obtemos

$$\frac{-\hbar^2}{2m} [4b^2 x^2 \psi(x) - 2b\psi(x)] + \frac{1}{2} m\omega^2 x^2 \psi(x) = E\psi(x)$$

$$\Longrightarrow \left(-\frac{4b^2 \hbar^2}{m} + m\omega^2 \right) x^2 + \frac{2b\hbar^2}{m} - 2E = 0.$$

Para um polinômio se anular, seus coeficientes devem ser nulos. Assim,

$$b = \frac{m\omega}{2\hbar}$$
 e $E_0 = \frac{\hbar\omega}{2}$.

(b) A constante C é determinada impondo-se a normalização da função de onda.

$$1 = \int_{-\infty}^{\infty} |\psi|^2 dx = \int_{-\infty}^{\infty} C^2 \exp(-2bx^2) dx = C^2 \sqrt{\frac{\pi}{2b}} \Longrightarrow C = \left(\frac{2b}{\pi}\right)^{1/4} = \left(\frac{m\omega}{\hbar\pi}\right)^{1/4}.$$

(c) A probabilidade é dada por

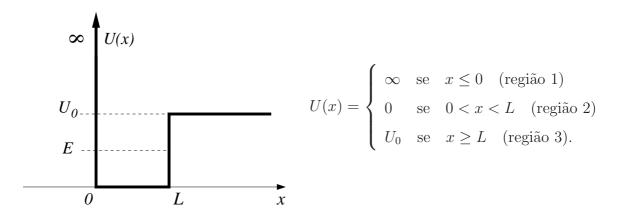
$$P = \int_{0}^{\infty} |\psi|^2 dx = \left(\frac{m\omega}{\hbar\pi}\right)^{1/2} \int_{0}^{\infty} \exp(-m\omega x^2/\hbar) dx = \left(\frac{m\omega}{\hbar\pi}\right)^{1/2} \frac{1}{2} \left(\frac{\hbar\pi}{m\omega}\right)^{1/2} = \frac{1}{2}.$$

Solução alternativa: Como ψ é uma função par

$$P = \int_{0}^{\infty} |\psi|^{2} dx = \frac{1}{2} \int_{-\infty}^{\infty} |\psi|^{2} dx = \frac{1}{2}.$$

Questão 3

Uma partícula de massa m e energia E que se move em uma dimensão possui energia potencial que varia com a posição como mostra a figura.



A função de onda estacionária $\psi(x)$ para esta partícula pode ser obtida separadamente em cada região do espaço, sendo assim especificada por:

$$\psi(x) = \begin{cases} \psi_1(x) & \text{se} \quad x \le 0 \pmod{1} \\ \psi_2(x) & \text{se} \quad 0 < x < L \pmod{2} \\ \psi_3(x) & \text{se} \quad x \ge L \pmod{3}, \end{cases}$$

- (a) (1,0 ponto) Para o caso $0 < E < U_0$, escreva a solução geral para $\psi_1(x)$, $\psi_2(x)$ e $\psi_3(x)$, expressando-as, quando for o caso, em termos de combinações lineares das funções $\exp(\pm ikx)$ e $\exp(\pm bx)$, onde as constantes k e b são ambas reais e positivas.
- (b) (1,0 ponto) Calcule os valores de k e b como função de E, U_0 e constantes do problema.
- (c) (0,5 ponto) Que condições de contorno as soluções $\psi_1(x)$, $\psi_2(x)$ e $\psi_3(x)$ devem satisfazer nos pontos x=0 e x=L.

(a) A função de onda deve se anular na região $x \le 0$ na qual o potencial é infinito. Na região x > L a solução $\exp(bx)$ diverge e deve ser desprezada. Assim,

$$\psi(x) = \begin{cases} \psi_1(x) = 0 & \text{se } x \le 0 \pmod{1} \\ \psi_2(x) = A \exp(ikx) + B \exp(-ikx) & \text{se } 0 < x < L \pmod{2} \\ \psi_3(x) = C \exp(-bx) & \text{se } x \ge L \pmod{3}, \end{cases}$$

(b) Na região 2

$$\frac{-\hbar^2}{2m}\frac{d^2}{dx^2}\psi_2(x) = E\psi_2(x)$$

Usando que $d^2\psi_2/dx^2=-k^2\psi_2$ obtemos

$$\frac{\hbar^2}{2m}k^2\psi_2(x) = E\psi_2(x) \Longrightarrow k = \frac{\sqrt{2mE}}{\hbar}.$$

Na região 3

$$\frac{-\hbar^2}{2m}\frac{d^2}{dx^2}\psi_3(x) + U_0\psi_3 = E\psi_3(x)$$

Usando que $d^2\psi_3/dx^2=b^2\psi_3$ obtemos

$$-\frac{\hbar^2}{2m}b^2\psi_3(x) + U_0\psi_3 = E\psi_3(x) \Longrightarrow b = \frac{\sqrt{2m(U_0 - E)}}{\hbar}.$$

(c) A função de onda é contínua em x=0. Em x=L a função e sua derivada são contínuas.

$$\begin{cases} \psi_1(0) = \psi_2(0) \Leftrightarrow 0 = A + B \\ \psi_2(L) = \psi_3(L) \Leftrightarrow A \exp(ikL) + B \exp(-ikL) = C \exp(-bL) \\ \frac{d\psi_2}{dx} \Big|_{x=L} = \frac{d\psi_3}{dx} \Big|_{x=L} \Leftrightarrow ik(A \exp(ikL) - B \exp(-ikL)) = -bC \exp(-bL), \end{cases}$$

Questão 4

Nesta questão denotamos por $\psi_{nlm_{\ell}}$ os estados do átomo de hidrogênio sem levar em conta o spin do elétron, onde n, l e m_{ℓ} são respectivamente os números quânticos principal, orbital e magnético. Os números quânticos magnéticos foram determinados com respeito a um campo magnético com componente somente na direção z.

(a) (1,0 ponto) A função de onda do estado fundamental do átomo de hidrogênio é

$$\psi_{100} = Ae^{-r/a_0},$$

onde a_0 é o raio de Bohr. Calcule o valor da constante A de normalização.

- (b) (0,5 ponto) Um elétron está no estado ψ_{321} . Considere a energia E e o momento angular orbital $\vec{L} = (L_x, L_y, L_z)$ e seu módulo $L = \sqrt{(L_x)^2 + (L_y)^2 + (L_z)^2}$. Quais são os valores de E, L e L_z ?
- (c) (1,0 ponto) Considere agora um átomo com muitos elétrons na aproximação onde se despreza a interação entre os elétrons. Neste caso, a função de onda de cada elétron é semelhante à do hidrogênio e possui os mesmos números quânticos. Levando em conta o número quântico de spin, determine o número máximo de elétrons que possuem o número quântico principal igual a 3.

(a) Calculamos A impondo a condição de normalização:

$$\int |\psi|^2 dV = 1.$$

Para o caso esfericamente simétrico $dV = 4\pi r^2 dr$. Assim,

$$\int\limits_{0}^{\infty}A^{2}e^{-2r/a_{0}}4\pi r^{2}dr=4\pi A^{2}\int\limits_{0}^{\infty}r^{2}e^{-2r/a_{0}}dr=4\pi A^{2}\frac{a_{0}^{3}}{4}=1\Longrightarrow A=\frac{1}{\sqrt{\pi a^{3}}}$$

(b) No estado ψ_{321} temos

$$E = -\frac{13.6}{9} \text{ eV}; \quad L = \sqrt{2(2+1)}\hbar = \sqrt{6}\hbar; \quad L_z = 1\hbar$$

(c) A camada n=3 tem orbitais $\ell=0,1$ e 2.

$$\begin{array}{ccc} \ell = 0 & \boxed{\uparrow\downarrow} & 2 \text{ elétrons} \\ m_{\ell} & 0 \end{array}$$

$$\begin{array}{cccc} \ell = 1 & \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow \\ m_{\ell} & -1 & 0 & 1 \end{array} \quad \text{6 elétrons}$$

Total = 18 elétrons.

Formulário

$$\begin{split} h &= 4 \times 10^{-15} \text{ eV.s,} \quad \hbar = h/(2\pi), \quad c = 3 \times 10^8 \text{ m/s,} \quad E = hf = hc/\lambda, \\ &- \frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + U(x) \psi(x) = E \psi(x), \quad dV = 4\pi r^2 dr, \\ L &= \sqrt{\ell(\ell+1)} \; \hbar, \; L_z = m_\ell \; \hbar, \; S = \sqrt{s(s+1)} \; \hbar, \; S_z = m_s \; \hbar, \quad E_n = -13, 6 \frac{1}{n^2} \; \text{eV}, \\ \int e^{-ax} dx = - \; \frac{e^{-ax}}{a}, \quad \int_0^\infty x^n e^{-ax} dx = \frac{n!}{a^{n+1}}, \quad \int_{-\infty}^\infty e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}. \end{split}$$